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ABSTRACT

HODSON-TOLE, E. F., O. M. BLAKE, and J. M. WAKELING. During Cycling What Limits Maximum Mechanical Power Output at Ca-

dences above 120 rpm?Med. Sci. Sports Exerc., Vol. 52, No. 1, pp. 214–224, 2020. Purpose:A key determinant of muscle coordination and

maximum power output during cycling is pedaling cadence. During cycling, the neuromuscular system may select from numerous solutions

that solve the task demands while producing the same result. For more challenging tasks, fewer solutions will be available. Changes in the

variability of individual muscle excitations (EMG) andmultimuscle coordination, quantified by entropic half-life (EnHL), can reflect the num-

ber of solutions available at each system level. We, therefore, ask whether reduced variability in muscle coordination patterns occur at critical

cadences and if they coincide with reduced variability in excitations of individual muscles. Methods: Eleven trained cyclists completed an

array of cadence–power output conditions. The EnHL of EMG intensity recorded from 10 leg muscles and EnHL of principal components

describing muscle coordination were calculated. Multivariate adaptive regressive splines were used to determine the relationships between

each EnHL and cycling condition or excitation characteristics (duration, duty cycle). Results: Muscle coordination became more persistent

at cadences up to 120 rpm, indicated by increasing EnHL values. Changes in EnHL at the level of the individual muscles differed from the

changes in muscle coordination EnHL, with longer EnHL occurring at the slowest (<80 rpm) and fastest (>120 rpm) cadences. The EnHL

of the main power producing muscles, however, reached a minimum by 80 rpm and did not change across the faster cadences studied.

Conclusions: Muscle coordination patterns, rather than the contribution of individual muscles, are key to power production at faster

cadences in trained cyclists. Reductions in maximum power output at cadences above 120 rpm could be a function of the time available to

coordinate orientation and transfer of forces to the pedals. Key Words: SKELETAL MUSCLE, SAMPLE ENTROPY, LOCOMOTION,

ELECTROMYOGRAPHY, COORDINATION, PEDALING
When a human pedals on a bicycle, appropriate joint
actions and coordination across the multiple limb
segments must occur to generate the required

movement patterns and reaction forces at the pedal. Activity
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across multiple muscles in the leg is, therefore, required (1),
with timing and coordination between muscles critical factors
in determining power output and efficiency (2).

One of the key determinants of muscle coordination and
movement efficiency during cycling is pedaling cadence.
Ninety revolutions per minute has been suggested to be an op-
timal cadence for delaying neuromuscular fatigue (3) and has
been related to minimization of muscle forces, stress, and acti-
vation during cycling (4). Long distance, endurance trained ath-
letes tend to have a preferred pedaling cadence between 85 and
95 rpm (5,6). In contrast, maximum power output is achieved
when pedaling at cadences between 110 and 120 rpm (7–10),
close to the cadences often observed in track cyclists complet-
ing shorter distance, power-based events (e.g., 110–135 rpm
team pursuit Fig. 1 in (11)). Interestingly, cadences above
120 rpm are associated with a wide range of changes spanning
features of force application, multimuscle coordination, and ex-
citation patterns of individual muscles all of which reduce max-
imum power output.

At the individual muscle level, cadences faster than 120 rpm
are related to increased excitation (2,12) and constant burst
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durations that, coupled with the shorter pedal cycle durations,
result in longer duty cycles (2). In some muscles cadences
above 120 rpm also lead to preferential recruitment of faster
motor unit populations (13,14) and early derecruitment of
slower motor unit populations in each excitation burst (15).
These factors seem important for force production, particularly
at very high cadences (16,17), and for forces to be produced
efficiently under such conditions (18). At the level of the
whole limb, efficiency is seen to reduce beyond cadences
of 120–140 rpm, whereas reductions in the variability of
muscle coordination patterns suggest limitations in coordi-
nation begin to occur (2). The net effect of these changes, from
a mechanical perspective, is an increase in the ineffective forces
applied to the pedals (2). Distinct changes in behavior are,
therefore, apparent at different levels of the nervous and mus-
culoskeletal systems, which taken together reduce the power
output that can be generated within the constraint of shorter
pedal cycle durations.

For any motor task the neuromuscular system may select
from a number of solutions that are available to solve the task,
all of which provide the same result (19). Within the context of
this manuscript we consider that solutions can be flexible (i.e.,
there may be more or better solutions for a given task), and to
encapsulate this will use the phrase “solutions available.” The
influence of cadence on maximum power output suggests that
the solutions available within the musculoskeletal system that
can meet the task demand is constrained by pedal cycle duration.
It is not known, however, whether such limitations predomi-
nantly occur at the level of the whole limb (i.e., multimuscle
coordination patterns) or at the level of individual muscles. It
is likely there are fewer muscles in the human leg than there
are motor units within any one of the leg muscles. Therefore,
the limb as a whole will have fewer solutions available to meet
the demands of cycling exercise than will an individual muscle.
However, although individual muscles will comprise hundreds
of motor units, those units are unlikely to operate indepen-
dently. The solutions available within a muscle may, there-
fore, be constrained by several factors. For example:
organization into motor unit task groups (20); common
neural drive acting across motor unit populations (21)
and; spatial organization of motor units influencing which
can appropriately contribute to the direction of the force
vector required at the joint (22–24). As such, it may be that
although the number of solutions available to the limb as a
whole is limited by pedal cycle duration, reductions in the so-
lutions available within individual muscles may not occur.
We, therefore, ask whether fewer solutions in the muscle coor-
dination patterns are linked to fewer solutions in the excitation
patterns of individual muscles, or whether fewer solutions in
muscle coordination patterns occur even when the number
of solutions available within individual muscle excitation
patterns is not reduced.

