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Abstract

The RNAIi technology takes advantage of the intrinsic RNA interference (RNAi) mechanism that exists in

nearly all eukaryotes in which target mRNAs are degraded or functionally suppressed. Significant
progress has been made in recent years where RNAi technology is applied to several crops and
economic plants for protection against diseases like fungi, pests, and nematode. RNAi technology is also
applied in controlling pathogen damages in wheat, one of the most important crops in the world. In this
review, we first give a brief introduction of the RNAIi technology and the underneath mechanism. We
then review the recent progress of its utilization in crops, particular wheat. Finally, we discuss the
existing challenges and prospect future development of this technology in crop protection.
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INTRODUCTION

Wheat (Triticum aestivum L.) contributes more than
20% of the total dietary calories and proteins for
humans worldwide (Shiferaw et al. 2013). It plays a
pivotal role in securing the global food demand. The
increase of wheat yield, however, has slowed down in
recent years partly due to newly emerging varieties of
various diseases—pathogens, pests and nematodes
(Rosegrant and Cline 2003). On the other hand, the
overuse of pesticides for disease control has posed
substantial risks to food safety, the environment, and all
living organisms (Ali 2014). The transgenic crops
expressing insecticidal proteins from  Bacillus
thuringiensis (Bt) effectively reduced the insecticide
usage and increased crop yields. However, the limited
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scope of Bt crops and the appearance of Bt-resistant
pests in fields call for new technologies for pest control
(Carriere et al. 2015; Jin et al. 2015; Tabashnik et al.
2013). The phenomenon of RNA interference (RNAI) is
widely found in eukaryotes (plants, fungi, insects, ani-
mals, and nematodes etc.) and has been developed as a
promising technology for crop health protection (Zhang
et al. 2017). RNAI is a natural process that involves the
regulation of gene expression by several manners:
effective post-transcriptional gene silencing (PTGS),
translational inhibition, RNA destabilization, and/or
transcriptional gene silencing (TGS) by directing DNA
methylation (Fire et al. 1998; Coleman et al. 2015;
Ghildiyal et al. 2008; Huvenne and Smagghe 2010;
Jones-Rhoades et al. 2006; Liu et al. 2020; Mao et al.
2007; Sherman et al. 2015). Here, we review recent
progress in the development of RNAi-based plant pro-
tection technologies, particularly on its application in
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wheat. We discuss its potential for the control of fungal
pathogens, pests and nematodes, as well as current
challenges facing RNAi strategy. We also prospect the
future improvement in delivery methods for effective
applications of this technology in crop protection.

THE MECHANISM OF RNAI TECHNOLOGY

RNAI is a self-protection mechanism in eukaryotic cells
and is triggered by double-stranded RNA (dsRNA) when
present in a cell. dsRNA is processed by the ribonucle-
ase III enzyme Dicer or Dicer-like enzymes to produce
small interfering RNAs (siRNAs) of 20-30 nucleotide
(nt) long. These small RNA (sRNA) are bound to Arg-
onaute family proteins (AGOs), the catalytic components
of the RNAi system. The AGO/siRNA complexes are then
recruited to the RNA-induced silencing complex (RISC)
(Lee et al. 2010), which mediates mRNA degradation,
mRNA translation, or chromatin modification (Borges
and Martienssen 2015) (Fig. 1). In most eukaryotes,
including pathogens and pests, RNA-dependent RNA
polymerases (RdRPs) have been identified for sec-
ondary dsRNA synthesis and are essential for the sys-
temic effect of RNAi. Two works have specified
functions for the RdRP activity in  RNAi

in Caenorhabditis elegans (Sijen et al. 2001) and fungi
(Dang et al. 2011); however, a similar RdRP-based
amplification system is yet to be discovered in insects
(Zotti et al. 2018). Given the presence of RNAi pathways
in pathogens, pests, and nematodes, it is not surprising
to take advantage of its working mechanism in crop
protection.

