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Abstract

The goal of this paper is to develop a mathematical model that analyzes the selective advantage of the SOS response in
unicellular organisms. To this end, this paper develops a quasispecies model that incorporates the SOS response. We
consider a unicellular, asexually replicating population of organisms, whose genomes consist of a single, double-stranded
DNA molecule, i.e. one chromosome. We assume that repair of post-replication mismatched base-pairs occurs with
probability l, and that the SOS response is triggered when the total number of mismatched base-pairs is at least lS . We
further assume that the per-mismatch SOS elimination rate is characterized by a first-order rate constant kSOS . For a single
fitness peak landscape where the master genome can sustain up to l mismatches and remain viable, this model is
analytically solvable in the limit of infinite sequence length. The results, which are confirmed by stochastic simulations,
indicate that the SOS response does indeed confer a fitness advantage to a population, provided that it is only activated
when DNA damage is so extensive that a cell will die if it does not attempt to repair its DNA.
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Introduction

Genetic repair is an essential component of cellular genomes.

Without mechanisms for repairing damaged and mutated DNA,

genomes could not achieve sufficient information content to code

for the variety and complexity of modern terrestrial life [1].

Genetic repair mechanisms fall into two main categories: Those

that correct base mis-pairings during the replication cycle of a cell,

and those that repair mutated and damaged DNA during the

growth (G) phase of the cellular life cycle [1].

Two important examples of the first class of repair mechanisms are

DNA proofreading and mismatch repair (MMR). DNA proofreading

is a repair mechanism that is built into the DNA replicases them-

selves. During daughter strand synthesis, an erroneously matched

base is excised, and a second attempt at a base pairing is made [1].

Mismatch repair also removes erroneous bases from the daughter

strand, but does this shortly after daughter strand synthesis [1].

Two important examples of the second class of repair mechanisms

are Nucleotide Excision Repair (NER) and the SOS response [1].

NER protects a cell from damage due to radiation, chemical muta-

gens, and metabolic free radicals by removing damaged portions of

the DNA strand and using the other, presumably undamaged strand

as a template for re-synthesis of the excised region [1].

The SOS response is a genomic repair mechanism that only

activates when there is extensive damage to the cellular genome.

When DNA damage is sufficiently extensive, the cell stops growing,

and the SOS repair pathways attempt to restore complementarity to

the genome [1]. The SOS response only takes effect when DNA

damage is so extensive that it may be impossible to use undamaged

template strands to correctly re-synthesize damaged portions of the

genome. Thus, although this means that the SOS repair mechanism

is highly error prone, it is evolutionary advantageous for the cell to

repair the genome and risk fixing deleterious mutations, than it is to

leave the damaged genome unrepaired [1–4].

In recent work with quasispecies models of evolutionary

dynamics, quasispecies models [5–7] considering the first class of

repair mechanisms have been studied [8–11]. In addition,

semiconservative replication, including semiconservative replica-

tion with imperfect lesion repair (i.e. not all base-pair mismatches

are eliminated), has been considered [12–15]. Additional effects,

such as multiply-gened genomes, as well as multiply chromosomed

genomes, have been considered as well [16,17].

This paper continues the theme of incorporating various details

characteristic of cellular genomes by developing a quasispecies

model that takes into consideration the SOS repair mechanism. The

model is highly simplified, and therefore only a first step in

developing proper evolutionary dynamics equations with SOS

repair. Nevertheless, because our model is analytically tractable, we

believe it is a useful and important initial approach to mathemat-

ically modeling the evolutionary aspects of the SOS repair pathway.

A proper modeling of the SOS response is an essential component

of developing a quantitative theory of mutation-propagation in

cellular organisms, which is important for understanding phenom-

ena such as the emergence of antibiotic drug resistance in bacteria,

and cancer in multicellular organisms [2–4].

Materials and Methods

Definitions and Model Set-Up
We consider a unicellular population of asexually replicating

organisms, whose genomes consist of a single DNA molecule, i.e.
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one chromosome. The genome may then be denoted by s,s’f g,
where s, s’ denote the two strands of the DNA molecule. If the

genome is of length L, then we may write s~b1 . . . bL,

s’~b’1 . . . b’L where each base bi, b’i is chosen from an alphabet

of size S (usually ~4). If �bbi denotes the base complementary to bi

(for the standard Watson-Crick bases, the pairings are

Adenine Að Þ{Thymine Tð Þ, Guanine Gð Þ{Cytosine Cð Þ), and �ss
denotes the strand complementary to s, then �ss~�bbL . . . �bb1. This

follows from the antiparallel nature of double-stranded DNA [1].

We let n s,s’f g denote the number of organisms with genome

s,s’f g, and we assume that replication occurs with a genome-

dependent, first-order rate constant, denoted k s,s’f g. The set of all

k s,s’f g defines the fitness landscape. It should be emphasized that

fitness in this model only refers to replication rate. In particular,

this model does not consider cell death.

The semiconservative replication of the DNA genomes happens

in three stages:

1. Strand separation, whereby each strand of the chromosome

separates to act as a template for daughter strand synthesis.

2. Daughter strand synthesis. We assume a genome and base-

independent mismatch probability e. This error probability e
includes all error correction mechanisms, such as proofreading

and mismatch repair, that are active during the replication

phase of the cell.

3. Lesion repair, where any post-replication mismatches are

removed. Here, there is no longer the parent-daughter strand

discrimination that was available during daughter strand

synthesis, so in contrast to DNA proofreading and mismatch

repair, lesion repair has a 50% chance of removing the

mutation, and a 50% chance of communicating it to the parent

strand and fixing the mutation in the genome (the lesion repair

can occur via either Base or Nucleotide Excision Repair) [1].

