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Analytical and simulation studies 
of driven diffusive system with 
asymmetric heterogeneous 
interactions
Yu-Qing Wang1,2, Ji-Xin Wang3, Wan-He Li3, Chao-Fan Zhou3 & Bin Jia2

Totally asymmetric simple exclusion process (namely, TASEP) is one of the most vital driven diffusive 
systems, which depicts stochastic dynamics of self-driven particles unidirectional updating along one-
dimensional discrete lattices controlled by hard-core exclusions. Different with pre-existing results, 
driven diffusive system composed by multiple TASEPs with asymmetric heterogeneous interactions 
under two-dimensional periodic boundaries is investigated. By using detailed balance principle, particle 
configurations are extensively studied to obtain universal laws of characteristic order parameters of 
such stochastic dynamic system. By performing analytical analyses and Monte-Carlo simulations, 
local densities are found to be monotone increase with global density and spatially homogeneous to 
site locations. Oppositely, local currents are found to be non-monotonically increasing against global 
density and proportional to forward rate. Additionally, by calculating different cases of topologies, 
changing transition rates are found to have greater effects on particle configurations in adjacent 
subsystems. By intuitively comparing with pre-existing results, the improvement of our work also 
shows that introducing and considering totally heterogeneous interactions can improve the total 
current in such multiple TASEPs and optimize the overall transport of such driven-diffusive system. Our 
research will be helpful to understand microscopic dynamics and non-equilibrium dynamical behaviors 
of interacting particle systems.

Driven diffusive system has aroused significant attentions for its importance in non-equilibrium statistical physics, 
which intuitively reflects profound non-equilibrium dynamic mechanisms and contains deep non-equilibrium 
characteristics1–4. Being one of the most critical kinds of driven diffusive system, totally asymmetric simple exclu-
sion process (namely, TASEP) illustrates motion of self-driven particles along one-dimensional discrete lattices 
at specific rates5–7. Affected by hard-core exclusions, TASEP can well depict complex non-equilibrium dynamical 
phenomena, such as traffic flow8,9, pedestrian flow10, quantum dots transport11, intercellular transport12–14, tran-
scription factors transport15,16 etc. Thus, regarded as a paradigm like Ising model, it has attracted considerable 
attentions for its fundamentality in understanding essential mechanisms like shuffled dynamics17, cluster dynam-
ics18–20, spontaneous symmetry breaking21–23, domain wall theories24–29, phase separation30–32 etc.

Generally, interactions among subsystems have a great impact on non-equilibrium properties of driven diffu-
sive system. As for one-dimensional TASEP, the system is comprehensively studied by two main methods, namely 
mean-field approximations26,33,34 and exact analyses35–38. Additionally, as for multi-lane TASEPs, the global system 
is composed of several subsystems based on one-dimensional TASEP. In tremendous circumstances, mean-field 
approximation is often chosen to investigate such multi-lane TASEPs for its simplicity of considering interactions 
of particles, especially spatial correlation. However, universal evolution laws of characteristic order parameters of 
such stochastic dynamic systems can hardly be obtained by employing methods with approximations. This is 
because that these laws should be independent of specific values of parameters, which can be realized by perform-
ing strict mathematical derivations without approximation conditions (namely, analytical analyses). Additionally, 
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Ezaki firstly performed the pioneering study about exact analyses of a heterogeneous system composed of 
multi-lane TASEPs with symmetric lane-changing rates39. Here, symmetric lane-changing rates mean that 
upward and downward rates for each subsystem are equal to each other (namely, the rate χi)

39. However, those for 
any two subsystems are different (namely, χ ≠ χi j for ∀i ≠ j)39. Thus, ref.39 is the case of partly heterogeneous 
interactions. Afterwards, authors focused on asymmetric lane-changing behavior under two strong constraint 
conditions, where two special cases (namely, equal rates for internal and external adjacent lanes) were studied40. 
The heterogeneity of multi-lane TASEPs was also partly considered.

Here, relevant to transport process of driven diffusive systems in real world and motivated by it, we aim to 
study a two-dimensional driven diffusive system with generalized heterogeneous interactions, which is more 
capable of depicting real transport phenomena. For instance, as for traffic flow, vehicles can be driven along their 
own lanes or perform lane-changing behavior at different rates41–43. Another case is unidirectional motion of 
protein motors which can be divided into different movements including directional moving along filaments, 
detaching from them and diffusing into the surrounding cytoplasm at different rates44–47. Thus, above-mentioned 
phenomena can be modelled by our work, namely multi-channel TASEPs with asymmetric heterogeneous tran-
sition rates. Actually, heterogeneity is not fully considered in previous work39. Only symmetric heterogeneous 
interactions were discussed, which led to conclusions relatively lack of universality and not fully reflecting influ-
ence of heterogeneity on characteristic order parameters (namely, current, density etc.) of such stochastic system.