One way in which changes in the solutions available within
a systemmay be observed is by using entropy-based nonlinear
analyses, to quantify the time-scale over which a given signal
structure persists (25–27). This calculation involves reshaping
LIMITS TO MAXIMUM MECHANICAL POWER OUTPUT
the original time series (e.g., intensity envelope of an EMG
signal) at increasing time intervals and quantifying the struc-
ture of each newly created signal using sample entropy
(SampEn) (27) (Fig. 1). Typically, EMG signals have a high
degree of structure resulting in a low SampEn value (Fig. 1
here, and see Fig. 1 in (28)); but the structure is dissipated
during the reshaping process resulting in greater SampEn
values that plateau as the signal is completely randomized
(25,28,29). Normalizing SampEn values to the maximum
obtained and identifying the time interval, where SampEn = 0.5,
identifies the time-scale at which the signal loses structure
and transitions to being random (i.e., the time-scale over
which structure has persisted) and is termed the entropic
half-life (EnHL) (27) (Fig. 1).

Evaluation of the features that shape EMG signals and their
effects on EnHL have been conducted using both simulated
(28) and physiological EMG (28,29). Entropic half-life reveals
persistent and nonrandom structure in raw EMG signals, the
intensity envelopes of those signals, and in the multimuscle
coordination patterns. In the raw EMG, this structure repre-
sents motor unit action potential shape, firing rate variability
(or lack of) and coherence between motor units (29). The
EnHL of EMG intensities is generally longer than in the raw
signals, indicating greater andmore persistent structure that re-
flects smoothing of time-dependent fluctuations. Fluctuations
in burst parameters (e.g., burst duration and duty cycle), there-
fore, likely dominate the structure of EMG intensity signals
(28,29). The EnHL of the EMG intensity are, however, typi-
cally an order of magnitude shorter than the EMG burst dura-
tion, indicating that information pertaining to fluctuations in
motor unit firing statistic persist within the intensity envelope
(28,29). These fluctuations in firing statistics are more rapid
than the duration of the excitation and are, therefore, not lim-
ited by excitation duration, although it is evident that interac-
tions exist (28,29).

As multimuscle coordination patterns represent the net be-
havior of all recorded muscles, they contain information on
the modulation of excitation across synergistic groups over
the movement cycle. Fluctuations in the interactions between
synergistic excitations will influence structure persistence in
muscle coordination. The more muscles amalgamated within
the analysis the more ways in which coordination can vary
and dissipate structure. Accordingly, EnHL of multimuscle
coordination patterns are shorter (less persistent structure) than
for the individual EMG intensities, but are still influenced by
fluctuations in burst duration and duty cycle (29). Entropic
half-life, therefore, provides means of moving beyond instan-
taneous measures of excitation. The number of solutions avail-
able to the motor control system will influence fluctuations
and persistence of structure at all signal levels that EnHL can
quantify to reflect repeating interactions between constituent
motor unit action potential characteristics, synergistic excita-
tion, and EMG burst parameter fluctuations.

Entropic half-life has previously been used to show that the
time-scales over which muscle coordination patterns persist
increases for cycling at high loads (25). This suggests there
Medicine & Science in Sports & Exercise® 215



FIGURE 1—Overview of data analysis process. A, EMG intensity envelopes (red-scale) were calculated from the raw EMG (grayscale) recorded from the
10 lower leg muscles. A 15-s epoch (shaded block) of steady cycling was selected to form a 10 muscles� 15,000 data point (15 s at 1000 Hz) matrix for prin-
cipal component analysis. The PCA provided the weighting of each muscle within a coordination pattern (B) and how much of that coordination pattern
contributed to the total signal at any given time point (loading, (C)). For each muscle coordination pattern (B) each bar represents the contribution of an
individual muscle to the coordination pattern and the bars are ordered to match the sequence of muscles in A, TA through to Gmax. The first PCs explain
the largest proportion of the variance (denoted above each weighting). The resulting loading scores were high pass filtered (D) and standardized before be-
ing reorganized over different time scales (a single 5-ms time scale is represented, (E)). Sample entropy of each reshaped signal is calculated and normalized
to SampEn of a random permutation of the signal, meaning values span from structured (low SampEn) to completely random (high SampEn) when plotted
as a function of the reshape-scales (F). The time at which normalized SampEn = 0.5 (red horizontal line) represents the time over which structure persisted in
the coordination pattern. The same filtering and reshape/SampEn process was applied to the EMG intensity envelopes (A). Data shown are from one trial
from one participant.
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are fewer solutions available within muscle coordination that
meet the increased load demand. The work, however, only in-
cluded one cycling cadence (90 rpm).When cadences spanning
60 to 140 rpm were studied, EnHL of muscle coordination in-
creased at faster cadences, whereas EnHL of EMG intensity
of individual muscles decreased (29). These experiments, how-
ever, only included a single, low load (6.5 N⋅m). Given the po-
tential importance of 120 rpm in terms of changes in force
application, multimuscle coordination, and excitation patterns
of individual muscles, the range of cadences included was also
not wide enough to fully reveal how the underlying control
processes, across muscle coordination, and individual muscle
excitation characteristics respond to different load and ca-
dence demands.

