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Summary
RNA sequencing (RNA-seq) is a powerful technology for studying human transcriptome variation. We introduce PAIRADISE (Paired

Replicate Analysis of Allelic Differential Splicing Events), a method for detecting allele-specific alternative splicing (ASAS) from RNA-

seq data. Unlike conventional approaches that detect ASAS events one sample at a time, PAIRADISE aggregates ASAS signals across mul-

tiple individuals in a population. By treating the two alleles of an individual as paired, and multiple individuals sharing a heterozygous

SNP as replicates, we formulate ASAS detection using PAIRADISE as a statistical problem for identifying differential alternative splicing

from RNA-seq data with paired replicates. PAIRADISE outperforms alternative statistical models in simulation studies. Applying PAIRAD-

ISE to replicate RNA-seq data of a single individual and to population-scale RNA-seq data across many individuals, we detect ASAS events

associated with genome-wide association study (GWAS) signals of complex traits or diseases. Additionally, PAIRADISE ASAS analysis de-

tects the effects of rare variants on alternative splicing. PAIRADISE provides a useful computational tool for elucidating the genetic vari-

ation and phenotypic association of alternative splicing in populations.
Introduction

Alternative splicing (AS) is a key molecular mechanism for

diversifying the eukaryotic transcriptome and proteome.1

Through varying combinations of exon inclusion and

splice site usage, AS enables the production of multiple

mRNA and protein isoforms from a single gene. AS plays

an important role in gene regulation, and its perturbation

underlies many pathological processes, as a large percent-

age of human disease mutations disrupt splicing and

generate aberrant gene products.2

AS can be affected by cis-acting sequence polymor-

phisms, and such genetic variation of AS can modulate

complex traits and diseases in human individuals.3,4 The

advent of RNA sequencing (RNA-seq) and the accumula-

tion of population-scale RNA-seq data for diverse human

tissues and cell types have provided rich resources for

discovering AS variation in human populations.5 Splicing

quantitative trait loci (sQTL) analysis is a widely used

approach to uncover genetic variation of AS. In an sQTL

analysis, the splicing level of a given exon or splice site is

treated as a quantitative trait and tested for association

with genotype across a population. A variety of computa-

tional tools have been developed for identifying sQTLs.6–

10 For example, we previously developed GLiMMPS,6 a

generalized linear mixed model for sQTL association

testing that accounts for the measurement uncertainty of

mRNA isoform ratios in RNA-seq data. Analyses of popula-
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tion-scale RNA-seq and genotype data have revealed thou-