Different from pre-existing results, asymmetric heterogeneous interactions are introduced, which fully reflect 
heterogeneity of subsystems. In details, the interaction between lanes i and −i 1 is not equal to that between lanes 
i and +i 1, which means that heterogeneous interactions are asymmetric. Additionally, transition rates for each 
lane are arbitrary. Thus, we aim at investigating a driven diffusive system with totally heterogeneous interactions. 
The proposed two-dimensional stochastic system is composed of multiple TASEPs with periodic boundaries. 
Asymmetric transition rates among adjacent subsystems dominate non-equilibrium dynamic characteristics of 
the system. The goal of our work is proposing a more universal interacting multi-body particle system more reli-
able to depict real transport phenomena, constructing such driven diffusive system by employing multiple 
TASEPs with totally heterogeneous interactions, obtaining analytical solutions and Monte-Carlo simulations to 
avoid using previous approximations leading to results lack of universal laws, obtaining universal laws of charac-
teristic order parameters by calculating more complex topologies rather than previous four TASEPs39 and intui-
tively present improvements of our research by clearly comparing with pre-existing results though investigating 
the effect of heterogeneous interactions on overall transport and comparing relationship among total current, 
global density and scaling rate in three complete kinds of cases (namely, totally heterogeneous, partly heterogene-
ous and homogeneous) besides in the technical perspective.

In order to perform analytical analyses, detailed balance principle is firstly analyzed. Transitions among com-
plete configurations of particles are fully considered. Then, exact results of the restriction of density weight are 
obtained. Afterwards, by employing complex analysis and Monte-Carlo simulations, heterogeneous interactions 
are extensively analyzed by reporting calculations of characteristic order parameters. Additionally, different 
topologies rather than previous four TASEPs39, are calculated to investigate effect of changing transition rate on 
local density and increment of total current. Finally, impact of heterogeneous interactions on overall transport 
is studied.

Results
Asymmetric heterogeneous model.  The sketch of the model is displayed in Fig. 1. Two-dimensional 
periodic boundaries and random update rules are applied, which consists of K equal-sized periodic subsystems. 
Each system size is L. As the periodic boundary, lane +i K is equivalent to i. Additionally, >K 2 is satisfied 
because each subsystem has two adjacent lanes. Here, a binary parameter τ = … = …(i 1 K, j 1 L)i,j  is defined to 
illustrate the state of chosen site. In an infinitesimal time interval dt, if τ = 1i,j  and τ =− 0i 1,j , the chosen particle 
in lane i can move into corresponding site of −i 1 at ωi

u. Similarly, if τ = 1i,j  and τ =+ 0i 1,j , the chosen particle can 
move into +i 1 at ωi

d. Thus, as the effect of hard-core exclusions, lane-changing behavior won’t occur until the 
target site is empty. Besides, if τ = 1i,j  and τ =+ 0i,j 1 , the chosen particle can hop forward at pi. Moreover, totally 
heterogeneous interactions are considered, which satisfy ω ≠ ωi

u
i
d. Thus, three rates are coupled with each subsys-

tem, namely upward rate ωi
u, downward rate ωi

d and forward rate pi.

Figure 1.  Sketch of model. (a) Intuitionistic description. (b) Update rules, an enlarged view of orange dotted 
box. Four adjacent lanes are addressed in such two-dimensional periodic torus. Red, yellow, blue and green lines 
correspond to lanes −i 2, −i 1, i and +i 1. Arrows show allowed hopping, while cross displays prohibited one.
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As the update rule, boundary of each subsystem is periodic in forward direction. Thus, dynamics of lane i are 
spatially independent, which mean that sites of it are equivalent to each other. Moreover, straight density profile 
of each subsystem also reflects that dynamics of each subsystem are spatially independent. Thus, dynamics of each 
subsystem are mainly controlled by heterogeneous interactions among adjacent subsystems. In the global view, 
dynamics of the proposed driven diffusive system are mainly affected by heterogeneous interactions, since they 
are capable of quantitatively reflecting interactions among adjacent subsystems and will affect the system’s local 
density. Additionally, in the special case ω = ωi

u
i
d, such totally heterogeneous system deteriorates into the partly 

heterogeneous one39. Moreover, in another special case that all transition rates are equal to each other, such totally 
heterogeneous system evolves into the homogeneous one.

Detailed balance analysis.  We consider particle configurations and use τ{ }i,j i to depict particle configura-
tions in subsystem i. Similarly, fi is set as the possibility of presence of particles on lattices in i. Because of homo-
geneity of each subsystem, possibilities can be expressed with the same fi for each site. Then, the system’s partition 
function can be expressed as:

∑∏= ψ τ=Z (M )f({ } ), (1)L,N,K i 1
K

i i i,j i

where N denotes total particle number. Besides, ψ τ( )(M )f { }i i i,j i  means the probability of occurrence of the situa-
tion where subsystem i contains Mi particles with τ{ }i,j i. Thus, ∏ ψ τ= ( )(M )f { }i 1

K
i i i,j i  means the probability of occur-

rence of the situation where those N particles distribute as τ{ }i,j .
As for subsystem i, each particle has the same property. Therefore, subsystem i can be treated as a homogene-

ous system. Weight of different τ{ }i,j i should be equal with each other as for specific Mi. Besides, it’s also equal to 
weight of occurrence of the situation where Mi sites are occupied in subsystem i. Thus, following restraint is 
satisfied:

ψ τ = .(M )f({ } ) f (2)i i i,j i i
Mi

In this circumstance, the weight can be divided into CL
Mi species. Then, Eq. (2) can be rewritten as:

∑ ∑ ∏ ∑δ= …






 × − .= = = =( )L NZ f M M
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As for a given configuration τ{ }i,j , the probability P τ{ }i,j  satisfies:

∏ ∏τ = τ =−
=

−
=Z ZP{ } f({ } ) f , (4)i,j L,N,K

1
i 1
K

i,j i L,N,K
1

i 1
K

i
Mi

where ∑ ∑ τ =P{ } 1i j i,j . Because the sum ∑ τP{ }i,j  of all probabilities of occurrence of all configurations is 
complete.