We, therefore, predicted that patterns in muscle coordina-
tion will become more persistent at faster cadences, repre-
sented by longer EnHL values. In addition, we predict that
changes in EnHL at the level of the individual muscles will
differ from the changes in muscle coordination EnHL, with
no change or shorter EnHL occurring at faster cadences. In ad-
dition, we predict that 120 rpm will be a critical cadence at
which changes in EnHL values of both muscle coordination
and individual muscle excitation characteristics will occur.
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METHODS

Data acquisition.Details of data collection have been re-
ported in previous work (2) and so will be briefly described
here. Eleven male cyclists (mean ± SE age, 33.9 ± 3.1 yr;
mass, 72.8 ± 2.1 kg; height, 179.1 ± 1.9 cm), all of whomwere
competitively trained (mean ± SE cycling distance per year:
10,773 ± 1575 km), gave informed written consent to partici-
pate in the study, which was approved by the local ethics com-
mittee conducted in accordance with the Office of Research
Ethics at Simon Fraser University.

The cycling protocol comprised cadences ranging between
40 and 180 rpm, at 20 rpm intervals, each of which were com-
pleted at 100, 200, 300, and 400 W on an indoor cycle trainer
(Schoberer Rad Messtechnik, Jülich, Germany). The geome-
try of the cycle trainer was adjusted tomatch, as closely as pos-
sible, the geometry of the participant’s bike and participants
used their own clipless pedals and shoes. During a 10-min
warm-up participants cycled for 5 min at 100 W followed by
5 min increasing 20W·min−1, all at their chosen cadence. Par-
ticipants pedaled at all cadences (randomized order) within a
randomly selected power condition, before each cadence was
repeated for a new, randomly selected, power condition. Each
trial was 30 s long, during which time participants were
instructed to remain seated with their hands on the brake
hoods. Ninety seconds rest was provided between trials.

EMG signals were recorded from 10 muscles [Gastrocne-
mius lateralis (LG), soleus (SO), Gastrocnemius medialis
(MG), Tibialis anterior (TA), Vastus lateralis (VL), Rectus
femoris (RF), Vastus medialis (VM), Biceps femoris (BF),
Semitendinosus (ST), and Gluteus maximus (GMax)] of the
right leg of each participant (Fig. 1A). Signals were recorded
LIMITS TO MAXIMUM MECHANICAL POWER OUTPUT
(2000 Hz, 16 bit analog-to-digital converter USB-6210;
National Instruments, Austin, TX) from bipolar Ag/AgCL
surface electrodes (10 mm diameter, 21 mm interelectrode
distance; Norotrode, Myotronics, Kent, WA) after being
amplified (�1000) and band pass filtered (10–500 Hz). A pedal
switch output identified top-dead center of the crank cycle
and was simultaneously recorded with EMG signals.

Data analysis. Recorded EMG signals were resolved into
their intensities in time–frequency space using a filter bank of
11 wavelets (0 ≤ k ≤ 10) (30) (Fig. 1A). The total intensity
was calculated as the sum of intensities from wavelets
k = 1–10 (frequency bandwidth of ~11–432 Hz) to provide a
representation of the power of the EMG signal at each time
point (30). The intensities were normalized to the mean for
each muscle for each participant across trials. Activation burst
duration was calculated as the duration that intensity was
greater than 5% of the maximum for each pedal cycle, whereas
duty cycle was the proportion of this value in relation to the
pedal cycle duration. Prior to calculation of EnHL, a 15-s ep-
och of steady state cycling was selected from the normalized
intensities (Fig. 1A), resampled to 1000 Hz, high pass filtered
(Butterworth 10 Hz cut-off), to remove the temporal bursting
component of pedal cycles, and standardized to have a mean
of zero and standard deviation of one.

Calculation of EnHL involved: (i) resampling the standard-
ized signals for reshape scales spanning 1 to 10,000 ms (27)
(Fig. 1E); and (ii) calculating the SampEn (m, r, N) of each
resampled time series using a freely available software pack-
age (31). The reshape-scale process reorganizes the signal over
multiple time scales (number of data points), enabling the time
scale over which data points remain affiliated to each other to
be evaluated. SampEn quantifies the degree of similarity in a
signal of length N (here N = 15,000), based on the conditional
probability that two sequences or patterns of m consecutive
data points, similar to each other with tolerance equal to r, will
remain similar when a consecutive data point is added (m + 1)
(32). Values of m = 0 (interpreted as the negative logarithm of
the probability of a match of length 1 (31)) and m = 1 with
r = 0.2 were applied. The SampEn values form = 1were normal-
ized to those corresponding tom = 0 (representing SampEn for a
randompermutation of the signal), effectively normalizing values
so they spanned structured to completely random (25). When
these normalized SampEn values are plotted as function of the
reshape-scales (Fig. 1F), the time scale at which SampEn = 0.5
represents the time over which structure persisted in the
EMG intensity envelope, and is termed EnHL (27).