sands of sQTLs in human genes, including numerous

sQTLs associated with genome-wide association study

(GWAS) signals of human traits or diseases.5

An alternative strategy for uncovering associations be-

tween sequence polymorphisms and AS is allele-specific

alternative splicing (ASAS) analysis. ASAS analysis iden-

tifies differential splicing events between mRNA tran-

scripts originating from two different haplotypes within

an individual. Specifically, heterozygous SNPs present in

mRNAs are used to assign RNA-seq reads to two alleles,

and differential splicing between the two alleles is tested

using RNA-seq read counts.11–13 A unique feature of the

ASAS approach, compared to the sQTL approach, is that

the two alleles of a single individual should share an iden-

tical cellular environment, so splicing differences between

the two alleles should arise from genetic effects. However,

although a number of statistical models and computa-

tional tools have been developed for sQTL analysis,6–10

rigorous methods for ASAS analysis are lacking. Ap-

proaches used in previous works were ad hoc and had

important methodological limitations. ASAS was often

discovered as allele-specific expression of individual exons,

but such exon expression is itself confounded by allele-spe-

cific gene expression.12,14,15 Moreover, ASAS events were

detected in one cell line or individual at a time, by

comparing isoform-specific read counts (e.g., Fisher exact

test of exon inclusion versus skipping counts) between
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Figure 1. The PAIRADISE Statistical Framework for Identifying Allele-Specific Alternative Splicing (ASAS)
(A) ASAS analysis aims to identify differential AS between two alleles within an individual. Heterozygous SNPs are used to assign RNA-seq
reads to specific alleles.
(B) PAIRADISE aggregates ASAS signals across multiple replicates of a given individual or multiple individuals in a population.
(C) PAIRADISE uses a binomial distribution to model the read count from the exon inclusion isoform given the exon inclusion level for
each allele in each individual, and uses a logit-normal distribution to model the variation of allele-specific (allele 1 or allele 2) exon in-
clusion levels among individuals. For exon i and the kth individual, the total RNA-seq read counts for the exon inclusion plus skipping
isoforms are denoted as ni1k and ni2k for allele groups 1 and 2, respectively. The read counts for the exon inclusion isoform are denoted as
Ii1k and Ii2k. The read counts for the exon skipping isoform are denoted as Si1k and Si2k. The exon inclusion levels are denoted as ji1k and
ji2k. The proportion of the read count from the exon inclusion isoform is adjusted by a normalization function fi that considers the
lengths of the exon inclusion and skipping isoforms. The baseline exon inclusion level common to both alleles of the kth individual
is represented by the subject effect aik, while di captures the expected difference between the two alleles.
the two alleles.11–13 However, by performing ASAS analysis

for each individual separately, signals from multiple indi-

viduals were not combined, likely reducing the statistical

power.

To address these limitations and to fill an important

methodological gap, we have developed PAIRADISE

(Paired Replicate Analysis of Allelic Differential Splicing

Events), a statistical framework and software program for

detecting ASAS from replicate or population-scale RNA-

seq data. In the PAIRADISE methodology, we have framed

the problem of ASAS detection as a specialized case of

differential AS analysis with paired replicates; in this sce-

nario, two alleles within each individual are paired, while

replicate samples or multiple individuals in a population

represent replicates. By aggregating ASAS signals across

multiple replicates or individuals using a novel paired sta-

tistical model for differential AS, PAIRADISE substantially

boosts the power of ASAS detection and reveals ASAS

events regulated by rare variants. PAIRADISE is freely avail-

able, and links to the software and a stand-alone Bio-

conductor R package can be found in the Web Resources

section.
Material and Methods

PAIRADISE Statistical Model
PAIRADISE utilizes a hierarchical framework to detect ASAS by

modeling the paired differences between the two alleles across a

population. The PAIRADISE model simultaneously accounts for

both the estimation uncertainty of AS levels in each allele within

each individual (or replicate) and the variability in AS levels be-

tween alleles and across individuals (or replicates). While the

model is applicable to different AS patterns, here we use exon skip-

ping to illustrate the model and computational procedure.

Briefly, for a given individual (or replicate), RNA-seq reads are

aligned to the genome and the transcriptome in an allele-specific

manner using the individual’s SNP and haplotype data, and allele-

specific RNA-seq reads are identified. For each exon skipping
462 The American Journal of Human Genetics 107, 461–472, Septem
event, we count the number of reads supporting the exon inclu-

sion or skipping isoform for each allele separately, using RNA-

seq reads that span both the exon inclusion or skipping splice

junction and a SNP at a flanking constitutive exon that enables

allele-specific read assignment (Figure 1A). These read counts are

used to estimate the allele-specific exon inclusion level (denoted

as j, or PSI, percent spliced in Katz et al.16). We then combine

all replicates or all individuals in a population that are heterozy-

gous for the SNP of interest (Figure 1B). Let ji1k and ji2k be the

exon inclusion levels of exon i for the kth individual in allele

group 1 and 2, respectively. To account for the RNA-seq estimation

uncertainty of j as influenced by the sequencing coverage for the

AS event, for each allele PAIRADISE models the observed RNA-seq

counts of the exon inclusion/skipping isoforms as arising from the

following binomial distributions:

Ii1k
�� ji1k; ni1k � Binomial

�
ni1k ¼ Ii1k þ Si1k; pi1k ¼ fiðji1kÞ

�
;