Besides, master equation is introduced to illustrate configuration transitions:

∑∂
∂

= ′ ′ → − → ′ =′≠
P C

t
P C C C P C C C( ) { ( )W( ) ( )W( )} 0, (5)C C

where C and C′ denote the configuration before and after transition respectively. P(C) denotes the probability of 
occurrence of such configuration C. → ′C CW( ) indicates the probability of transition from C to C′. Since parti-
cles can perform both hopping in each lane or changing into the other lane, four states ′C1, ″C1 , ′C2 and ″C2 are 
defined. In detail, both ′C1 and ″C1  indicate the configuration caused by lane-switching. While, both ′C2 and ″C2 
reflect the one caused by hopping in the bulk. Moreover, both ′C1 and ′C2 mean the configuration after transition, 
which is generated from the original state C. While, ″C1  and ″C2 mean the configuration before transition, which 
will lead to the state C. Therefore, Eq. (5) can be rewritten as:

∑ ∑ ∑
∑

→ − ″ ″ → + →

− ″ ″ → = .

′ ′
″

″

′ ′P C W C P W P C W C

P W

( ) ( C ) (C ) (C C) ( ) ( C )

(C ) (C C) 0 (6)
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C 2 2

1 1 2

2

In fact, as for given ′C2 and ″C2 , → = ″ →′W C W( C ) (C C)2 2  is satisfied, because both → ′W C( C )2  and 
″ →W(C C)2  are equal to the hopping rate in the bulk. Besides, as the symmetry of topology of the proposed 

model, the number of ′C2 should be equal to the one of ″C2. Moreover, as for a given ″C2, = ″P C P( ) (C )2  is satisfied. 
Because the difference between C and ″C2 is just the specific location of particles while the number of particles 
remains unchanged. Thus, following equation can be derived:

∑ ∑
∑ ∑




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
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( ) ( C ) (C ) (C C) 0 (7)

C 2 C 2 2

C 1 C 1 1

2 2

1 1

Furthermore, based on update rule and symmetry of the system, any state generated from C can also lead to C 
by performing lane-changing behavior, which means that each ′C1 satisfies ″C1 . Similarly, each ″C1  also satisfies ′C1. 
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Thus, both ′C1 and ″C1  have the same physical meaning, which means that they are equivalent. Thus, the second 
expression in Eq. (7) can be rewritten as:

∑ ∑→ − → = .′ ′ ′
′ ′P C W C P W( ) ( C ) (C ) (C C) 0 (8)C 1 C 1 11 1

Here, we consider a specific situation. C is set to satisfy τ = τ = = τ = τ = = τ− − + + { } { } { } { } { }1,j 1 2,j 2 i 1,j i 1 i 1,j i 1 K,j K. 
Besides, the particle number in i is set to be more than that of any rest lanes, which means that τ = 1i,j  and τ = 1s,j  are 
satisfied for arbitrary ∈ …j {1 L} and ∈ … − + …s {1 i 1, i 1 K}. While, there’s at least one value of h ( ∈ …h {1 L}) 
which satisfies τ = 1i,h  and τ = 0s,h . Thus, particles in the lane … − + …1 i 1, i 1 K cannot perform the lane-changing 
behavior. While, corresponding particles in i can hop into adjacent lanes. Here, Fig. 2 is applied to explain corresponding 
states before and after such transition. In this way, as for C, corresponding probability τ( )P { }i,j  becomes:

∏τ = τ =− −
≠Z Z f fP({ }) f({ } ) , (9)i

M
j i j

M
i,j L,N,K

1
i,j i L,N,K

1 i 0

where M0 means the number of rest of particles distributed in lane … − + …1 i 1, i 1 K. Similarly, as for ′C1, 
corresponding probability can be expressed as:
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Additionally, Eq. (10) correspond to the situation where the particle in lane i moves into −i 1 and +i 1. 
Actually, both τ{ }u

i,j  and τ{ }d
i,j  are generated from C. Moreover, τ{ }u

i,j  and τ{ }d
i,j  indicate the configuration after 

transition that a particle in i updating into −i 1 and +i 1, respectively. Furthermore, the intuitive description of 
detailed balance is displayed in Fig. 3. By performing detailed balance analysis (see Methods), we can obtain:

ω ω ω ω+ − − = .+ + − −f f f f 0 (11)i i
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i i
d

i i
u

i i
d

1 1 1 1

Therefore, by solving linear equations composed by Eq. (11) (see Methods), the density weight can be derived:
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Then, ω=f 1/i  can be obtained from Eq. (12) when ω ω ω= =i
u

i
d , which means that we have developed and 

generalized pre-existing results (namely, ref.39).