In addition to determining structure of the EMG intensity
envelopes from individual muscles, we also wished to quan-
tify structure across the muscle coordination patterns. Muscle
coordination within each trial was, therefore, calculated from
the normalized, wavelet-derived intensities of the 10 muscle
EMG using principal component analysis (33) (Fig. 1B–C).
Matrix A of dimensions P � N (P = 10 muscles, N = 15,000;
15 s at the 1000-Hz sample rate) was constructed, and the mean
intensity for each muscle subtracted before the covariance ma-
trix Bwas calculated. Eigenanalysis ofB provided the principal
Medicine & Science in Sports & Exercise® 217
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components of A, with the loading scores given from ξ′A,
where ξ′ are the transpose of the eigenvectors of B. Each prin-
cipal component, therefore, reveals the weighting of each
muscle within a coordination pattern (Fig. 1B). The highest
principal components explain the largest proportion of the var-
iance in A, and the loading score of each component reveals
how much of that coordination pattern contributed to the total
signal at any given time point. A time series from each trial
was constructed from the time-varying loading scores of each
principal component (Fig. 1C) and the EnHL for each was cal-
culated, as described above, enabling the time-scale over
which structure persisted in the variability of the muscle coor-
dination patterns to be determined.

To ensure that the EnHL values could be interpreted as
representing physiologically related structure within the signal
(i.e., signal content that fluctuates in a time-dependent, non-
random manner), we compared them with values obtained
from analysis of phase randomized surrogates of the EMG in-
tensity envelope for each muscle and trial. This process
removes the structure encoded in the phase of the signal and
structure related to EMG bursting patterns, motor unit firing,
and shape of individual action potentials (29), but maintains
the signal’s power spectrum.

Statistical analysis. Multivariate adaptive regressive
splines (MARS) (34) were used to determine the relationships
between each EnHL and cycling condition or excitation char-
acteristics, implemented using the “earth” package (35) in R
3.3.1 (R Core Team 2018). Multivariate adaptive regressive
splines is a flexible, nonparametric regression technique that
enables different subregions within the data set to be described
based on the addition and interaction of contributing variables.
It derives a set of basis functions comprising: (i) an intercept;
(ii) a hinge function, of the formmax(0,|c − x|) that splits these
data into subregions; and (iii) a product of two or more hinge
functions, modeling interactions between variables. This anal-
ysis approach was chosen as the hinge functions (which are
automatically determined by the data set (34)) quantify transi-
tion points where the relationship between variables changes.
For example, we could, therefore, determine whether nonlin-
ear changes in EnHL occurred as a function of cycling cadence
and crank torque, and whether the nonlinearity hinged around
critical cadence or crank torque values.

To quantify the relationship between cycle condition and
the EnHL of muscle coordination, the median EnHL of each
PC was calculated from the group data. This approach re-
moved potential correlations within the data due to the re-
peated measures experimental protocol, and also reduced the
potential for outliers that can influence the MARS analysis
TABLE 1. Details of principal component characteristics and MARS models fit to these data as a fu

PC Variance Explained [IQR] (%)

I 36.61 [6.21] 20.59 − (0.11 � Max [0,120 − cad])
II 25.48 [4.75] 19.12 − (0.07 � Max [0,120 − cad]) − (0.09�M
III 12.32 [2.90] 14.90 − (0.07 � Max [0,80 − cad]) − (0.09�Max
IV 7.99 [2.14] 13.39 − (0.10 � Max [0,cad − 100]) − (0.04�M
V 5.24 [1.58] 11.59 − (0.05 � Max [0,cad − 100]) + (0.10�M
VI 3.65 [0.97] 11.13 − (0.03 � Max [0,cad − 80]) + (0.08�Max

IQR indicates interquartile range of the median variance explained across the data set.
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(34). The cycling condition associated with each EnHL were
used to provide a model, predicting EnHL as a function of ca-
dence and crank torque (with interactions between the two
permitted). Crank torque was used, rather than power, to ac-
count for the use of cadence as the other variable. For the
EnHL of individual muscle excitation patterns and the phase
randomized surrogate signals, a similar process was com-
pleted. In addition, to identify the effect of cycling condition,
the relationship between excitation duration and duty cycle
(and their interaction) with EnHL was also determined.
RESULTS