Ii2k
�� ji2k; ni2k � Binomial

�
ni2k ¼ Ii2k þ Si2k; pi2k ¼ fiðji2kÞ

�

(Equation 1)

Here, I and S represent the number of allele-specific RNA-seq reads

corresponding to the exon inclusion or skipping isoform, respec-

tively. The function fi is a length normalization function, which

accounts for the effective length of each isoform (i.e., number of

unique isoform-specific read positions; note that the length

normalization function has been defined in detail along with a

graphic illustration in our rMATS paper, see Figure S1 in Shen

et al.17 for the illustration). Although each exon has its own index

i, the model is applied to each exon independently, and no infor-

mation is shared across exons.

PAIRADISE uses an additive structure to model the variability in

AS levels between the two alleles and across individuals (or repli-

cates). Specifically, the logit transformed exon inclusion levels log-

itðji1kÞ and logitðji2kÞ are modeled using the following normal

distributions:

logitðji1kÞ � N
�
m¼aik; s2

i1

�
;

logitðji2kÞ � N
�
m¼aik þ di; s2

i2

�
: (Equation 2)
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The baseline exon inclusion level common to the two alleles is

represented by the subject effect aik, which follows the normal

distribution:

aik � N
�
mi; s2

i

�
(Equation 3)

Thus, the first source of variability in exon inclusion levels, i.e., the

variability of the baseline exon inclusion level among individuals

that is common to both alleles of a given individual, is attributable

to s2i . The second source of variability, captured by the variance

terms s2i1 and s2i2 of the two allele groups, is allele specific. The

parameter di represents the expected difference in the logit-trans-

formed exon inclusion levels between the two alleles. Note that

both sample groups share the random variable aik, which leads

to covariance between logitðji1kÞ and logitðji2kÞ. After integrating
out aik, the pair follows a bivariate normal distribution with mean

½mi; mi þdi� and covariance s2i þ diagð½s2i1; s2i2�Þ.
To determine the statistical significance of ASAS, a likelihood ra-

tio test is performed to test the null hypothesis di ¼ 0 against the

alternative hypothesis dis0. As the variables logitðji1kÞ, logitðji2kÞ,
and aik are regarded as latent (unobserved) variables, we utilize an

optimization procedure that first calculates the maximum likeli-

hood estimates (MLEs) of the observed data likelihood based on

the current estimates of the latent variables, and then updates

the estimates of the latent variables based on the current MLEs.

This procedure is iterated until the model parameters converge

(see Supplemental Material and Methods for details of the

modeling and parameter estimation procedures). The test statistics

of the likelihood ratio test are compared to a c2 distribution with

one degree of freedom to derive the p value. The Benjamini-Hoch-

berg method is used to calculate the false discovery rates (FDRs)

from p values.18 The PAIRADISE statistical model is summarized

in Figure 1C.

Datasets
RNA-seq data from six RNA-seq replicates of the human

GM12878 B-lymphocyte cell line from a European female were

generated by the three labs listed in Table S1 along with their

sample IDs from the ENCODE project (ENCODE: ENCSR000AED,

ENCSR000AEF, and ENCSR000AEG). We also used the Geuvadis

dataset containing RNA-seq and genotype data of B-lymphocyte

cell lines of 445 individuals from five populations.11 Sample IDs

are available in Table S1. Genotype data for these individuals

were from the Phase 3 of the 1000 Genomes Project (release 05-

02-2013).19

Allele-Specific Alignment of RNA-Seq Data
The inputs of the PAIRADISE program are the FASTQ files of RNA-