Analytical and simulation results of characteristic parameters.  By using complex analysis like inter-
mediate value theorem etc. (see Methods), analytical results of characteristic order parameters are obtained. In 
details, global density ρ can be got:

Figure 2.  Transition between − +
 ( ){ }C S , , S , S , S , , SM

1
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which are shown in black and red boxes. Cu corresponds to τ{ }u
i,j . Cd corresponds to τ{ }d

i,j . SM
i  denotes lane i 

contains M particles with configuration τ{ }ii,j .
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where z means root of Eq. (13). As for a specific system, ρ can be determined since L, K and N are preset. Thus, 
solutions of z can be obtained from Eq. (13). Then, local density ρi can be got:
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In fact, ρ is heavily dependent on ρi. Similarly, local current Ji can be given:
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Additionally, expectation 〈 〉ni  of particle number can be obtained:
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Furthermore, variance 〈 〉D ni  of particle number can be obtained:
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As for each subsystem, the probability of having particles or no particles at any two positions is the same. 
According to the law of large numbers, n

L
i  converges to ρi in probability when L is large enough, which can be 

expressed as:

δ ε
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i

i

Here, Eq. (18) is satisfied for arbitrary positive number δ and ε. Finally, effects of fully heterogeneous interac-
tions on totally current and global transport are emphasized. Based on Eq. (15), the maximum value Jmax of the 
total current Jtotal can be derived:
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Figure 3.  Lane-switching behavior among adjacent subsystems. h denotes the concerned site. Dashed box 
indicates the same configuration of transition. Arrows show allowed hopping, while cross displays prohibited one.



www.nature.com/scientificreports/

6SciEntific Reports |         (2018) 8:16287  | DOI:10.1038/s41598-018-34579-1

= .














+ ∑ ∏





+





+ ∑ ∏













+













+ ∑ ∏





+





+ ∑ ∏













.


 ∑ − . +





∑

ω

ω

ω ω

ω

ω

ω

ω

ω ω

ω

ω

=
−

=
+

+
=
−

=
+ −

+ −

=
−

=
+

+
=
−

=
+ −

+ −

=

=

(20)

p K

p

z 1 1

1 z 1 1

0 5 0 5K i
d j

K
m
j i m

u

i m
d K i

u j
K

m
j i K m

d

i K m
u

K i
d j

K
m
j i m

u

i m
d K i

u j
K

m
j i K m

d

i K m
u

i i
K

pi

N
L

i i
K

pi

1

2 1
1

1
1

2 1
1

1

1

2 1
1

1
1

2 1
1

1

1
1

1
1

Additionally, both analytical and Monte-Carlo simulation results of characteristic order parameters are shown 
in Figs 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13. In Monte-Carlo simulations for Figs 4, 5, 6, 7, 8, 9, 10 and 11, L takes 1000. 
The number of total time steps T is set as 1010 to obtain steady state. Besides, the final 90% of time steps are 
retained to ensure occurrence of steady state. In details, Fig. 4 shows relationship among ρ, pi and Ji. It reveals that 
Ji varies for a given ρ because of heterogeneous interactions among subsystems. However, as the capacity of max-
imum current of TASEP, Ji is not monotonously changing with ρ. Moreover, the value of ρ corresponding to peak 
value of Ji is also varied for each subsystem as such heterogeneous interactions. The maximum current in each 
subsystem satisfies 0.25pi, which can also be revealed from the constraint ρ ρ= −J p (1 )i i i i  by combining Eqs (14) 
and (15). Additionally, the current in each lane increases linearly with forward rate, which can be reflected from 
Fig. 4(c) and the above constraint. In details, heterogeneous interactions are reflected by asymmetric rates 

Figure 4.  Relationship among the global density ρ, forward rate pi and local current Ji. (a) Three-dimensional 
view. (b) Plot of Ji versus ρ under =p 1i . (c) Plot of Ji versus pi under ρ = .0 5. Scatters are Monte-Carlo 
simulations. Lines are analytical results. Parameters are =K 10, ω = .0 005u
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Figure 5.  Relationship among the local current Ji, scaling rate r and forward rate pi. (a) Three-dimensional view. 
(b) Plot of Ji versus r under =p 1i . (c) Plot of Ji versus pi under = .r 1 95. Scatters are Monte-Carlo simulations. 
Lines are analytical results. Parameters are =K 10 and ρ = .0 5. Primitive transition rates are ω = .0 005u
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between adjacent subsystems, which can lead to various site occupation rates. Then, different cluster states of 
particles occur. Thus, varied particle stochastic dynamics of each specific lane are presented, including various 
densities, diverse flows etc.

In order to highlight the effect of transition rates on local current, the scaling rate r is introduced. Here, r 
denotes a factor that acts on preset transition rates and depicts the extent of heterogeneity of the global system. 
Firstly, primitive transition rates are set. Here, primitive transition rates denote the target that the scaling rate r 
acts on, which are preset and randomly generated. Three complete kinds of such driven diffusive system can be 
constructed, namely the case of totally heterogeneous interactions, partly heterogeneous ones and homogeneous 
one. Then, r acts on the primitive transition rate, which makes upward and downward transition rates become 
r and 1/r times of original values respectively. Figure 5 shows the relationship among Ji, r and pi. It can be found 
that different channels exhibit various properties. Local current reaches the extremum with different scaling rates 
and contains disparate number of peaks. Since particles in the system have two degrees of freedom, the effect of 
forward motion also needs to be emphasized. Compared with Fig. 4, the relationship between Ji and pi in Fig. 5 is 
similar to that reflected in Fig. 4 in terms of quantitative and qualitative evolution rules. This is because that con-
figuration of particles in each subsystem can be determined for preset transition rates. Then, the bulk current is 
heavily dependent on unidirectional self-driven motions of particles. Thus, in this circumstance, the local current 
is proportional to forward rate.