EnHL of muscle coordination. The first six principal
components explained over 98% of the variance acrossmuscle
EMG intensity patterns (Table 1). The EnHL for the loading
scores of the principal components, representing muscle
coordination, are shown in Figure 2, Supplemental Dig-
ital Content 1 (animated rotation of plots in Fig. 2, providing
multiple perspectives of the three-dimensional (3D) space,
http://links.lww.com/MSS/B704) and Supplemental Digital
Content 2 (animated rotation of data in Fig. 2, including inter-
quartile ranges of the data set, http://links.lww.com/MSS/
B705). The results of the related MARS analysis are shown
in Table 1. Except at the very slowest cadence, the longest EnHL
occurred in the first two principal components. These first two
components were characterized by increasing EnHL (fewer
fluctuations/increased persistence in structure) from the slow
to faster cadences, that MARS analysis identified reached a
maximum at 120 rpm and remained approximately constant
(PCI ~21 ms and PCII ~18–20 ms) at faster cadences. In con-
trast, the EnHL of PCIII increased from 40 to 80 rpm, remained
approximately constant (~15 ms) between 80 and 120 rpm and
declined (greater fluctuations/decreased persistence in struc-
ture) at cadences faster than 120 rpm. The lower principal
components were approximately constant at slower cadences
(~13–15 ms) and became shorter at cadences above 80 to
100 rpm. In each of the principal components, the interquartile
ranges were small and consistent across data points (Supple-
mental Digital Content 2, animated rotation of data in Fig. 2,
including interquartile ranges of the data set, http://links.
lww.com/MSS/B705), indicating that the MARS fit to the
median values is representative of the group behavior.

Crank torque had an effect on EnHL of PCII and PCIV–
PCVI, with MARS analysis identifying 23.87 N⋅m being
the hinge point for all the components except PCVI where
28.64 N⋅m was the hinge, although the MARS model fit
was low for this component (r2 = 0.52, Table 1). Across
nction of cycling cadence (cad) and torque.

MARS Model Model Fit (r 2)

0.91
ax [0,23.87 − torque]) − (0.05�Max [0,torque − 23.87]) 0.84
[0,cad − 120]) 0.80

ax [0,torque − 23.87]) − (0.0005�Max [0,cad�torque − 1909.61]) 0.82
ax [0,23.87 − torque]) − (0.03�Max [0,torque − 23.87]) 0.67
[0,28.64 − torque]) − (0.03�Max [0,torque − 28.64]) 0.52

http://www.acsm-msse.org
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FIGURE 2—EnHL values for the first six principal components recorded for each cadence–crank torque cycling condition (blue points). The overlaid sur-
face represents the principal component EnHL values predicted as a function of cadence and torque by MARS analysis. Equations for the surface and as-
sociated goodness of fit values are provided in Table 1. See Supplemental Digital Content 1 for animations of the graphics rotating through different
viewpoints, http://links.lww.com/MSS/B704 and Supplemental Digital Content 2 for animations of the graphics including data points indicating the group
inter-quartile ranges, http://links.lww.com/MSS/B705.
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PCIV–PCVI, there was an interaction effect between cadence
and crank torque that did not occur in PCII.

EnHL in individual muscle excitation. The EnHL of
each individual muscle excitation pattern and the phase ran-
domized surrogate as a function of cadence and crank torque
is shown in Figure 3, Supplemental Digital Content 3 (ani-
mated rotation of plots in Fig. 3, providing multiple perspec-
tives of the 3D space, http://links.lww.com/MSS/B706) and
Supplemental Digital Content 4 (animated rotation of data in
Fig. 3, including interquartile ranges of the data set, http://links.
lww.com/MSS/B707). In all muscles, the EnHL values for the
surrogate signal were significantly lower (greater fluctuations/
decreased persistence in structure) than EnHL of the physiologi-
cal signals (mean ± SD: surrogate EnHL, 6.84 ± 1.06 ms; EMG
intensity EnHL, 23.14 ± 5.61 ms; Wilcoxon Signed Rank Test
P < 0.001) and EnHL of surrogate signals changed very little
with cycle condition (mean ± SD difference between mini-
mum and maximum values, 0.85 ± 0.25 ms).