seq data and VCF files of phased genotype data. The pipeline also

uses a human reference genome, a GTF file of gene/transcript an-

notations, and a list of RNA editing sites that are masked for allele-

specific read assignment. The following annotation files and pa-

rameters were used in our PAIRADISE analysis of ASAS: -r

hg19.fa -gtf Homo_sapiens.Ensembl.GRCh37.75.gtf -e Human_A-

G_all_hg19_v2.txt -anchorLength 8 –N 6 –M 20 -gz. Details of the

PAIRADISE running parameters and download links for the pro-

gram, along with annotation files, are provided at our website

(see Web Resources). The program conducts allele-specific read

mapping onto AS events following the procedures in rPGA.20 Spe-

cifically, the first step of the allele-specific read mapping is to

personalize the reference genome based on the phased genotype

data of each individual. For each individual, wemodify the human
The American
reference genome (hg19) according to its phased genotype, result-

ing in two versions of personal genome sequences per individual

(one for each haplotype), which we refer to as haplotype 1 and

haplotype 2. The second step is to align RNA-seq reads to both per-

sonal genomes with STAR21 v.2.6.0a, allowing six mismatches and

restricting splice junctions to canonical splice sites only. The third

step is the allele-specific read assignment. For each uniquely map-

ped read, we first identify all heterozygous SNPs that the read

covers, and whether the read carries the haplotype 1 or haplotype

2 allele at each base. Reads carrying haplotype 1 (or 2) alleles at the

majority of the heterozygous SNP positions are assigned to haplo-

type 1 (or 2). Reads that do not meet either of these requirements

are removed.
PAIRADISE Analysis of Allele-Specific Alternative

Splicing
The PAIRADISE program analyzes ASAS using allele-specific read

alignment. The allele-specific bam files mapped onto the two hap-

lotypes are merged together to detect AS events using rMATS

(v.3.2.5).17 The merged allele-specific bam files of all samples are

used together in the rMATS analysis to ensure a consistent set of

AS events across all samples. For all haplotype-specific reads

covering a given exon skipping event and a heterozygous SNP

(or multiple heterozygous SNPs) at flanking constitutive exons,

we measure the association of allele types at a given SNP with

the AS pattern (exon inclusion or skipping). Then, we match

such data for each AS event-SNP pair across samples to generate

the input data for the PAIRADISE statistical model. To ensure

proper length normalization in calculating allele-specific exon in-

clusion levels, for the two splice junctions of the exon inclusion

isoform, only reads supporting the splice junction on the same

side of the SNP with respect to the alternative exon are counted.

In the case where an AS event is linked to multiple heterozygous

SNPs at flanking constitutive exons via haplotype-specific reads,

the AS event-SNP pair is matched across people for each SNP sepa-

rately. All SNPs within the alternatively spliced exon are excluded

in the subsequent PAIRADISE analysis because these SNPs can

only be detected from the exon inclusion isoform. Although the

haplotype information is used in RNA-seq read mapping to obtain

haplotype-specific reads, in downstream analyses we associate AS

events with individual SNPs and match AS event-SNP pairs across

people based on each SNP separately. This is done to avoid the

complication that there could bemore than two haplotypes across

a set of SNPs within a population so haplotypes cannot be

matched across people.

Next, the PAIRADISE statistical model is used to detect ASAS

events. To avoid using unreliable exon skipping events, we filtered

the events according to the following criteria: (1) the average exon

inclusion level across all individuals is between 5% and 95% for at

least one allele, and (2) the average total read counts of all individ-

uals are no less than 10 for both alleles.
sQTL Analysis
We analyzed sQTLs in the five Geuvadis populations. RNA-seq

data from the five populations were processed together by

rMATS to generate a consistent set of AS events for all populations.