Figure 6.  Relationship among the global density ρ, local density ρi and scaling rate r with fixed primitive 
transition rates. (a) Three-dimensional view. (b) Plot of ρi versus ρ under = .r 1 95. (c) Plot of ρi versus r under 
ρ = .0 5. Scatters are Monte-Carlo simulations. Lines are analytical results. Parameters are 

ω= = .
−

K r10, 0 15i
u i 1

10  and ω = .
−

r0 35i
d i1

10 .

Figure 7.  Relationship among the global density ρ, local density ρi and scaling rate r with random primitive 
transition rates. (a) Three-dimensional view. (b) Plot of ρi versus ρ under = .r 1 95. (c) Plot of ρi versus r under 
ρ = .0 5. Scatters are Monte-Carlo simulations. Lines are analytical results. K  takes 10. Primitive transition rates 
are ω = .0 005u
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Besides, Figs 6 and 7 display relationship among ρ, ρi and r. In Fig. 6, r affects each channel differently. 
Primitive transition rates are set as identical constants. ρi is found to evolve in different ways as various effects of 
r. Particularly, ρi is the same when =r 1, since r has no effect on transition rates in this circumstance. Moreover, 
as the influence of r, ρi will be different with increasing ρ. Additionally, as conserved particle number, ρi also 
increases monotonously with ρ. Especially, ρi becomes 0 when ρ = 0, as there’re no particles. Similarly, as the full 
capacity, ρi reaches 1 when ρ = 1. While, the case of randomly generated primitive transition rates is shown in 
Fig. 7 with the same effect of r on each subsystem. Compared with Fig. 6, similar evolution law of density is pre-
sented in the form of a spindle although different values of ρi appear. It also reveals that all analytical results match 
well with Monte-Carlo simulations.

Then, corresponding density profiles ρ (x)i  are displayed in Fig. 8. It reveals that ρ (x)i  is uniform in space 
because ρ (x)i  is independent of the location x of sites as the periodic boundary condition and update rule of the 

Figure 8.  Density profiles ρ (x)i  of each subsystem. Lines depict analytical results. Scatters reflect Monte-Carlo 
simulations. Parameters are =K 10, ω = .0 273u
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Figure 9.  Plot of expectation and standard deviation of particle numbers in subsystem changing with global density. 
(a) Expectation 〈 〉ni . (b) Standard deviation 〈 〉 −KD n /( 1)i . Lines depict analytical results. Scatters reflect Monte-
Carlo simulations. Parameters are ω ω= = . = .K 10, 0 005, 0 384u d
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Figure 10.  Relationship among channel numbers K, local density ρi and transition rate ω u
1 . (a) =K 10. (b) 

=K 20. (c) =K 30. (d) =K 50. Parameters are ρ = .0 5 and randomly generated transition rates ranging from 
0 to 1.

Figure 11.  Relationship among the absolute value ∆J  of increment of total current, channel number K and 
transition rate ω1

u. (a) ∆J  versus ω1
u. (b) Three-dimensional view. ρ takes 0.5. Upward and downward rates of 

each subsystem are 0.15 and 0.35 respectively.
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proposed system, which means that any particle in i is equivalent to each other. In other words, the interaction 
among particles in i is homogeneous. Moreover, Fig. 9 shows 〈 〉ni  and 〈 〉 −KD n /( 1)i  changing with ρ. Evolution 
rules of 〈 〉ni  and ρi along with ρ are similar, since 〈 〉 = ρn Li i. However, that of 〈 〉 −KD n /( 1)i  is different due to 
various ωi

u and ωi
d. In addition, the standard deviation first increases and then decreases with ρ. Particularly, 

〈 〉 −KD n /( 1)i  becomes 0 when ρ = 0 and becomes 1 when ρ = 1. Furthermore, peaks of 〈 〉 −KD n /( 1)i  are 
disparate as different ωi

u and ωi
d.

Moreover, we aim at analyzing the influence of disturbance on the system coupled with changing transition 
rates. Thus, for simplicity, the upward transition rate ω u

1  of lane 1 is set to range from 0 to 1 here, while other 
transition rates except for ω u

1  remain unchanged. Corresponding transition rates are randomly generated to con-
firm validity of universality of calculations. More complex topologies (namely, =K 10, 20, 30, 50) rather than 
just previous four TASEPs39 are calculated. Relationship among K, ρi and ω u

1  is displayed in Fig. 10. As for 
Fig. 10(a), it describes =K 10, where randomly generated transition rates except for ω1

u range from 0 to 1. Ten 
colorful lines show evolvements of ρ with increasing ω1

u. Especially, green line displays lane 10, which reveals that 
ρ10 increases with ω1

u and the gradient of change of it gradually decreases, since increasing ω1
u directly leads to the 

increase of particle number in lane 10. Besides, black line shows lane 1, which shows that ρ1 decreases with ω1
u, 

since increasing ω1
u directly leads to the decrease of particle number in lane 1. Similarly, Fig. 10(b) shows =K 20. 