Across all the muscles, the longest EMG intensity EnHL
occurred at the slowest cadences and lowest crank torques
(Fig. 3, Supplemental Digital Content 3 animated rotation of
plots in Fig. 3 providing multiple perspectives of the 3D
space, http://links.lww.com/MSS/B706, Supplemental Digital
Content 4 animated rotation of data in Fig. 3, including
LIMITS TO MAXIMUM MECHANICAL POWER OUTPUT
interquartile ranges of the data set, http://links.lww.com/MSS/
B707). The longest EnHL were recorded in VM (48.58 ms)
and VL (53.46 ms) (fewest fluctuations/greatest persistence in
structure). In each muscle, except soleus, the MARS model
included a hinge point related to cadence. In these muscles,
EnHL decreased (greater fluctuations/decreased persistence in
structure) from the slowest pedaling cadence until 80 rpm,
except BF where EnHL continued to decrease until 100 rpm.
The EnHL in TA, VM, and VL plateaued after 80 rpm
(14.78 ms, 17.60 ms, 17.82 ms, respectively), with no further
change occurring as a function of cadence. In the other muscles
(MG, LG, RF, BF, GMax), EnHL increased from 120 rpm
across faster cadences. In seven of the muscles, MARS analysis
identified a hinge function related to crank torque, either at
23.87 N⋅m (BF) or 28.65 N⋅m (TA, MG, LG, SO, VL, ST). In
RF and GMax, an interaction between cadence and crank
torque was also identified by the model (Table 2). In all
muscles, except RF and GMax, the interquartile range of the
group data was quite small (Supplemental Digital Content 4,
animated rotation of data in Fig. 3, including interquartile
ranges of the data set, http://links.lww.com/MSS/B707). More
variability in the data set were apparent at the extreme cadences,
with very large differences occurring in RF and GMax at the
lowest power (100 W) fastest cadence (180 rpm) condition.
Medicine & Science in Sports & Exercise® 219
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FIGURE 3—EnHLvalues for excitation patterns (blue points) and phase randomized surrogate signals (gray points) of individual muscles recorded for each
cadence–crank torque cycling condition. The overlaid surface represents the excitation pattern EnHL values predicted as a function of cadence and torque
byMARS analysis. Equations for the surface and associated goodness of fit values are provided in Table 2. See Supplemental Digital Content 3 for anima-
tions of the graphics rotating through different viewpoints, http://links.lww.com/MSS/B706 and Supplemental Digital Content 4 for animations of the
graphics including data points indicating the group inter-quartile ranges, http://links.lww.com/MSS/B707.
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Overall, for the midrange cadences (i.e., 80–160 rpm)
variation was small, indicating that the MARS fit to the
median values is representative of the data set.
TABLE 2. Details of the MARS model of EnHL as a function of cadence (cad) and torque, in each o

Muscle MARS

Tibialis anterior 18.39 + (0.14 � Max [0,80 − cad]) + (0.26 � Max [0,2
Gastrocnemius lateralis 19.82 − (0.05 � Max [0,cad − 80]) + (0.17 � Max [0,c
Soleus 20.10 + (0.08 � Max [0,28.65 − torque])
Gastrocnemius medialis 19.18 + (0.05 � Max [0,cad − 80]) + (0.08 � Max [0,1
Vastus lateralis 18.64 + (0.81 � Max [0,80 − cad]) + (0.04 � Max [0,
Rectus femoris 14.75 + (0.12 � Max [0,cad − 80]) + (0.25 � Max [0,1
Vastus medialis 20.27 + (0.61 � Max [0,80 − cad])
Biceps femoris 19.61 + (0.08 � Max [0,100 − cad]) + (0.06 � Max [0,
Semitendinosus 19.42 + (0.05 � Max [0,80 − cad]) + (0.13 � Max [0,2
Gluteus maximus 23.96 + (0.26 � Max [0,80 − cad]) + (0.13 � Max [0,c
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The EnHL of each individual muscle as a function of exci-
tation burst duration and duty cycle is shown in Figure 4 and
Supplemental Digital Content 5 (animated rotation of plots
f the 10 lower leg muscles analyzed.

Model Model Fit (r2)

8.65 − torque]) − (0.08� Max [0,torque − 28.65]) 0.60
ad − 120]) − (0.09 � Max [0,torque − 28.65]) 0.82

0.13
20 − cad]) − (0.21 � Max [0,torque − 28.65]) 0.77
cad − 80]) − (0.11 � Max [0,torque − 28.65]) 0.95
20 − cad]) + (0.003 � Max [{0,1909.86 − cad�torque}]) 0.89

0.94
cad − 120]) + (0.18 � Max [0,23.87 − torque]) 0.52
8.65 − torque]) 0.29
ad − 120]) − (0.002 � Max [0,cad�torque − 1909.86]) 0.80
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FIGURE 4—EnHLvalues for excitation patterns (blue points) of individual muscles as a function of excitation duration and duty cycle. The overlaid surface
represents the excitation pattern EnHL values predicted as a function of excitation duration and duty cycle by MARS analysis. Equations for the surface
and associated goodness of fit values are provided in Table 3. See Supplemental Digital Content 5 for animations of the graphics rotating through different
viewpoints, http://links.lww.com/MSS/B708.
in Fig. 4 providing multiple perspectives of the 3D space,
http://links.lww.com/MSS/B708), and the results of the MARS
analysis of these data in Table 3. The relationships between
EnHL and these excitation burst parameters showed a greater
range of patterns across the muscles studied, than that seen
when cycling condition was assessed. Longer EnHL (fewer
fluctuations/greater persistence in structure) were associated
with longer duty cycles (>0.5) and with both long and short ex-
citation burst durations. The MARS analysis identified a hinge
function associated with burst duration in all muscles except
BF. The hinge points ranged from 235 ms (LG) to 344 ms
TABLE 3. Details of the MARS model of EnHL as a function of excitation duration (BD) and duty c

Muscle MARS

Tibialis anterior 47.06 − (0.23 � BD � DC) − (0.09 � Max [0,294.2 − BD]) + (0.11
Gastrocnemius lateralis 17.06 + (0.11 � Max [0,235 − BD]) + (0.03 � Max [0,BD − 235])
Soleus No Fit
Gastrocnemius medialis 58.69 − (0.33 � BD � DC) − (0.11 � Max [0,244 − BD]) + (0.17 �

(134.73� Max [0,DC − 0.48])
Vastus lateralis 133.67 − (0.82 � BD � DC) − (0.35 � Max [0,298.5 − BD]) + (0.4

(254.72 � Max [0,0.46 − DC]) + (293.69 � Max [0,DC − 0.46])
Rectus femoris 45.04 − (0.20 � BD �DC) − (0.07 � Max [0,254.75 − BD]) + (0.13
Vastus medialis 38.26 − ( 0.19 � BD � DC) + (0.16 � Max [0,BD − 283.13]) − (63
Biceps femoris 21.17 + (66.72 � Max [0,0.43 − DC]) + (70.38times; �times; Max
Semitendinosus 18.49 + (0.06times; � Max [BD − 304.5]) + (0.09 � MAX [0,128.1
Gluteus maximus 23.59 + (0.03 � Max [0,BD − 300]) + (149.59 � 23`Max [0,DC − 0

LIMITS TO MAXIMUM MECHANICAL POWER OUTPUT
(MG) and occurred for pedaling at 80 to 120 rpm. A hinge func-
tion related to duty cycle occurred in all muscles except ST,
with values ranging between 0.43 (TA, BF) and 0.49 (RF).

DISCUSSION

In agreement with our predictions, muscle coordination be-
came more persistent at cadences up to 120 rpm, indicated by
increasing EnHL values for the loading scores of PCI and
PCII. Changes in EnHL at the level of the individual muscles
differed from the changes in muscle coordination EnHL, with
longer EnHL occurring at the slowest (<80 rpm) and fastest
ycle (DC), in each of the 10 lower leg muscles analyzed.

Model Model Fit (r 2)

� Max [0,BD − 294.25]) + (75.98 � Max [0,DC − 0.43]) 0.57
+ (29.92 � Max [0,dc − 0.48]) − (0.07 � Max [0,BD�DC − 163.85]) 0.84

—

Max [0,BD − 244]) − (65.95 � Max [0,0.464756 − DC]) + 0.83

6 � Max [0,BD − 298.5]) − (95.5 � Max [0,DC − 0.43]) − 0.82

� Max [0,BD − 254.75]) + (264.27 � Max [0,DC − 0.49]) 0.99
.23 � Max [0,0.46 − DC]) 0.94
[0,DC − 0.47]) 0.39
6 − BD � DC]) − (0.11 � MAX [0,BD � DC − 128.16]) 0.56
.47]) 0.73

Medicine & Science in Sports & Exercise® 221

A
PPLIED

SC
IEN

C
ES

http://links.lww.com/MSS/B708
http://links.lww.com/MSS/B708


A
PP

LI
ED

SC
IE
N
C
ES
(>120 rpm) cadences. These findings indicate that, within the
trained cyclists studied, changes in the structure of individual
muscle excitation can occur even when changes in coordina-
tion are more limited.

The range of EnHL values found for the individual muscles
is strikingly similar to those predicted from simulated, syn-
thetic EMG signals (28) and reported for experimental data
from humans cycling (29) and rats running on a treadmill
(28). Similar features of EMG structure are, therefore, appar-
ent across the range ofmechanical demands, muscles, and spe-
cies studied to date. Equally, the EnHL for the muscle
coordination patterns are similar to those previously reported
for a range of cycling conditions (25,29). It has been previ-
ously shown that excitation duration and duty cycle change
in a complex and nonlinear manner as a function of cycling ca-
dence and power output (2). The results here show that, as
with instantaneous measures (2), features of the EMG signal
structure also change in a nonlinear manner with cycling task
demand. For both individual muscles and muscle coordination
80 and 120 rpmwere critical cadences at which hinge points in
the EnHL relations occurred.

Longer EnHL indicate that signal structure persisted over
longer time periods, representing fewer patterns of the individ-
ual muscle excitations or muscle coordination. Longer EnHL
are an indication of the availability of fewer solutions that
meet the task demands within the system. The results here,
therefore, indicate that at cadences slower than 80 rpm and
faster than 120 rpm the majority of the limb muscles studied
may have fewer fluctuations in the motor unit recruitment or
firing characteristics that contribute to the application of force
at the pedal. Particularly for the faster cadences, this fits with
preferential recruitment of faster motor unit populations (i.e.,
fewer motor unit populations recruited) (13,14) and an in-
crease in the ineffective forces delivered to the pedals (2) that
has previously been shown.