DELIVERY OF INTERFERING RNAS

Interspecific transportation of sRNAs takes place natu-
rally. siRNAs can be shuttled between plants and
pathogens by secreted vesicles (Cai et al. 2018; Weiberg
et al. 2013). In cotton, the production of microRNAs
(miRNAs) miR166 and miR159 was increased upon
Verticillium dahliae (a vascular fungal pathogen
responsible for devastating wilt diseases in many crops)
infection and transported to infection sites to silence
virulence genes reducing its damage (Zhang et al. 2016).
Despite these in vivo mechanisms, the RNAi technology
is impeded by in vitro dsRNA delivering efficiency.
Numerous efforts on artificial delivery methods have
been attempted. The selection of the suitable delivery
approaches (e.g. host-induced gene silencing, foliar
sprays, recombinant microbes) is in fact determining
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Fig. 1 The RNAIi technology and its application in crop diseases control. (Left) Crop disease control by RNAi. dsRNA delivery strategies
for wheat protection mainly via HIGS, foliar sprays and recombinant microbes. Each of these strategies contains advantages, relying on
the specific condition involved. Additional methods are also used such as nanoparticles, baits, trunk injection, and root soaking. (Right)
The RNAi mechanism. Double-stranded RNA (dsRNA) molecule binds to a Dicer/Dcl protein, which cleaves it into small interfering RNAs
(siRNAs); these siRNAs bind to an Argonaute (AGO) protein, to form an RNA-Induced Silencing Complex (RISC), then RISC separates the
siRNAs into two strands. The siRNA/RISC complex binds the complementary sequence of the target mRNA resulting in post-
transcriptional gene silencing (PTGS) via degradation of the mRNA target (indicated by a scissor) or inhibition of its translation (indicated
by red vertical bar), or resulting in transcriptional gene silencing (TGS) in the nucleus via chromatin modifications. In fungi and
nematodes, the silencing signal can be perpetuated by the action of the RNA-dependent RNA polymerase (RdRP) for siRNA secondary

amplification, but for pests, RdRP is not yet found
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the success of the technology (Fig. 1). A few methods
have been tested.

The first approach is the application of synthetic
dsRNA or sRNA derived from pathogen or pest genes as
pesticides on crop leaves. Foliar application with
sprayable RNAi-based products, such as sRNAs, is suit-
able for controlling pests and pathogens on stems,
foliage, or fruits. The products are evaluated similarly to
topical pesticides where the RNA solution is sprayed on
leaves, or fed to the target pests, and impacts on insects
are then observed (Andrade and Hunter 2017). One of
the first case exploring the applications of sprayable
RNA molecules to control pests was the use of siRNA
against the diamondback moth (Plutella xylostella).
Brassica leaves that were sprayed with chemically syn-
thesized siRNAs targeting the acetylcholine esterase
gene AchE2 caused high mortality for P, xylostella. (Gong
et al. 2013). In another case, foliar application of dsRNA
targeting the cytochrome P450 (CYP3) gene of Fusarium
graminearum resulted in successful inhibition of fungal
growth in directly sprayed leaves as well as the distal
non-sprayed leaves in barley plants (Koch et al. 2016).
This strategy or so-called spray-induced gene silencing
(SIGS) opens an avenue of development of biopesticide
which is environmentally friendly. Moreover, since RNAi
is highly dependent on the sequence specificity, it has
little effects on the non-target microorganisms or non-
target pests.

The second method is to use recombinant microbes
such as virus and bacteria engineered to produced
dsRNA in host crops (Cagliari et al. 2018; Dubrovina and
Kiselev 2019; Goulin et al. 2019). Virus-induced gene
silencing (VIGS) is a naturally occurring (Baulcombe
2015; Waterhouse et al. 2001). Unlike stable RNAi and
mutants, the transiently expressed dsRNA by VIGS does
not modify plant genetic composition. For instance,
three midgut-expressed CYP genes of the Lepidoptera
insect, Manduca sexta were targeted through viral vec-
tors to produce dsRNA in the host plant. The viral vector
was engineered using Tobacco Rattle Virus (TRV) to
deliver dsRNA into Nicotiana attenuata (Kumar et al.
2012). DsRNA could also be produced in the bacteria
(HT115). When the cotton bollworm (Helicoverpa
armigera) larvae fed with the artificial diet coated with
dsRNA expressing HT115, high mortality was observed
after five days. Data showed that inhibition of target
gene expression led to significant reductions in body
weight, body length, and pupation rate (Ai et al. 2018).