We also do not assume that lesion repair is perfectly efficient, so

that we consider a genome and base-independent probability l
of removing a mismatch. We call l the lesion repair efficiency.

In our simplified model, the SOS response is triggered if a given

genome has at least lS mismatches. The replication rate of all cells

undergoing SOS repair is zero. We assume that removal of

mismatches is catalyzed by an enzyme that binds to a mismatch

and then eliminates the mismatch at a rate characterized by a first-

order rate constant kSOS . Therefore, the probability that a given

mismatch is eliminated over an infinitesimal time interval dt is

given by kSOSdt (see Figure 1).

In this paper, we will consider the behavior of the model in the

limit of infinite sequence length. If m: L is held constant as

L??, then the probability of an error-free daughter strand

synthesis is given by 1{ð ÞL?e{m. Therefore, fixing m in the

infinite sequence length limit is equivalent to fixing the per-

genome replication fidelity. It should be noted that m is the average

number of mismatches produced per DNA strand per replication

cycle.

The assumption of infinite sequence length is a common

assumption in quasispecies theory, because it is the mathematical

formalization of the long genome-length regime that makes the

neglect of backmutations exact. While finite genome length effects

need to be considered in dynamic fitness landscapes, where

adaptation to specific genomes is important [18], for static

landscapes (like the one being considered in this paper), good

agreement with the infinite sequence length results may be

obtained with genomes as short as ten bases.

Finally, we assume that the fitness landscape is defined by a

master genome s0,�ss0f g. Specifically, we define a genome s,s’f g

to be viable, with a first-order growth rate constant kw1, if it has

fewer than l mismatches, and if it does not differ from s0,�ss0f g by

any fixed mutations. Otherwise, the genome is unviable, with a

first-order growth rate constant of 1. We recognize that this

terminology is somewhat inappropriate, since a genome with a

first-order growth rate constant of 1 may still replicate. However,

this is standard terminology from quasispecies theory, where

‘‘viable’’ and ‘‘unviable’’ are taken to be synonymous with ‘‘higher

fitness’’ and ‘‘lower fitness’’ respectively.

The justification for this choice of fitness landscape is as follows:

If a genome has a fixed mutation, then neither DNA strand

corresponds to either of the master strands s0, �ss0. As a result, the

genome does not contain all of the information corresponding to a

viable organism, hence the organism is unviable. While this

assumption is clearly extreme and oversimplified, it is the analogue

of the single-fitness-peak landscape for single-stranded genomes.

However, in the case of a mismatch where one of the bases is

the same as the corresponding base in one of the master strands,

the information contained in the master genome is still preserved

in one of the strands, so that the organism is assumed to remain

viable if the total number of such mismatches does not exceed

some cutoff value l.

For convenience, Table 1 summarizes the main parameters of

the model.

Symmetrized Population Distribution
We can develop the infinite sequence length equations for our

model, assuming an initially prepared clonal population consisting

entirely of the wild-type (mutation-free) genome s0,�ss0f g, i.e. a

population consisting entirely of the fastest replicating genotype.

Because, during replication, only a finite number of mutations are

possible, at any time time the population will consist of a

distribution of genomes s,s’f g where s, s’ differ from either s0

and �ss0 in at most a finite number of spots. Thus, given two gene

sequences s1, s2, if we let DH s1,s2ð Þ denote the Hamming

distance [19] between s1 and s2 (i.e. the number of sites where s1

and s2 differ), then either DH s,s0ð Þ and DH s’,�ss0ð Þ are finite, or

DH s,�ss0ð Þ and DH s’,s0ð Þ are finite.

Figure 1. (Color online) Illustration of the SOS repair mecha-
nism being considered in this paper. A DNA genome with two
base-pair mismatches is restored to a fully complementary genome in
two repair steps, where during each step a single mismatch (i.e. lesion)
is eliminated. The first lesion is repaired correctly, so that the original
base-pair of the master genome strands (solid blue lines) is restored,
while the second lesion is repaired incorrectly, so that a mutation
(dotted red lines) becomes fixed in the genome.
doi:10.1371/journal.pone.0014113.g001
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The Hamming distance between two sequences s1 and s2 is

simply equal to the number of positions by which they differ. It may

be readily shown that the Hamming distance is a metric over the

space of sequences [19], so that, in particular, the Hamming distance

satisfies the Cauchy-Schwartz Inequality: Given three sequences s1,

s2, and s3, we have DH s1,s2ð ÞzDH s2,s3ð Þ§DH s1,s3ð Þ.
Now, in the limit of infinite sequence length, it may be

shown that, with probability 1, that the Hamming distance

between s0 and its complement �ss0 is infinite [12]. Therefore, if

DH s,s0ð Þ and DH s,�ss0ð Þ were both finite, we would obtain

?~DH s0,�ss0ð ÞƒDH s0,sð ÞzDH s,�ss0ð Þv?[Z, and so s can-

not simultaneously be of finite Hamming distance to s0 and �ss0.

Similarly, s’ cannot simultaneously be of finite Hamming distance

to s0 and �ss0.

As a result, we can define a strand ordering s,s’ð Þ for a genome

s,s’f g, where it is understood that s is a finite Hamming distance

from s0 and s’ is a finite Hamming distance from �ss0.

A given genome s,s’ð Þ may then be characterized by four

parameters lC , lL, lR, and lB. We let lC denote the number of sites

where s and s’ are both complementary, yet differ from the

corresponding bases in s0 and �ss0. We let lL denote the number of

sites where s differs from s0, but s’ is identical to �ss0. We let lR
denote the number of sites where s is identical to s0, but s’ differs

from �ss0. Finally, we let lB denote the number of sites where s and

s’ differ from s0 and �ss0, but are not complementary (for an

illustration of these parameters, see [7,13]).