The majority of the muscles in which 120 rpm was identi-
fied as a hinge point, above which longer EnHL occurred
(MG, LG, RF, BF, Gmax), are biarticular and active at the
top or bottom of the pedal cycle. Muscle coordination across
these portions of the pedal cycle is important for mechanical
efficiency (2) and, as such, limitations inmaximum power out-
put at faster cadences may bemore related to challenges in orien-
tating and transferring muscle forces rather than generation
of force itself. The EnHL of VM and VL, reached a mini-
mum by 80 rpm and did not change across the faster cadences
studied (Fig. 3, Supplemental Digital Content 3 animated
rotation of plots in Fig. 3 providing multiple perspectives of
the 3D space, http://links.lww.com/MSS/B706, Supplemental
Digital Content 4 animated rotation of data in Fig. 3 including
interquartile ranges of these data, http://links.lww.com/MSS/
B707). This indicates that motor unit recruitment and firing
characteristics within these muscles were able to provide
a consistent number of solutions solving the demands of
pedaling across the conditions studied and providing further
evidence that these two muscles act mainly as power
producers during cycling.
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At cadences faster than 120 rpm the timescale over which
structure persisted in the mainmuscle coordination patterns re-
mained approximately constant (Fig. 2, Supplemental Digital
Content 1 animated rotation of plots in Fig. 2 providing
multiple perspectives of the 3D space, http://links.lww.com/
MSS/B704; Supplemental Digital Content 2 animated rotation
of data in Fig. 2, including interquartile ranges of these data,
http://links.lww.com/MSS/B705). The EnHL of the individual
muscles, however, showed a tendency for increasing EnHL
from this point, indicating that although the patterns in
muscle coordination had consistent structure persistence, the
structure of individual muscle excitations were still changing
(Table 2, Fig. 3). Therefore, a stable pattern of coordination
across multiple muscles does not indicate that each individual
muscle contributes the same pattern of behavior across
movement cycles. Equally, these results indicate that pedaling
cadence (or pedal cycle duration) predominantly limits the
solutions available at the level of muscle coordination. This
could suggest some form of tuning of neural command signals
to individual muscles, as has previously been reported for a
range of locomotor activities in cats (36,37). Such tuning
could optimize muscle recruitment to exploit differences in
morphology (e.g., number joints spanned, fascicle architecture)
and/or physiology (e.g., fiber type proportions (15,38,39)) to
optimize some feature of task performance (e.g., minimizing
energy expenditure (18)) and accommodate small cycle-to-cycle
perturbations or variability.

So, why might 120 rpm be such a critical cadence? In the
motor control literature Craik (40) and Vince (41) have shown
that discrete movements could be made at a maximum fre-
quency of two to three actions per second, above whichmutual
interference and loss of accuracy occurs. At 120 rpm, cycle
durations are ~500 ms, and activation durations are below
200 ms (2). Therefore, at this cadence, adjustments could be
made on a cycle-to-cycle basis (i.e., within pedal cycle adjust-
ments); however, at faster cadences, adjustments may only be
possible across several pedal cycles. Indeed cadences of 120
to 140 rpm have previously been suggested to provide a criti-
cal limit to the duration of muscle excitation and subsequent de-
terioration in muscle coordination (2). These limits have
previously been understood within the context of power pro-
ducing capabilities of skeletal muscle fibers at different operat-
ing velocities (15) and limitations of activation-deactivation
capabilities (2). The evidence presented here shows that the in-
trinsic structure of muscle excitation and coordination patterns
is also affected. Indeed, when EnHL in individual muscles
was assessed as a function of excitation duration and duty cycle,
excitation durations shorter than 304.5 ms were associated with
an increase in EnHL across all muscles except BF (Table 3,
Fig. 4). Cycling (particularly in a laboratory setting with
well-trained individuals) probably presents predictable stimuli
where response rates faster than those reported by Craik (40)
andVince (41) are likely to occur. However, the results presented
here strongly indicate that factors related to the status of the
central and peripheral nervous systems (e.g., distribution
of excitatory and inhibitory presynaptic sources) may also
http://www.acsm-msse.org
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influence muscle excitation and coordination and impact
power output from the limb.

CONCLUSIONS

Changes in EnHL at the level of the individual muscles and
multi-muscle coordination indicate 120 rpm is a cadence at
which the intrinsic structure of muscle excitation and coordi-
nation patterns alters. Across the faster cadences where muscle
coordination patterns are consistent, changes in the solutions
available within individual muscles are still occurring. Whether
this is a skill learned through training, and hence, only demon-
strated by experienced cyclists (such as those studied here), or
whether it is a general feature of motor control that can be
found in untrained cyclists and during different locomotor ac-
tivities (e.g., running, swimming) is not known and warrants
further investigation.

Cadences of 120 to 140 rpm have previously been sug-
gested to provide a critical limit to excitation duration (2). Here,
excitation durations shorter than 304.5 ms were associated with
an increase in EnHL across all muscles except BF (Table 3,
Fig. 4), suggesting a greater challenge to the motor control
LIMITS TO MAXIMUM MECHANICAL POWER OUTPUT
system that could impact maximum power output at cadences
above 120 rpm. Changes in the solutions available between
pedaling cadences were particularly evident in biarticular
muscles, which are likely responsible for orientation and trans-
fer of forces to the pedals. This suggests the time available to
coordinate orientation and transfer of forces through the neu-
romuscular system to the pedals may be key for power produc-
tion at faster cadences in trained cyclists. Consequently, the
importance of muscle coordination at the top and bottom of
the pedal cycle could be an important focus for improving cy-
cling performance, particularly in athletes aiming to complete
shorter distance, power based events.
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