The third approach is host-induced gene silencing
(HIGS) which employs transgenic plants to produce
dsRNA derived from pathogen or pest genes. RNAi
occurs in pests when they ingest sufficient dsRNA or
sRNA. Tests have been made for a few pests where
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persistent effects were obtained for several common
species (Baum et al. 2007; Mao and Zeng 2014; Sun
et al. 2019; Zhu et al. 2012). The phloem-feeding
hemipterans such as aphids with specialized mouth-
parts (stylets) that penetrate through plant tissues to
ingest cell saps. In this case, dsSRNA sequences of shp
gene effectively reduced the growth, the reproduction,
and the survival rate of tested aphids. Remarkably, other
developmental aberrations were also observed such as
winged adults and delayed maturation (Abdellatef et al.
2015). This method is a complementary tool to Bt-based
insect-resistant plants which is not effective for several
hemipterans with specialized stylets. Cotton plants
constitutively expressing dsRNA from genes encoding
the P450 protein CYP6AE14 and NDPH dehydrogenase
protein 2 of cotton bollworm (Helicoverpa armigera)
significantly improved resistance to this pest, and the
dsNDPH cotton is almost equivalent to Bt cottons in
resistance efficiency (Mao et al. 2011; Wu et al. 2016).
Similarly, dSRNA homologous to V-type ATPase gene of
corn root worm (Diabrotica virgifera) in transgenic corn
plants rendered significant improvement of insect
resistance (Baum et al. 2007).

For woody plants, such as fruit trees, dsRNA can be
delivered via insecticidal baits, nanoparticle trunk
injection and root soaking. The information of these
methods can be found elsewhere for detail (Liu et al.
2020; Zhu and Palli 2019).

THE APPLICATION OF RNAI FOR WHEAT
PROTECTION

Management of bacterial and fungal pathogens

In wheat, a few serious wheat diseases, such as Fusar-
ium head blight (FHB) caused by necrotrophic fungi of
the genus Fusarium and leaf rust caused by biotrophic
fungi of the genus Puccinia (Table 1), have been targeted
using RNAi technology. Transgenic wheat plants were
engineered to confer three hairpin RNA fragments
derived from the Fusarium graminearum chitin synthase
gene (Chs3b), which is responsible for the biosynthesis
of chitin. These transgenic plants showed strong resis-
tance to FHB and Fusarium seedling blight (FSB) (Cheng
et al. 2015). On the other hand, expressing dsRNA
complementary to mRNAs of Puccinia triticina MAP-ki-
nase (PtMAPK1, 520 bp) or a cyclophilin (PtCYC1,
501 bp) showed efficient silencing of the corresponding
genes in the fungus and significant reduction of the
fungal pathogenicity and growth in transgenic wheat. P
triticina is an aggressive fungal pathogen that causes
severe leaf rust disease in wheat. P triticina
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Table 1 RNAI target genes tested in pests/pathogens/nematodes

Organism Target genes Assay/ Effects References
method
Insects
Sitobion avenae Salivary sheath protein (SHP) HIGS Mortality/ Abdellatef et al.
fecundity/transgenetional (2015)
gene silencing
Rhopalosiphum Acetylcholinesterase gene RpAcel Injection Susceptibility /fecundity Xiao et al.
padi (2015)
Sitobion avenae Catalase gene CAT Feeding Mortality Deng and Zhao
(2014)
Sitobion avenae Acetylcholinesterase gene SaAcel Injection Susceptibility /fecundity Xiao et al.
(2015)
Sitobion avenae Cytochrome c oxidase subunit VIIc precursor, Feeding Mortality/developmental Zhang et al.
zinc finger protein, three unknown proteins stunting (2013)
Sitobion avenae Secreted salivary peptide DSR32, salivary Feeding Mortality Wang et al.
protein DSR33, serine protease 1 DSR48 (2015)
Sitobion avenae Olfactory coreceptor gene SaveOrco Feeding Impaired response Fan et al.
(2015)
Sitobion avenae Lipase maturation factor 2-like gene HIGS Mortality /fecundity Xu etal. (2017)
Sitobion avenae Laccase 1 (Lacl) Feeding Mortality Zhang et al.
(2018)
Sitobion avenae Zinc finger protein (SaZFP) HIGS Mortality/transgenetional gene  Sun et al.
silencing (2019)
Sitobion avenae Ecdysone receptor (EcR) and ultraspiracle Feeding Mortality /fecundity Yan et al.
protein (USP) (2016)
Sitobion avenae Chitin synthase 1 (CHS1) HIGS Mortality /fecundity Zhao et al.
(2018)
Pathogens
Fusarium Cytochrome P450 lanosterol HIGS Inhibiting fungal mycelium Koch et al.
graminearum C-144-demethylase (CYP51) formation (2013)
Fusarium Cytochrome P450 lanosterol C-14a- SIGS Inhibition of fungal growth Koch et al.
graminearum demethylase CYP51 (2016)
Fusarium Chs3b HIGS Restriction of fungal growth Cheng et al.
graminearum through (2015)
Blumeria graminis  Virulence effector (Avral0) HIGS Reduced fungal development Nowara et al.
(2010)
Fusarium asiaticum Myosin 5 SIGS Reduced virulence Song et al.
(2018)
B. graminis f. sp. Ribonuclease-like protein HIGS Reduced virulence Pliego et al.
hordei Ribonuclease-like protein (2013)
Virulence effector
Glucanase
Metalloprotease
Virulence effector
Fusarium culmorum Secreted lipase (Fgl1), Mitogen-activated VIGS and Reduced virulence Chen et al.
protein (MAP) kinase (Fmk1), Beta 1,3- HIGS (2016)
Glucan synthase (Gis1)
Puccinia striiformis  Calcineurin homologue (PsCNA1, PsCNB1) VIGS Slower extension of fungal Yin et al.
f. sp. tritici hyphae (2010)
Puccinia striiformis  Mitogen-activated protein kinase (MAPK1), VIGS Reduced virulence Panwar et al.
f. sp. tritici Cyclophilin (CYC1), Calcineurin regulatory (2013)