Note that the fitness landscape depends only on lC , lL, lR, and

lB, and hence the fitness of a given organism may be denoted by

k lC ,lL,lR ,lBð Þ, where for our single-fitness-peak landscape we have

k lC ,lL,lR ,lBð Þ~k if lC~0 and lLzlRzlBƒl, and 1 otherwise. The

condition lC~0 means that there are no mutations fixed in the

genome, while the condition lLzlRzlBƒl means that there are

fewer than l lesions.

By the symmetry of the fitness landscape, and by the symmetry

of the initial population distribution, we can group all genomes of

identical lC , lL, lR, and lB, and derive the dynamical equations of

the symmetrized population distribution. We therefore let

n lC ,lL,lR ,lBð Þ denote the total number of organisms in the population

whose genomes are characterized by the parameters lC , lL, lR, and

lB, and we let n
SOSð Þ
lC ,lL,lR ,lBð Þ denote the total number of organisms in

the population undergoing the SOS response, whose genomes are

similarly characterized by the parameters lC , lL, lR, and lB. The

corresponding population fractions are denoted z lC ,lL ,lR,lBð Þ and

z
SOSð Þ
lC ,lL,lR ,lBð Þ, respectively.

Dynamical Equations
To develop the dynamical equations for both the z lC ,lL ,lR,lBð Þ and

the z
SOSð Þ
lC ,lL,lR ,lBð Þ quantities, we begin by considering a genome

s,s’ð Þ, characterized by the parameters lC , lL, lR, and lB.

We first consider the case where this genome is not undergoing

the SOS response. Then, due to the semiconservative nature of

DNA replication, this genome is being destroyed at a rate given by

{k lC ,lL,lR ,lBð Þn lC ,lL ,lR ,lBð Þ. This genome, however, is produced by

other genomes in the population, as a result of replication. So,

consider some other genome s’’,s’’’ð Þ which produces s,s’ð Þ upon

replication. This can either occur via the s’’ template strand, the

s’’’ template strand, or both.

If the s’’,s’’’ð Þ genome is characterized by the parameters l ’’C ,

l ’’L, l ’’R, and l ’’B, then s’’ differs from s0 in l ’’Czl ’’Lzl ’’B bases.

Because sequence lengths are infinite, the probability of a

mismatch in one of these bases during daughter strand synthesis

is 0. In the remaining sites, let l ’’1 denote the number of mis-

matches that are not corrected, and l ’’2 denote the number of

mismatches that are repaired, but fixed as a mutation in the

genome. Then the resulting genome s,s’ð Þ is characterized by:

1. lC~l ’’Czl ’’Lzl ’’Bzl ’’2
2. lL~0

3. lR~l ’’1
4. lB~0

The probability of a given set of mutations corresponding to l ’’1 ,

l ’’2 , is l’’1 zl2’’ 1{lð Þl’’1 l=2ð Þl’’2 1{ z l=2ð ÞL{l’’C {l’’L {l’’B {l’’1 {l’’2 . The

term 1{ z l=2ð ÞL{l’’C{l’’L {l’’B {l’’1 {l’’2 arises as a probability that the

remaining L{l ’’C{l ’’L{l ’’B{l ’’1{l ’’2 sites on s’’ remain identical

to s0, and the corresponding daughter strand sites are identical to

�ss0. The per-site probability of this is the probability of error-free

daughter strand synthesis, 1{ , plus the probability of a

mismatch, times l, the probability that complementarity

is restored, times 1=2, the probability that complementarity is

restored correctly. It is assumed that complementarity is restored

by various DNA repair mechanisms, such as Nucleotide Excision

Repair (NER) and Base Excision Repair (BER) [1]. However,

because NER and BER do not distinguish between parent and

daughter strands, the probability of correctly removing a mis-

match via these mechanisms is 1=2.

The degeneracy is given by L{l’’C{l’’L{l’’Bð Þ!=
l’’1 !l’’2 !ð L{l’’C{l’’L{l’’B{l’’1{l’’2ð Þ!, so in the limit of infinite

sequence length the total probability becomes,

L{l’’C{l’’L{l’’Bð Þ!
l’’1 !l’’2 ! L{l’’C{l’’L{l’’B{l’’1{l’’2ð Þ!

|el’’1zl’’2 1{lð Þl’’1 l

2

� �l’’2
1{ 1{l=2ð Þð ÞL{l’’C{l’’L{l’’B{l’’1{l’’2

?
1

l’’1 !l’’2 !
m 1{lð Þ½ �l’’1 ml

2

� �l’’2
e{(1{l=2)m ð1Þ

If s,s’ð Þ is generated by s’’’, then we have,

1. lC~l ’’Czl ’’Rzl ’’Bzl ’’2

Table 1. The various parameters and their definitions in our
model.

Parameter Definition

s,s’f g General notation for a genome

s0,�ss0f g The master genome

S Alphabet size

L Genome length

Per-base mismatch probability during daughter strand
synthesis

m L

k Fitness of the master genome

l Lesion repair probability

l Maximum number of mismatches a genome can tolerate and
still remain viable

lS The minimum number of mismatches required to trigger the
SOS response

kSOS First-order rate constant characterizing the rate of SOS repair

doi:10.1371/journal.pone.0014113.t001
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2. lL~l ’’1
3. lR~0

4. lB~0

We also obtain an overall transition probability of

1= l’’1 !l’’2 !ð Þ m 1{lð Þ½ �l’’1 ml=2ð Þl’’2 e{ 1{l=2ð Þm.

It is important to note from the s’’ and s’’’ results that genomes

with lBw0 cannot be generated during replication. Since SOS

repair eliminates mismatches, it follows that a population where lB
is initially 0 for all genomes will always have a population where

lB~0. Therefore, we may assume in subsequent derivations that

lB, l ’’B are 0.