We filtered out the AS events in each population separately,

according to the following criteria: (1) the median number of

splice junction reads across individuals is no less than 5, where

the number of splice junction reads is given by (UJ þ DJ)/2 þ SJ,

with UJ, DJ, and SJ being the number of upstream, downstream,
Journal of Human Genetics 107, 461–472, September 3, 2020 463



and skipping splice junction reads, respectively; (2) the range

(maximum - minimum) of exon inclusion levels across all

individuals is greater than 10%; and (3) at least 3 individuals

in the population have exon inclusion levels different than

the median exon inclusion level. We used the GLiMMPS6

statistical model to discover sQTLs by testing the association of

exon inclusion level with SNPs within 200 kb upstream or down-

stream of alternative exons. For each AS event, the GLIMMPS

sQTL p value was defined as the p value of the SNP with the

most significant association within the 200 kb window. The link-

age disequilibrium (LD) correlations between SNPs were calculated

by the 1000 Genomes Project. GWAS traits and associated SNPs

were collected from the NHGRI-EBI GWAS catalog (version

1.0.2).22

Simulation Study Comparing PAIRADISE to Alternative

Statistical Models for Identifying ASAS Events
We evaluated the performance of PAIRADISE in identifying ASAS

events against the paired t test, paired Wilcoxon signed-rank

test, rMATS paired test,17 and Fisher’s combined method, using a

simulation study. Each simulation was performed by generating

5,000 exon skipping events and varying the number of replicates

(M ¼ 3, 5, 10, 20, 50) as well as the variability among replicates,

i.e., si1, si2, and si. These standard deviations were chosen from

the 1st, 2nd, and 3rd quartiles (corresponding to low, medium,

and high variability) of their corresponding estimated distribu-

tions obtained from applying PAIRADISE to the Geuvadis CEU da-

taset. Because true values of the parameter di were not known, to

generate null (|di| ¼ 0) and alternative (|di| s 0) cases, we set the

middle 50% of the empirical estimates of di to 0, and then

randomly sampled one di value per event; as a result, roughly

50% of the events were generated from the null hypothesis of

no splicing difference between groups. The remaining simulation

parameters, i.e., the total read counts ni1k and ni2k, effective

lengths liI and liS, and mean logit inclusion level mi, were similarly

obtained empirically from the Geuvadis CEU dataset. The logit

exon inclusion logitðji1kÞ and logitðji2kÞ were sampled from the

normal distributions given by Equation 2 using the empirically

sampled parameter values. The read counts of the exon inclusion

isoforms were then sampled from the binomial distributions given

by Equation 1 using the generated values for the exon inclusion

levels, as well as the sampled values for the total read counts and

effective lengths. PAIRADISE and other paired tests were applied

to the simulated data to compute the p value and FDR of differen-

tial splicing for each simulated event.
Results

Simulation Studies Comparing PAIRADISE to Alternative

Statistical Models

To evaluate the performance of PAIRADISE, we compared it

to four alternative statistical models through simulation

studies. The four alternative models are the paired t test,

paired Wilcoxon signed-rank test, rMATS paired test,17

and Fisher’s combinedmethod. The paired t test and paired

Wilcoxon signed-rank test are conducted on point esti-

mates of j values derived from RNA-seq read counts, while

ignoring the estimation uncertainty of j as influenced by

sequencing coverage. The rMATS paired test is a model

we proposed previously for differential AS analysis of
464 The American Journal of Human Genetics 107, 461–472, Septem
RNA-seq data with paired replicates.17 It uses a covariance

structure with a correlation parameter to model the corre-

lation among matched pairs. Fisher’s combined method

uses Fisher’s exact test on allele-specific read counts to

obtain a p value of ASAS for each individual separately,

and then uses the Fisher’s combined probability test to

aggregate p values across all individuals. We designed a

set of simulation studies with varying sample size (number

of replicates) and variability among replicates. We

measured the performance of each method by analyzing

its receiver operating characteristic (ROC) curve for the

task of classifying a simulated event as being differentially

spliced versus non-differentially spliced.