Increasing ω1
u directly leads to decreasing ρ1 and increasing ρ20. Besides, densities of other remained lanes also 

become varied. Moreover, Fig. 10(c) depicts =K 30. Similarly, increasing ω1
u directly leads to decreasing ρ1 and 

increasing ρ30, which also causes changes of other subsystems. Furthermore, Fig. 10(d) illustrates =K 50. 
Similarly, increasing ω1

u directly causes decreasing ρ1 and increasing ρ30, which also leads to changes of other 
channels.

Thus, based on Fig. 10, it reveals that no matter how system’s topology changes, the disturbance will spread 
and affect local densities of other channels, when transition rate of one channel changes. The first and K-th chan-
nels are the most affected since ω1

u changes. Increasing ω1
u leads to continuously decreasing ρ1 and increasing ρK. 

Additionally, except for lanes 1 and K, the disturbance will have greater impacts on lanes 2 and −(K 1) because 
of stronger interactions among them. Here, it should be addressed that as changing ω u

1  is set to illustrate the influ-
ence of disturbance, increasing ω u

1  will directly lead to decreasing ρ1 and increasing ρK. Thus, lanes 1 and K should 
be emphasized. Finally, Fig. 11 displays the relationship among the absolute value ∆J  of increment of total cur-
rent, K and ω u

1 . It reflects that ∆J  monotonically decreases for any channel number with increasing ω u
1 . When 

ω u
1  degrades the system from heterogeneous one to homogeneous one, ∆J becomes 0. Moreover, total current 

increases monotonously with increasing channel number.
Additionally, besides in technical perspective, the improvement of our work compared with pre-existing 

results is intuitively presented through Figs 12 and 13. In details, beyond pre-existing results, the improvement of 
our work can be intuitively found in Fig. 12, through studying the relationship between ρ and Jtotal in three com-
plete kinds of such driven diffusive system, namely totally heterogeneous interactions (namely, our work), partly 
heterogeneous ones and homogeneous ones. Under any conserved global density, the optimal total current 

Figure 12.  Relationship between global density ρ and total current Jtotal in the comparison of three complete 
kinds of situations. Red line shows the optimal Jtotal in our work. Dark yellow line corresponds to homogeneous 
interactions. Magenta line shows a typical case of partly heterogeneous interactions (namely, ref.39). Black and 
blue lines depict other typical cases of partly heterogeneous interactions (namely, equal inner and outside 
interactions between adjacent TASEPs, respectively). Dark cyan represents the universal case of partly 
heterogeneous interactions. Scatters are Monte-Carlo simulations. Parameters are =K 100, =L 200 and 
randomly generated pi.
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obtained from our work is generally greater than that of homogeneous one or partly heterogeneous ones includ-
ing pre-existing results39,40 and the universal case of partly heterogeneous. Besides, the value of optimal total 
current obtained from our model is equal to that of homogeneous when ρ = .0 5, since the optimal current in 
each channel reaches to the maximum. Here, the universal case of partly heterogeneous interactions in Fig. 12 is 
built by equal transition rates for some randomly chosen channels (namely, equal transition rates χi for 
pre-selected channel i and χ ≠ χi j for ∀i ≠ j) and randomly generated rates for remaining ones. Thus, improving 
pre-existing results, our work presents a method of optimizing overall transport of such driven-diffusive systems 
in the global perspective under conserved global density, since the optimal total current obtained from our work 
introducing and considering totally heterogeneous interactions is generally greater than that of homogeneous one 
or partly heterogeneous ones. Here, 100 TASEPs are considered in calculations to obtain enough large and uni-
versal driven-diffusive system to confirm the validity of the improvement. Moreover, matching well with analyti-
cal results, Monte-Carlo simulations are also performed to make sure the validity of the improvement of our work 
comparing with pre-existing results.

Moreover, in order to intuitively describe the improvement of our work compared with pre-existing results, 
the effect of introducing and considering heterogeneous interactions on overall transport is further studied by 
calculating the relationship among Jtotal, ρ and r shown in Fig. 13. Comparisons of our work with the universal 
case of partly heterogeneous are presented in Fig. 13(a,b), since totally heterogeneous case will evolve into the 
universal case of partly heterogeneous when =r 1. While, comparisons of our work with homogeneous case are 