Furthermore, note that strands s’’ that are a finite Hamming

distance away from s0 can only generate daughter genomes where

lL~0, while strands s’’’ that are a finite Hamming distance away

from �ss0 can only generate daughter genomes where lR~0.

Then for the genomes s,s’ð Þ generated by s’’, we have

lC~l ’’Czl ’’Lzl ’’2 , and lR~l ’’1 . Therefore, the restriction on

s’’,s’’’ð Þ is that 0ƒl ’’2ƒlC , 0ƒl ’’LƒlC{l ’’2 , and

l ’’C~lC{l ’’L{l ’’2 . Note that there is no restriction on l ’’R.

Then for the population number n lC ,0,lR ,0ð Þ, we have a

contribution from the s’’ strands of

1

lR!
m 1{lð Þ½ �lR e{m 1{l=2ð Þ

|
XlC
l’’2~0

1

l’’2 !

ml

2

� �l’’2

|
XlC{l’’2

l’’L~0

X?
l’’R~0

k
lC{l’’L{l’’2 ,l’’L,l’’R,0ð Þn lC{l’’L{l’’2 ,l’’L ,l’’R ,0ð Þ

ð2Þ

A similar expression is obtained for the population number

n lC ,lL,0,0ð Þ, except lR is replaced with lL, and the roles of l ’’L and l ’’R
are exchanged.

It should also be noted that, by the symmetry of the fitness

landscape, we have that n lC ,lL,lR ,lBð Þ~n lC ,lR ,lL,lBð Þ. Another way to

note this is that, for a given genome s,s’ð Þ, if we change the

ordering of the strands so that the first strand is of finite Hamming

distance to �ss0, and the second strand is of finite Hamming distance

to s0, then the genome s,s’f g must be represented as s’,sð Þ, and

is characterized by the parameters lC , lR, lL, and lB. If �nn lC ,lL,lR ,lBð Þ
denotes the number of genomes characterized by lC , lL, lR, and lB,

with respect to the �ss0,s0ð Þ strand ordering, then since there is a

one-to-one correspondence between genomes s,s’ð Þ with param-

eters lC , lL, lR, lB with respect to the first ordering, and genomes

s,s’ð Þ with parameters lC , lR, lL, lB with respect to the second

ordering, it follows that �nn lC ,lL,lR ,lBð Þ~n lC ,lR ,lL,lBð Þ. However, since

the fitness landscape is invariant under strand ordering, we have

n lC ,lL,lR ,lBð Þ~�nn lC ,lL,lR ,lBð Þ, so that n lC ,lL ,lR ,lBð Þ~n lC ,lR ,lL,lBð Þ.
Taking into consideration the contribution to n lC ,0,0,0ð Þ, we may

put everything together and obtain, after changing variables from

population numbers to population fractions, the differential

equations governing the time evolution of the various population

fractions. These equations are,

dz(lC ,0,0,0)

dt
~{(k(lC ,0,0,0)z�kk(t))z(lC ,0,0,0)

zkSOS(z
(SOS)
(lC ,0,1,0)z(1{dlC 0)z

(SOS)
(lC{1,0,1,0))

z2e{m(1{l=2)
XlC

l1,C~0

XlC{l1,C

l1~0

X?
l2~0

1

l1,C !

ml

2

� �l1,C

k(lC{l1,C{l1,l1,l2,0)z(lC{l1,C{l1,l1,l2,0)

dz(lC ,0,lRw0,0)

dt
~{(k(lC ,0,lR ,0)z�kk(t))z(lC ,0,lR,0)

z
1

lR!
½m(1{l)�lR e{m(1{l=2)

XlC
l1,C~0

XlC{l1,C

l1~0

X?
l2~0

1

l1,C !

ml

2

� �l1,C

k(lC{l1,C{l1,l1,l2,0)z(lC{l1,C{l1,l1,l2,0)

for lR ~ 1, . . . , lS { 1

dz
(SOS)
(lC ,0,lRw0,0)

dt
~

kSOS
lRz1

2
(z

(SOS)
(lC ,0,lRz1,0)z(1{dlC 0)z

(SOS)
(lC{1,0,lRz1,0)){lRz

(SOS)
(lC ,0,lR,0)

� �

{�kk(t)z
(SOS)
(lC ,0,lR,0)

for lR ~ 1, . . . , lS { 1

dz
(SOS)
(lC ,0,lRw0,0)

dt
~

kSOS
lRz1

2
(z

(SOS)
(lC ,0,lRz1,0)z(1{dlC 0)z

(SOS)
(lC{1,0,lRz1,0)){lRz

(SOS)
(lC ,0,lR,0)

� �

{�kk(t)z
(SOS)
(lC ,0,lR,0)

z
1

lR!
½m(1{l)�lR e{m(1{l=2)

XlC
l1,C~0

XlC{l1,C

l1~0

X?
l2~0

1

l1,C !

ml

2

� �l1,C

k(lC{l1,C{l1,l1,l2,0)z(lC{l1,C{l1,l1,l2,0)

for lR § lS ð3Þ

where �kk tð Þ:
P?

lC~0

P?
lL~0

P?
lR~0 k lC ,lL ,lR,0ð Þz lC ,lL ,lR,0ð Þ

~
P?

lC~0 k lC ,0,0,0ð Þz lC ,0,0,0ð Þz2
P?

l~1 k lC ,0,l,0ð Þz lC ,0,l,0ð Þ
� �

is the

mean fitness of the population. It should also be noted that dij is

the Kronecker delta function, so that dij~1 if i~j, and 0

otherwise.