PAIRADISE outperformed all other statistical models in

virtually every simulation setting, based on the area un-

der the curve (AUC) of the ROC curve or the true positive

rate (TPR) at 5% false positive rate (FPR) (Figure 2). The

increased performance of PAIRADISE over other models

was even more pronounced when the sample size was

small. For example, in the simulations with three repli-

cates and low variance, the AUC values for PAIRADISE,

paired t test, paired Wilcoxon test, rMATS paired test,

and Fisher’s combined method were 84%, 74%, 68%,

63%, and 60%, respectively (Figure 2A). PAIRADISE

continued to outperform other methods in simulations

with medium or high variance (Figures 2B and 2C). We

observed the same trend for the TPR at 5% FPR (Figures

2D–2F). For example, in the simulations with three repli-

cates and low variance and at 5% FPR, the TPR values for

PAIRADISE, paired t test, paired Wilcoxon test, rMATS

paired test, and Fisher’s combined method were 61%,

26%, 12%, 23%, and 4%, respectively (Figure 2D). Addi-

tionally, across almost all variance settings, other models

required at least 2–3 times larger sample sizes to achieve

the same AUC and TPR values as a sample size of 3 rep-

licates for PAIRADISE (Figure 2). Among the five models

tested, Fisher’s combined method had the worst perfor-

mance. This is not surprising, as Fisher’s combined

method is particularly sensitive to outliers in large data-

sets.23,24 Taken together, these simulation studies indi-

cate that PAIRADISE outperforms other statistical models

and requires fewer replicates to achieve the same level of

performance.

We also evaluated the power of PAIRADISE with different

RNA-seq read counts on the event of interest and different

numbers of replicates (Figure S1). As expected, both read

count and number of replicates strongly affect the power

and performance of our method, with increasing power

and better performance at increasing read count and sam-

ple size. Assuming a fixed total number of individuals in

an RNA-seq dataset, these results indicate (as expected)

that the power of PAIRADISE is influenced by allele fre-

quency and the number of individuals that are heterozy-

gous for a given SNP.

When detecting ASAS from replicate RNA-seq data, some

studies may simply pool reads from replicates, and then

perform a statistical test on the pooled read counts to
ber 3, 2020
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Figure 2. Simulation Studies to Compare the Performance of PAIRADISE, rMATS Paired Model, Paired t Test, Paired Wilcoxon
Signed-Rank Test, and Fisher’s Combined Method
(A–C) Area under the curve (AUC) values of all methods in simulation settings with the number of replicates equal to 3, 5, 10, 20, and 50,
and three settings of variability (low in A,medium in B, and high in C) sampled from the first, second, and third quartiles of the empirical
variance estimated from the Geuvadis CEU dataset.
(D–F) True positive rate (TPR) values at 5% false positive rate (FPR) of all methods in various simulation settings.
detect differential AS. To assess the importance of

modeling replicates versus pooling, we conducted another

simulation study to compare the performance of PAIRAD-

ISE to a simple pooling strategy that performs a Fisher’s

exact test using reads pooled from all replicates of the

two alleles (‘‘Fisher’s pooled’’). We followed the same simu-

lation procedures and settings used for comparing other

methods and generated two sets of simulated data in the

absence or presence of an outlier sample. Specifically, for

the simulated data with an outlier sample, we randomly

selected one allele and set the PSI value for one of its repli-

cates as randomly drawn from a [0, 1] uniform distribu-

tion. In the absence of an outlier, both models performed

similarly in the low and medium variance settings, while

PAIRADISE modestly outperformed Fisher’s pooled in the

high variance setting (Figure S2; solid lines). When an

outlier was introduced during the simulation, there was a

reduction in the performance of both models, while PAIR-

ADISE outperformed Fisher’s pooled by a substantial

margin and recoveredmore rapidly with increasing sample

size (Figure S2; dashed lines). These data demonstrate that

by modeling replicates, PAIRADISE is more robust against

outliers in the RNA-seq data, as compared to a simple pool-

ing strategy.
The American
PAIRADISE Analysis of Allele-Specific Alternative

Splicing in GM12878

As a proof of concept analysis, we used PAIRADISE to

discover ASAS events in six RNA-seq replicates of the hu-

man GM12878 B-lymphocyte cell line from a European fe-

male. The data were generated by three different labs with

two biological replicates per lab (Table S1), allowing us to

evaluate the ability of PAIRADISE to aggregate ASAS signals

over multiple RNA-seq replicates of a given individual. Us-

ing the SNP and haplotype information of GM12878,

PAIRADISE identified 116 significant ASAS events (i.e., AS

event-SNP pairs) at FDR % 10% (Table S2), of which 33

were in high (r2 > 0.8) linkage disequilibrium (LD) with

GWAS trait/disease-associated SNPs in the NHGRI-EBI

GWAS catalog (v1.0.2)22 (Table S3).