subunit (CNB)

© The Author(s) 2021



aBIOTECH (2021) 2:365-374

369

Table 1 continued

Organism Target genes Assay/ Effects References
method
Puccinia striiformis  Protein kinase A catalytic subunit (PsCPK1) VIGS Reduced virulence Qi et al. (2018)
f. sp. tritici
Blumeria Three virulence effectors (SvrPm>*/1) HIGS Reduced virulence Schaefer et al.
graminis f. (2020)
sp. tritici
Puccinia striiformis  Glycine-serine-rich effector (PstGSRE1) HIGS Reduced virulence and Qi et al.
f. sp. tritici increased H,0, accumulation (2019a)
Nematodes
Meloidogyne Heat-shock protein 90, isocitrate lyase, HIGS Reduced reproduction Lilley et al.
incognita Mi-cpl-1 (2007)
Pratylenchus spp. Troponin C (pat-10) Soaking Reduced reproduction Tan et al.
Calponin (unc-87) solution (2013)

proliferation was significantly reduced together with
decreasing fungal target gene transcript abundance and
reduced biomass accumulation in RNAi-based resistant
plants (Panwar et al. 2018).

Powdery mildew caused by Blumeria graminis f. sp.
hordei in barley and B. graminis f. sp. tritici in wheat is a
serious disease as well. Transgenic barley expressing
dsRNA targeting the avirulence gene Avral0, which
corresponds to the resistance gene Mlal0, showed
reduced fungal gene transcripts and severely affected
fungal development (Nowara et al. 2010). Silencing of
1,3-f-glucanosyltransferase  genes (BgGTF1 and
BgGTF2) via VIGS that was built on the barley stripe
mosaic virus (BSMV) significantly slowed down the
growth of the powdery mildew fungus (Qi et al. 2019b).
Mildew resistance locus o (Mlo) encodes a transmem-
brane protein (Panstruga et al. 2005) that acts as a
negative regulator to suppress plant immunity in
uninfected tissues. It is also involved in protection
against cell death as well as in responses to biotic and
abiotic stresses (Piffanelli et al. 2002). Down-regulation
of the TaMlo gene via VIGS resulted in the broad-spec-
trum powdery mildew resistance in wheat (Varallyay
et al. 2012). Recently, gene-editing technologies were
used to achieve similar effects. For instance, simulta-
neous knockout of the three TaMlo homoeologues by
TALEN (transcription activator-like effector nuclease)
produced transgenic wheat plants that were highly
resistant to powdery mildew infection, another work
produced transgenic wheat plants that carry mutations
in the TaMLO-A1 allele using the CRISPR-Cas9 technol-
ogy (Wang et al. 2014). On the other hand, non-trans-
genic TILLING (Targeting Induced Lesions IN Genomes)
plants with partial loss-of-function alleles of TaMlo
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confer durable broad-spectrum powdery mildew resis-
tance (Acevedo-Garcia et al. 2017).