Note that we do not write down the dynamical equations for

z lC ,l,0,0ð Þ or z
SOSð Þ
lC ,l,0,0ð Þ, since they are redundant.

SOS Response on Mean Fitness
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The factor of 1=2 appearing in the SOS terms arises from

the fact that when a mismatch is removed, it either corrects the

daughter strand synthesis error, or it fixes the mismatch as a

mutation in the genome. In the former case, the value of lC
remains unchanged, while in the latter case it is incremented by 1.

It should be noted that this factor is missing in the contribution to

z lC ,0,0,0ð Þ from SOS repair. The reason for this is that this contri-

bution comes from z
SOSð Þ
lC ,0,1,0ð Þ, z

SOSð Þ
lC ,1,0,0ð Þ, z

SOSð Þ
lC{1,0,1,0ð Þ, and z

SOSð Þ
lC{1,1,0,0ð Þ.

However, because z
SOSð Þ
lC ,0,1,0ð Þ~z

SOSð Þ
lC ,1,0,0ð Þ, and z

SOSð Þ
lC{1,0,1,0ð Þ~z

SOSð Þ
lC{1,1,0,0ð Þ,

we may combine identical terms and eliminate the factor of 1=2.

The factor of lz1 and l in front of the kSOS rate constant arises

from the fact that the fraction of genomes whose SOS enzymes are

bound to a mismatch is proportional to the total number of

mismatches, hence the resulting SOS rate constant is proportional

to the total number of mismatches.

Results and Discussion

Steady-State Behavior
Definitions and basic equations. To obtain the steady-

state behavior of our model, we begin by introducing some

definitions that will allow us to simplify the calculations.

1. z1~z 0,0,0,0ð Þ.

2. z2~
Pl

l’~1 z 0,0,l’,0ð Þ.

3. z3~
PlS{1

l’~lz1 z 0,0,l’,0ð Þ.

4. z4~
P?

lC~1 z lC ,0,0,0ð Þ.

5. z5~
P?

lC~1

Pl
l’~1 z lC ,0,l’,0ð Þ.

6. z6~
P?

lC~1

PlS{1
l’~lz1 z lC ,0,l’,0ð Þ.

7. z
SOSð Þ

0l ~z
SOSð Þ
0,0,l,0ð Þ.

8. z
SOSð Þ

1l ~
P?

lC~0 z
SOSð Þ
lC ,0,l,0ð Þ.

9. z
SOSð Þ

0 ~
P?

l~1 z
SOSð Þ

0l .

10. z SOSð Þ~
P?

l~1 z
SOSð Þ

1l .

where we set l~lS{1 whenever l was previously defined as

§lS . The differential equations for z1, z2, z3, z4, z5, and z6 are

readily derived. From the equations,

X?
l2~0

k 0,0,l2,0ð Þz 0,0,l2,0ð Þ~kz1zkz2zz3 ð4Þ

and

X?
lC~0

XlC
l1,C~0

XlC{l1,C

l1~0

X?
l2~0

1

l1,C !

ml

2

� �l1,C

|k lC{l1,C{l1,l1,l2,0ð Þz lC{l1,C{l1,l1,l2,0ð Þ

~eml=2 kz1z2kz2z2z3zz4z2z5z2z6½ �

ð5Þ

we obtain,

dz1

dt
~{ kz�kk tð Þð Þz1z2e{m 1{l=2ð Þ kz1zkz2zz3½ �

zkSOSz
SOSð Þ

01

dz2

dt
~{ kz�kk tð Þð Þz2

z fl m,lð Þ{1ð Þe{m 1{l=2ð Þ kz1zkz2zz3½ �
dz3

dt
~{ 1z�kk tð Þð Þz3

z flS{1 m,lð Þ{fl m,lð Þ
� �

e{m 1{l=2ð Þ kz1zkz2zz3½ �

dz4

dt
~{ 1z�kk tð Þð Þz4

z2e{m(1{l=2) eml=2 kz1z2kz2z2z3zz4z2z5z2z6ð Þ
h

{(kz1zkz2zz3)�zkSOS 2z
SOSð Þ

11 {z
SOSð Þ

01

h i
dz5

dt
~{ 1z�kk tð Þð Þz5

z fl m,lð Þ{1ð Þe{m 1{l=2ð Þ|

eml=2 kz1z2kz2z2z3zz4z2z5z2z6ð Þ
h
{ kz1zkz2zz3ð Þ
dz6

dt
~{ 1z�kk tð Þð Þz6

z flS{1 m,lð Þ{fl m,lð Þ
� �

e{m 1{l=2ð Þ|

eml=2 kz1z2kz2z2z3zz4z2z5z2z6ð Þ
h
{ kz1zkz2zz3ð Þ

ð6Þ

We also have,

dz
(SOS)
0l

dt
~kSOS

lz1

2
z

(SOS)
0lz1 {(lkSOSz�kk(t))z

(SOS)
0l

for l ~ 1, . . . , lS { 1

dz
(SOS)
0l

dt
~kSOS

lz1

2
z

(SOS)
0lz1 {(lkSOSz�kk(t))z

(SOS)
0l

z
1

l!
½m(1{l)�le{m(1{l=2)½kz1zkz2zz3�

for l § lS

dz
(SOS)
1l

dt
~kSOS(lz1)z

(SOS)
1lz1 {(lkSOSz�kk(t))z

(SOS)
1l

for l ~ 1, . . . , lS { 1

dz
(SOS)
1l

dt
~kSOS(lz1)z

(SOS)
1lz1 {(lkSOSz�kk(t))z

(SOS)
1l

z
1

l!
½m(1{l)�le{m(1{l)½kz1z2kz2z2z3zz4z2z5z2z6�

for l § lS

ð7Þ

�

�
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We can add these equations to obtain,