Figure 13.  Relationship among total current Jtotal, global density ρ and scaling rate r in the comparison of three 
complete kinds of situations. (a) Intuitively three-dimensional view of comparison of our work and the 
universal case of partly heterogeneous. (b) Plot of Jtotal versus r under ρ = .0 9 in the comparison shown in (a). 
(c) Intuitively three-dimensional view of comparison of our work and homogeneous. (d) Plot of Jtotal versus r 
under ρ = .0 9 in the comparison shown in (c). ωi

u and ωi
d of the pre-selected subsystem i for (a,b) are r

i
1000  

and −r
i

1000  times of randomly generated primitive transition rates. While, corresponding transition rates of other 
unselected subsystems are randomly generated. Besides, ωi

u and ωi
d for (c,d) are .0 3r

i
1000  and . −0 3r

i
1000  

respectively. Scatters depict Monte-Carlo simulations. Lines depict analytical analyses. Parameters are =K 100, 
=L 200 and randomly generated pi.
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displayed in Fig. 13(c,d), where totally heterogeneous case can evolve into homogeneous one when =r 1. Based 
on Fig. 13(a,c), it can be found that Jtotal increases at first and then decreases later with increasing ρ. However, 
based on Fig. 13(b,d), it reveals that the optimal current of our work is much higher than that under partially 
heterogeneous interactions and homogeneous one. Thus, our work also reveals that introducing and considering 
totally heterogeneous interactions can increase the optimal total current in overall transport of self-driven parti-
cles in such driven diffusive system modelled by multiple TASEPs, which can also reflect that totally heterogene-
ous interactions can improve the overall transport of such interacting multi-body particle systems.

Furthermore, based on Figs 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13, it should be pointed out that heterogeneous mul-
tilane TASEPs proposed here can also be equivalent to driven diffusive system coupled with Langmuir dynamics 
of detachment rate 1/fi and attachment rate z12. This is due to following reasons. Firstly, actually, these concerned 
multiple TASEPs can be treated as being in contact with the thermal bath that washes out any density-density 
correlation whereas in the case under scrutiny the global density is conserved. Then, in the view of statistical 
mechanics, proposed system can be treated as a grand canonical ensemble. Because each channel of our model 
can exchange particles with adjacent subsystems with conserved global density, which can fit well with the essence 
of grand canonical ensemble, namely, each system can exchange energy and particles with other systems with 
conserved overall potential. Hereafter, ref.12 reported that at high kinetic rates (namely, high values of attachment 
rate ωA and detachment rate ωD) the bulk density in TASEP was structureless and equal to the Langmuir equilib-
rium density 

+
K

K 1
, where the ratio K satisfied = ω

ω
K A

D
. That’s to say, when high values of the attachment and 

detachment rates are set12, bulk dynamics will dominate in the competition with boundary dynamics, which 
means that the model can degenerate into the periodic boundary condition. Thus, based on Langmuir equilib-
rium density 

+
K

K 1
, Eqs (12) and (14), ρi can be derived as ρ = =

+ +i
zf

1 zf
K

1 K
i

i
. Therefore, our model can be 

mapped into the one of ref.12 with =K zfi, where equivalent kinetic rates satisfy ω = zA  and ω =
fD
1

i
.

Discussion
To summarize, we propose a driven diffusive system composed of K TASEPs. Different from previous work, inter-
actions among adjacent subsystems is asymmetric heterogeneous. Generally, the whole system is coupled with 
periodic boundaries in a two-dimensional periodic torus. Self-driven particles can switch into adjacent channels 
or unidirectionally move. System’s stochastic dynamics are mainly controlled by transition rates rather than hop-
ping rate due to spatially homogeneous local densities. Based on detailed balance principle, we check master 
equation. Then, restraint about weight factor fi is obtained ω ω ω ω+ − − =+ + − −f f f f 0i i

u
i i

d
i i
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i i

d
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expression evolves into ω=f 1/i  when ω ω ω= =i
u

i
d , which proves that our model can spontaneously evolve 

into the system coupled with symmetric transition rates. That’s to say, we have generalized previous research 
work39. Moreover, by applying complex analysis, analytical results of characteristic order parameters are obtained, 
including ρi, Ji, ρ, 〈 〉ni , 〈 〉D ni  and probability of configuration n

L
i .

Besides, universal characteristics are revealed by both analytical solutions and Monte-Carlo simulations which 
match well with each other. Local density is found to monotonously increase with global density. Due to totally 
heterogeneous interactions, specific local densities are different from each other. Based on homogeneity on spatial 
site locations, local density profiles are spatially homogeneous, which are reflected by horizontal lines. Moreover, 
due to capacity of the maximum flow in TASEP, the relationship between local current and global density doesn’t 
monotonously change, which appears different from that of densities. While, local current is proportional to it at 
given transition rates. Additionally, by calculating more complex topologies (namely, K = 10, 20, 30, 50) of such 
driven diffusive system rather than just previous four TASEPs39, it reveals that no matter how system’s topology 
changes, the disturbance of changing transition rate of one subsystem will spread and affect local densities of 
other subsystems. As asymmetric heterogeneous interactions among adjacent subsystems, changing interaction 
rate of any subsystem will directly lead to variations of densities of its adjacent channels, which also means a larger 
change in particle configurations in adjacent ones. Because the changing of spatially dependent local density is 
equivalent to changing of dynamics of particle configurations, since local density is the essentially statistical aver-
age value of occupation probability of sites in each subsystem. Moreover, as each lattice position with or without 
particles are independent events, expectation is equal to system size multiplied by local density. Similarly, variance 
is equal to system size multiplied by ρ − ρ(1 )i i . Thus, both expectation and variance depend on global density. 
With increasing global density, expectation monotonously increases, while variance first increases and then 
decreases.