Wheat streak mosaic virus (WSMV) is another per-
sistent threat to wheat production. Transgenic wheat
plants constitutively expressing a polycistronic cassette
of five miR395 arms, known as FanGuard (FGmiR395),
were exploited to target five distinct regions of the virus
genome. The consequent transgenic plants showed
nearly complete immunity to WSMV (Fahim et al. 2012).
In the other case, a segment of 272 bp sequence derived
from the coat protein of Triticum mosaic virus (TriMV)
was cloned into the hairpin expression vector and
constitutively expressed in wheat. The engineered
wheat plants showed stable resistance to TriMV (Fahim
et al. 2010).

Management of wheat pests

Several major pests, such as grain aphid (Sitobion avenae),
bird cherry-oat aphid (Rhopalosiphum padi), and wheat
aphid (Schizaphis graminum), can cause severe yield loss
(Table 1) (Peairs 2008; Smith and Chuang 2014; Yu et al.
2014). Transgenic wheat plants expressing a 198 bp
fragment of dsRNA complementary to the zinc finger
protein (SaZFP) of grain aphid can effectively increase its
mortality and reduce its daily fecundity (Sun et al. 2019).
In barley, dsRNA targeting the grain aphid gene encoding
salivary sheath protein (SHP), a pivotal component of the
stylet penetration process, effectively reduces the repro-
duction and survival rates of the aphid and the effect can
be transmitted for seven generations (Abdellatef et al.
2015). Effects of additional target genes were also con-
firmed by feeding or direct injection into grain aphid, such
as those encoding catalase, acetylcholinesterasel,
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cytochrome c oxidase subunit Viic precursor, and zinc
finger protein, and abnormally high mortality and devel-
opmental stunting were observed (Wang et al. 2015;
Zhang et al. 2013).

Management of nematodes in wheat

Wheat parasites cause enormous Yyield losses and
threaten the quality of grains, including Heterodera
avenae, H. filipjevi and H. latipons (Table 1) (Toumi and
Waeyenberge 2013). Targeting of the Ha18764 effector
protein family genes of H. avenae by the VIGS-based
RNAIi approach significantly attenuated the parasitism
and reproduction status of H. avenae in wheat (Yang
et al. 2019). Down-regulation by RNAi of pat-10 and
unc-87 genes on Thorne’s meadow nematode (Praty-
lenchus thornei), which infects wheat roots, significantly
reduced the reproduction of the worms (Tan et al
2013). Moreover, RNAi in wheat can be stimulated by
poly-component biostimulants derived from metabo-
lites of various soil streptomycetes which up-regulate
siRNAs and miRNAs in wheat plants. These small RNAs
are complementary to cereal cyst nematode mRNA and
hence suppress their reproduction providing resistance
to wheat plants (Blyuss et al. 2019).

CHALLENGES FOR USING RNAI TECHNOLOGY

While the outlook of using RNAi for plant protection
appears to be promising, several issues need to be
resolved before efficient practical applications.

The stability of dsRNA

One of the primary concerns for the use of RNA as a
biopesticide is their stability, especially for the spray-
able dsRNA and siRNA applications. Microorganisms in
the environment can degrade dsRNA prior to their
uptake by pathogens or pests. Rapid degradation of
dsRNA may occur by nucleases in the saliva, gut lumen,
and/or haemolymph of pests as well (Allen and Walker
III 2012; Chung et al. 2018; CoGuan et al. 2018; Katoch
and Thakur 2012; Kennedy et al. 2004; Luo et al. 2013).
The high or low pH found in the gut lumens of some
pests can also reduce dsRNA stability either directly or
indirectly by affecting the activity of gut nucleases
(Cooper et al. 2019).

Other environmental factors may exert different
effects on the stability of dsRNA and sRNA. Several
works show that dsRNA is degraded to unde-
tectable levels within 48 h after their application on
three types of soil (silt loam, loamy sand, and clay loam)

and within 7 days after their addition to aquatic sys-
tems containing natural water and various types of
sediment (Albright et al. 2017; Fischer et al. 2017).
Despite this, actin-dsRNA derived Colorado potato bee-
tle (CPB) remained active for at least four weeks after
application to potato leaves. It suppressed CPB larval
weight gain, delayed its development, and increased its
mortality (San Miguel and Scott 2016). Therefore, dis-
secting the process of dsRNA degradation is helpful in
evaluating the potential effect of dsRNA in various
environments and target organisms.