dz SOSð Þ

dt
~{kSOSz

SOSð Þ
11 {�kk tð Þz SOSð Þ

z 1{e{m(1{l)flS{1 m,lð Þ
� �

|

kz1z2kz2z2z3zz4z2z5z2z6½ �

ð8Þ

For the purposes of computing the mean fitness at steady-state,

we can simplify the system of equations somewhat by defining

~zz4~z4z2z5z2z6. We obtain,

d~zz4

dt
~{ 1z�kk tð Þð Þ~zz4z2e{m 1{l=2ð ÞflS{1 m,lð Þ|

eml=2 kz1z2kz2z2z3z~zz4ð Þ{ kz1zkz2zz3ð Þ
h i
zkSOS 2z

(SOS)
11 {z

(SOS)
01

h i
ð9Þ

For consistency of notation, in what follows we shall simply let z4

denote ~zz4.

Determining the population fractions z(SOS)
01 , z(SOS)

11 , and

z(SOS). To obtain the steady-state behavior of this system of

equations, we begin by first solving for the steady-state of the

population undergoing SOS repair.

For l~0, . . . ,lS{1 we have at steady-state that,

z
(SOS)
0lz1 ~

2

lz1
lz

�kk(t~?)

kSOS

� �
z

(SOS)
0l ð10Þ

which gives,

z
(SOS)
0lS

~
2lS{1

lS!
P

lS{1

l~1
lz

�kk(t~?)

kSOS

� �" #
z

(SOS)
01 ð11Þ

For l§lS , we have,

z
(SOS)
0lz1 ~

2

lz1
lz

�kk(t~?)

kSOS

� �
z

(SOS)
0l

{
2

kSOS

1

lz1ð Þ! m 1{lð Þ½ �l|

e{m 1{l=2ð Þ kz1zkz2zz3½ �

ð12Þ

This expression has the form of the recursion relation,

xnz1~anxn{bn. Using mathematical induction, it is possible to

prove that xn~an{1| . . . |a0x0{an{1| . . . |a1b0{an{1|

. . . |a2b1{ . . . {an{1bn{2{bn{1. Therefore,

z
(SOS)
0l ~

2l{1

l!

Xl{1

l’~1

l’z
�kk(t~?)

kSOS

� �

| z
(SOS)
01 {

2

kSOS

e{m(1{l=2) kz1zkz2zz3ð Þ

2
664

| P
lS

l’~1

m(1{l)

2 l’z
�kk(t~?)

kSOS

� �|Xl{lS{1

k~0

P
k

l’~1

m(1{l)

2 lSzl’z
�kk(t~?)

kSOS

� �
3
775

ð13Þ

where we define P0
i~1 ai~1.

If we define gl m,l; �kk t~?ð Þ,kSOSð Þ~Pl
l’~1

m(1{l)

l’z
�kk(t~?)

kSOS

|

P?
k~0 P

k
l’~1

m(1{l)

lzl’z
�kk(t~?)

kSOS

, then imposing the requirement

that liml?? z
(SOS)
0l ~0 gives, at steady-state, that,

kSOSz
(SOS)
01 ~2e{m(1{l=2) kz1zkz2zz3½ �|glS

m=2,l; �kk t~?ð Þ,kSOSð Þ
ð14Þ

Using a similar argument, we obtain,

kSOSz
(SOS)
11 ~e{m(1{l) kz1z2kz2z2z3zz4½ �|glS

m,l; �kk t~?ð Þ,kSOSð Þ
ð15Þ

For the steady-state value of z(SOS), we have, using the identity

�kk(t)~kz1z2kz2z2z3zz4,

z(SOS)~1{e{m(1{l)| flS{1 m,lð ÞzglS
m,l; �kk t~?ð Þ,kSOSð Þ

� �
ð16Þ

Computing the steady-state mean fitness �kk t~?ð Þ. Plug-

ging our expressions for kSOSz
(SOS)
01 and kSOSz

(SOS)
11 into the

steady-state population fractions equations, we obtain,

0~{ kz�kk t~?ð Þð Þz1

z2e{m(1{l=2) 1zglS

m

2
,l; �kk t~?ð Þ,kSOS

� �� �
| kz1zkz2zz3½ �

0~{ kz�kk t~?ð Þð Þz2z fl m,lð Þ{1ð Þe{m(1{l=2) kz1zkz2zz3½ �

0~{ 1z�kk t~?ð Þð Þz3

z flS{1 m,lð Þ{fl m,lð Þ
� �

e{m(1{l=2) kz1zkz2zz3½ �

0~{ 1z�kk t~?ð Þð Þz4

z2e{m(1{l) flS{1 m,lð ÞzglS
m,l; �kk t~?ð Þ,kSOSð Þ

� �
| kz1z2kz2z2z3zz4½ �

{2e{m(1{l=2) flS{1 m,lð ÞzglS

m

2
,l; �kk t~?ð Þ,kSOS

� �� �
| kz1zkz2zz3½ �

ð17Þ

From these equations we may derive the equality,

k(z1zz2)zz3

~½k(z1zz2)zz3�e{m(1{l=2)

| k
1z2glS

(m=2,l; �kk(t~?),kSOS)zfl(m,l)

kz�kk(t~?)
z

flS{1(m,l){fl(m,l)

1z�kk(t~?)