Finally, in order to detailly describe the improvement of our work, we firstly interpret the previous work 
in this area and then detailly compare results of our work with pre-existing physical systems. Improving 
pre-existing results, we propose a more universal and realistic interacting multi-body particle system which is 
more reliable to depict real transport phenomena. Thus, we focus on constructing such driven-diffusive system 
by employing multi-channel TASEPs with totally heterogeneous interactions. Besides, we obtain explicit ana-
lytical solutions and Monte-Carlo simulations of such proposed driven-diffusive system to avoid using previ-
ous approximation methods that often lead to results lack of universal laws. Moreover, different with previous 
work, we get universal laws of characteristic order parameters of such proposed driven diffusive system by 
considering complex topological structures. Furthermore, we also point out that introducing and considering 
totally heterogeneous interactions in such driven-diffusive system can increase the optimal total current in 
overall transport of the global driven diffusive system, which can also reflect that totally heterogeneous interac-
tions can improve the overall transport of such interacting multi-body particle systems. Besides, based on our 
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research work, it can also be revealed that introducing and considering totally and fully heterogeneous interac-
tions is a way to optimize the total current in such driven diffusive system modelled by multiple TASEPs under 
the circumstance of conserved global density, which can be proved by calculating the relationship between 
global density and total current in three complete kinds of situations (namely, our work, partly heterogeneous 
interactions and homogeneous), relationships among Jtotal, ρ and r in the intuitively three-dimensional view 
and the relationship between Jtotal and r with fixed value of ρ in intuitively two-dimensional view. Additionally, 
we also point out totally heterogeneous interaction rates can improve the total current in such multiple TASEP 
system and optimize the overall transport of such driven-diffusive system. Our research will be helpful to study 
other homeomorphism systems like coupling with memory reservoirs, which will be helpful for better under-
standing of stochastic particle dynamics in driven diffusive systems constituted by multiple TASEPs. Other 
performing work will be reported later.

Methods
Detailed balance equation analysis.  For simplicity, we use the symbol A  to denote 
∑ → − ∑ →′ ′ ′

′ ′P C W C P W( ) ( C ) (C ) (C C)C 1 C 1 11 1
. Based on Eqs (9) and (10), detailed balance equation can be 

derived:
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1 1 1 1  is obtained, which is Eq. (11).

Solving linear equations composed by Equation (11).  In fact, Eq. (11) is satisfied for arbitrary 
∈ …i K{1, 2, , }. Thus, K similar equations like Eq. (11) can be obtained. Besides, these K equations constitute the 

following linear equations:
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1 2  are satisfied. Then, the rank of the matrix W needs to be investigated in order to solve Eq. 
(22). Additionally, the cofactor of W can be derived:
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Here, W11 denotes one of the cofactors, which corresponds to the element located in the first row and the first 
column of W. Thus, ≠W 011  is satisfied. Moreover, W is not full rank. Therefore, the rank of W is K − 1. That’s to 
say, the solution of Eq. (22) is one-dimensional.

Then, in order to solve Eq. (22), we suppose that following equation is satisfied for arbitrary ∈ …i K{1, 2, , }:
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1 2  should be proved to be the solution of Eq. (22). As the symmetry of topology and 
updating rule, following constraints are satisfied:
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Afterwards, based on Eqs (24) and (25), the equation can be obtained:
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1 1 1 1 , which proves that Eq. (24) is the 
solution of Eq. (11) for arbitrary ∈ …i K{1, 2, , }. Therefore, = F B B B( )K

T
1 2 is the solution of Eq. (22). 

Since the solution is only one-dimensional,  the solution of Eq. (22) can be expressed as 
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of fi, there’ll be no influence on the system if all weight factors increase or reduce the same multiplier at the same 
time. For simplicity, Const is set as one here. Then, according to Eq. (24), density weight can be expressed as 
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 can be obtained. Thus, restriction 

′ =h (z) 0 can be got. As h(s) is holomorphic in complex number space C\{0}, Taylor expansion can be rewritten 
as = + . ″ − + −h(s) h(z) 0 5h (z)(s z) O((s z) )2 3 . Substituting into Eq. (3), we can obtain the following 
equation:
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based on Eqs (12), (29) and (30), the local density ρi can be derived:
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Additionally, another important characteristic parameter, the local current Ji, also needs to be investigated. As 

update rule, hopping can occur when τ = 1i,j  and τ =+ 0i,j 1 . Similarly, partition functions can be obtained:
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Thus, based on Eqs (29) and (32), Ji can be obtained:
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displayed in Eq. (15). Moreover, based on Eq. (31), expectation 〈 〉ni  of number of particles in subsystem can be 
obtained:
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Similarly, based on Eq. (31), variance 〈 〉D ni  of number of particles in subsystem can be derived:
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Finally, effects of fully heterogeneous interactions on global transport are discussed. Firstly, total current Jtotal 
can be expressed:
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Then, generalized function below is introduced to obtain the maximum value of Jtotal:
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where λ means Lagrange multiplier. When Jtotal reaches the maximum, constraints =
ω

∂
∂

0F

i
u  and =

ω

∂

∂
0F

i
d

 are sat-

isfied for arbitrary ∈ … Ki {1 }. Thus, by combining Eqs (36) and (37), following equation can be obtained:
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, following equation can be derived by 

combining Eq. (38):
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shown in Eq. (19). Besides, extreme condition can also be got:
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which means that Jmax achieves when interaction rates ωi
u and ωi

d satisfy the constraint Eq. (41).
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