Cost-effective methods for dsRNA production

For RNAi application to be practical for field use, the
major hurdle is to produce sufficient amount of dsRNA.
The traditional dsRNA production method in the labo-
ratory is expensive and produces only a limited amount
of dsRNA and thus is not practical for large-scale
application needs (Ahn et al. 2019). Producing dsRNA in
bacterial cells with RNaselll deficiency seems to be an
alternative. However, only a handful works have
demonstrated microbial-based dsRNA production. One
approach uses L1440-HT115 (DE3) system that has
been successfully applied in the RNAi of Mythimna
separate (Das et al. 2015; Parsons et al. 2018; Zhang
et al. 2010). With more research underway, the pro-
duction efficiency of this system should be augmented
to meet market demands.

Off-target effects

RNAi is a sequence homology-dependent mechanism.
Several studies show that siRNA is not always specific
and can have off-target effects and thus is problematic
in disease management (Mamta and Rajam 2017). Some
target genes are highly conserved between species
which increases the likelihood of off-targets among
them. The sequences of vATPaseA and vATPaseEfrom L.
decemlineata, for instance, shared 83% and 79%
nucleotide-sequence identities to their counterparts in
Western Corn Rootworm (WCR), respectively. dsRNAs
from WCR vATPaseA and vATPaseE could reduce the
fitness of Colorado potato beetle (CPB; Leptinotarsa
decemlineata) in a bioassay (Baum et al. 2007). Com-
putational design program is needed for specific and
systemic evaluation of non-target and off-target effects
which should be further verified by additional bioas-
says. In addition, feeding studies revealed that dsRNAs
of at least 60 nucleotide (nt) in length are necessary for
an efficient RNAi response in D. virgifera (Bolognesi
et al. 2012) and Tribolium castaneum (Wang et al.
2019). A minimum of 21 nt was required for the size of
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siRNA for efficient protection against WCR and active
orthologs (Bachman et al. 2013).

RNAIi resistance

Pests and pathogens can develop resistance to RNAi-
based products through various mechanisms as they do
for conventional biopesticides. Compared to conven-
tional commercialized transgenic crops expressing Bt
toxins for pest management (James, 2010). RNAi-based
strategy induces down-regulation of the target gene by
in-complete resistance in most of cases. This may
reduce the selection pressure on the pathogen that may
contribute to durable resistance. But genetic variation in
pathogenic organisms may also cause single nucleotide
polymorphisms (SNPs) in the target gene. The efficiency
of RNAi would be cut down owing to the reduction of
complementarity between the target gene and the
dsRNA. Synonymous SNPs lead to nearly no fitness cost
on the pathogens and pests, but the difference between
dsRNA and the original gene sequences reduces their
complementarity, causing reduced RNAi effect or RNAi
resistance (Scott et al. 2013; Yu et al. 2016). Thereby,
the potential of RNAi resistance should be taken into
consideration in application.

CONCLUSIONS AND FUTURE PROSPECTS

In the past few years, we have seen diverse applications
of RNAI in crop protection methodologies against pests,
pathogens, and nematodes. RNAi technology has
emerged as a promising new strategy for wheat pro-
tection either. The wide use of HIGS on a commercial
scale appears possible soon. The major obstacles for the
HIGS strategy will be resolved, by optimal target and
fragment selection methods, highly efficient transfor-
mation constructs, and stable transgenic systems. To
this end, it is worthy to mention that the V-type ATPase-
based RNAi technology has passed the GM safety eval-
uation in eight countries and regions including the
United States, Brazil, and Japan. It has also been licensed
for planting by the US Environmental Protection Agency
(Zotti et al. 2018), painting an elusive picture for the
commercialization of the RNAi technology. Technical
barriers are being overcome to allow a wide range of
applications from laboratory to the field. The technology
of encapsulated dsRNA on leaves with SIGS has signifi-
cantly promoted dsRNA stability in the environment as
well as during its uptake by pests enhancing plant
protection. Cost-effective approaches for massive pro-
duction of dsRNA (e.g. bacterial, plant, and synthetic
production) are being optimized and will contribute to

© The Author(s) 2021

lowering costs of the technology. There is no doubt that
a new era of disease control based on RNAi technology
for crop protection is right at the corner.
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