� �ð18Þ

Below the error catastrophe, when z1, z2, z3 are not all 0, we may

cancel k z1zz2ð Þzz3 from both sides of the equation and re-arrange to

obtain,
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�kk t~?ð Þ2{A m,l; �kk,kSOSð Þ�kk t~?ð Þ{B m,l; �kk,kSOSð Þ~0 ð19Þ

where,

A m,l; �kk t~?ð Þ,kSOSð Þ

~k e
{m(1{

l

2
)
(1zfl m,lð Þz2glS

m

2
,l; �kk t~?ð Þ,kSOS)

� �
{1

� �

ze
{m(1{

l

2
)

flS{1 m,lð Þ{fl m,lð Þ
� �

{1

B m,l; �kk t~?ð Þ,kSOSð Þ

~k½e{m(1{
l

2
)
(1zflS{1 m,lð Þz2glS

m

2
,l; �kk t~?ð Þ,kSOS)

� �
{1�

ð20Þ

Beyond the error catastrophe, the mutation rate is sufficiently

high that the selective advantage for remaining localized about the

lC~0 genomes disappears, so that z1, z2, and z3 drop to 0. The

relevant steady-state equation is then,

0~{ 1z�kk t~?ð Þð Þz4z2e{m(1{l)

| flS{1 m,lð ÞzglS
m,l; �kk t~?ð Þ,kSOSð Þ

� �
z4

ð21Þ

which may be solved for �kk(t~?) to give,

�kk t~?ð Þ~2e{m(1{l)| flS{1 m,lð ÞzglS
m,l; �kk t~?ð Þ,kSOSð Þ

h i
{1

ð22Þ

The error catastrophe occurs at the mutation rate for which the

two expressions for the mean equilibrium fitness become equal. As

with previous quasispecies models, the error catastrophe here also

corresponds to a localization to delocalization transition over

sequence space [5–7].

Limiting Cases. We now proceed to consider the behavior of

the steady-state mean fitness for a number of limiting cases, in

order to better understand our model. We consider the following

cases: (1) l~1, corresponding to perfect lesion repair, so that there

are non-complementary genomes in the population. (2) lS~?,

corresponding to the case where no genome ever undergoes the

SOS response. (3) kSOS??, corresponding to the case where

SOS repair happens rapidly, so that there is a negligible fitness

penalty associated with undergoing the SOS response.

Case 1: l~1 When l~1, we get for lSw0 that

glS m,l; �kk t~?ð Þ,kSOSð Þ~0, and that flS{1 m,lð Þ~1. Therefore,

above the error catastrophe, we obtain �kk t~?ð Þ~1. Below the

error catastrophe, we have A m,1; �kk,kSOSð Þ~k 2e{m=2{1
� 	

{1,

B m,1; �kk t~?ð Þ,kSOSð Þ~k 2e{m=2{1
� 	

, giving �kk t~?ð Þ~
k 2e{m=2{1
� 	

. These results are in agreement with the solution

of the semiconservative quasispecies equations with perfect lesion

repair [12].

Case 2: lS~? When lS~?, then glS m,l; �kk t~?ð Þ,kSOSð Þ~0.

Below the error catastrophe, we have A m,l; �kk t~?ð Þ,kSOSð Þ~
k e{m(1{l=2) 1zfl m,lð Þð Þ{1

 �

{fl m,lð Þe{m(1{l=2)ze{ml=2{1, and

B m,l; �kk,kSOSð Þ~k e{m(1{l=2)ze{ml=2{1
� 	

. Above the error ca-

tastrophe, we have �kk t~?ð Þ~1. Both results are in agreement with

the semiconservative quasispecies equations with arbitrary lesion

repair efficiency [13].

Case 3: kSOS?? When kSOS??, then glS m,l; �kk(t~?),ð
kSOSÞ~em(1{l){flS{1(m,l). Above the error catastrophe, we get

that �kk t~?ð Þ~1. Below the error catastrophe, we obtain that,

A m,l; �kk (t~?),kSOSð Þ~k e{m(1{l=2) 1z fl m,lð Þz2em(1{l)=2{
�


2flS { 1 m=2,lð ÞÞ{1�ze{m(1{l=2) flS{1 m,lð Þ{ fl m,lð Þð Þ{1, and

B m,l; �kk t~?ð Þ,kSOSð Þ~k e{m(1{l=2) 1zflS{1 m,lð Þz2em (1{l)=2{
�


2flS{1 m=2,lð ÞÞ{1�.
Taking lS~1 for kSOS?? gives A m,l; �kk t~?ð Þ,kSOSð Þ~

k 2e{m=2{1

 �

{1, and B m,l; �kk t~?ð Þ,kSOSð Þ~k 2e{m=2{1

 �

, so

that �kk t~?ð Þ~k 2e{m=2{1

 �

below the error catastrophe. This

result is identical with the semiconservative quasispecies equations

with perfect lesion repair, which makes sense, since here we

assume that any lesion is eliminated instantaneously [13].

Optimal cutoff. If we assume that k&1, and kSOS??, then

it is possible to find the value of lS which maximizes the steady-

state mean fitness �kk t~?ð Þ. To do this, we define a normalized

mean fitness w to be equal to �kk t~?ð Þ=k, and if we divide Eq. (19)

by k2, we obtain that w is the solution to,

w2{a m,l; w,kSOSð Þw{
1

k
b m,l; w,kSOSð Þ~0 ð23Þ

where, a m,l; w,kSOSð Þ~e{m(1{l=2) 1zfl m,lð Þz2em(1{l)=2{2flS{1

h
m=2,lð Þ{1z

1

k
e{m(1{l=2) flS{1 m,lð Þ{fl m,lð Þ

� �
{1

h i
, and b m,l;ð

w,kSOSÞ~e{m(1{l=2) 1zflS{1 m,lð Þz2em(1{l)=2{2flS{1 m=2,lð Þ
h i

{1.

Therefore, for large k we obtain that w? limk??

a m,l; w,kSOSð Þ, which gives,

w~e{m(1{l=2)z2e{m=2{1ze{m(1{l=2) fl m,lð Þ{2flS{1 m=2,lð Þ
� �

ð24Þ

so that maximizing w is equivalent to maximizing fl(m,l){
2flS{1(m=2,l).

Now, because l must be re-set to lS{1 whenever we take lSƒl,
we can only vary lS independently of l whenever lSwl. In this

regime, the expression fl(m,l){2flS{1(m=2,l) is maximized

whenever lS~lz1.

In the regime where lSƒl, l is re-set to lS{1, and so,

fl m,lð Þ{2flS{1 m=2,lð Þ

~flS{1 m,lð Þ{2flS{1 m=2,lð Þ

~{1zm 1{lð Þ|
XlS{2

k~1

m 1{lð Þ½ �k

kz1ð Þ! 1{
1

2k

� � ð25Þ

and so this expression is equal to {1 for lS~1,2, and then

increases with successive values of lS .

Now, because l is re-set to lS{1 for lSƒl, it follows that we take

l~lS{1 for lSƒlz1. For l~0, we then obtain that w is

maximized over lSƒlz1 for lS~1, while when l~1, we obtain

that w is maximized over lSƒlz1 for lS~1,2. For l§2, we obtain

that w is maximized over lSƒlz1 for lS~lz1.

Therefore, in any case, we can maximize w over lSƒlz1 by

taking lS~lz1. Since we can maximize w over lS§lz1 by

setting lS~lz1, it follows that w is maximized when lS~lz1.

We reach the conclusion that, when the fitness penalty for having

a non-viable genome is sufficiently great, the SOS response will confer a

�
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maximum selective advantage if it is activated when and only when the genome

has sustained sufficient genetic damage so that it will be unviable without SOS

repair. However, it should be emphasized that this only holds when m
is not near the error catastrophe, so that w is sufficiently larger than

1 for large k that the above analysis holds.

Stochastic Simulations
We developed stochastic simulations of a unicellular population

capable of undergoing the SOS response, in order to numerically

test the analytical predictions of our model. We consider a

constant population of genomes that is cycled over every time step.

During each cycle, every genome is allowed to replicate with a

probability kfs,s’gDt, where kfs,s’g is the first-order growth rate

constant of genome fs,s’g, and Dt is the length of the time step.

We take Dt to be sufficiently small so that the probability of a given

genome replicating more than once during a cycle is negligible.

We assume that the population initially consists of a clonal

population of wild-type (mutation-free) genomes. The fitness of a

given genome fs,s’g is determined by assigning lC ,lL,lR,lB
parameters to the ordered-pairs (s,s’), (s’,s) with respect to the

ordered-pair (s0,�ss0). For each set of lC , lL, lR, and lB parameters,

a fitness is assigned based on the fitness landscape defined

previously. The fitness of the genome is then taken to be the larger

of the two calculated fitnesses. In the limit of infinite sequence

length, this prescription for calculating fitnesses becomes identical

to the method used in the analytical solution of our model.

If a genome replicates during a cycle, then it is removed from

the population, and the two daughters are added to the population

of genomes. To maintain a constant population size, another,

randomly chosen genome is removed from the population as well.

Because this approach is simply the stochastic implementation of

the quasispecies dynamics of the system, it converges to the infinite

population, continuous time result as the population size gets

larger and the time steps get smaller.

If a daughter genome is produced that has at least lS lesions, then

it enters the SOS response, and is assigned a replication probability

of 0. A genome that has initiated the SOS response continues to

undergo SOS repair until all lesions have been removed, and a

complementary genome has been restored. During every time step,

a genome that is undergoing the SOS response has its lesions

scanned, and each lesion is repaired with probability kSOSDt. In

addition to being chosen small enough so that the probability of

a given genome replicating more than once during a cycle is

negligible, we also choose Dt to be sufficiently small so that the

probability that a given genome undergoing the SOS response has

more than one lesion repaired during a cycle is also negligible.

The stochastic simulation is allowed to run for a sufficient

number of time steps so that the mean fitness of the population

does not change significantly, at which point the system is assumed

to be at steady-state.

Figures 2 and 3 show plots comparing the mean fitness obtained

from the analytical solution to the mean fitness obtained from

the stochastic simulations. As can be seen from the figures, the

agreement between the analytical solution and the stochastic

simulation is excellent.

Conclusions and Future Research
This paper developed a quasispecies approach for describing the

evolutionary dynamics of a unicellular population that incorporated

a simplified model of the SOS response. The model was a

generalization of the single-fitness-peak landscape that is often used

in quasispecies theory to study various problems in evolutionary

dynamics. The model was shown to be analytically solvable, and it

was found that the solution led to a maximal selective advantage to

the SOS response in a manner that is broadly consistent with the

behavior of actual organisms. Specifically, we showed that the SOS

response should only be activated in a cell with a sufficiently

damaged genome that it will be unviable if the SOS response is not

activated. In such a situation, the cell has ‘‘nothing to lose,’’

meaning that it is better to attempt to repair the genome and risk

introducing deleterious mutations, than it is to leave a highly

damaged genome alone.

Figure 2. Comparison of the mean fitnesses obtained from both stochastic simulations (dots) and the analytical solution (solid line)
of our model. Parameter values are k~9, l~4, lS~5, l~0:08, kSOS~100, L~100. The population size was set at 1,000.
doi:10.1371/journal.pone.0014113.g002
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For future research, it will be important to consider more

realistic models that will allow for quantitative models that can be

used in collaboration with experiment. Because the SOS response

is a genetic repair pathway that works in conjuction with other

cellular repair pathways, a proper understanding of the SOS

response is important for developing a coherent theory of

mutation-propagation that will be useful for understanding the

emergence of antibiotic drug resistance in bacteria, and cancer in

multicellular organisms [2–4].
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