To assess the PAIRADISE results using an orthogonal

strategy applied to an independent dataset, we compared

these events to sQTLs identified by GLiMMPS6 on 89

CEU (Utah Residents with European Ancestry) B-lympho-

cyte cell lines, whose RNA-seq and genotype data were

available from the Geuvadis project (Table S1). We note

that due to multiple reasons, not all ASAS events detected

by PAIRADISE were analyzed by GLiMMPS for potential

sQTL signals. The PAIRADISE pipeline identifies and
Journal of Human Genetics 107, 461–472, September 3, 2020 465



A B Figure 3. ASAS and sQTL Analysis of
GM12878 and the Five Geuvadis Popula-
tions
(A) PAIRADISE ASAS events and correspond-
ing GLiMMPS sQTL signals in GM12878
and the five Geuvadis populations. The bar-
plots show the total number of ASAS events
detected by PAIRADISE at FDR % 10%
(‘‘All’’), the number of these ASAS events
where the AS events were also detected by
GLiMMPS in Geuvadis (‘‘Detected’’), the
number of detected AS events passing the
GLiMMPS filtering criteria and subse-

quently tested for potential sQTL signals (‘‘Tested’’), and the number of tested events for which at least one SNP within a 400 kb window
around the alternative exon had GLiMMPS p < 1e�5 (‘‘Sig. sQTL’’).
(B) Mosaic plot indicating the number of significant ASAS events that are shared among the five populations. Values in the top rectangles
represent ASAS events detected only in a single population and values in the bottom rectangles represent ASAS events shared by all five
populations.
analyzes AS events involving both known and novel splice

sites,20 while the GLiMMPS pipeline is restricted to known

AS events identified using the rMATS pipeline.6,17 Addi-

tionally, certain ASAS events were filtered due to the AS

event or the SNP not passing method-specific filters

required for GLiMMPS (see details in Material and

Methods). Of the 116 PAIRADISE ASAS events, 85 were de-

tected by GLiMMPS as AS events, and 66 passed all

method-specific filters and were tested by GLiMMPS for

potential sQTL signals (Figure 3A). 34 of the 66 tested AS

events were significant sQTLs (GLiMMPS p < 1e�5). The

34 PAIRADISE ASAS events with significant sQTL signals

had more significant PAIRADISE p values compared to

the other 32 PAIRADISE ASAS events without significant

sQTL signals (p ¼ 0.0003, one-sided Wilcoxon rank-sum

test).

PAIRADISE Analysis of Allele-Specific Alternative

Splicing in 445 Individuals

To test PAIRADISE on a population-scale RNA-seq dataset

across multiple individuals and populations, we applied

the method to the Geuvadis RNA-seq data of 445 B-

lymphocyte cell lines from 5 populations.11 These include

89 CEU (Utah Residents with European Ancestry), 92 FIN

(Finnish in Finland), 86 GBR (British in England and Scot-

land), 91 TSI (Toscani in Italia), and 87 YRI (Yoruba in Iba-

dan, Nigeria) individuals with both RNA-seq and genotype

data (Table S1). At FDR % 10%, PAIRADISE identified 91

ASAS events in CEU, 82 in FIN, 75 in GBR, 71 in TSI, and

143 in YRI (Figure 3B). Some events were detected across

multiple populations, while some were detected only in a

single population (Figure 3B). For example, 13 events

were significant ASAS events in all 5 populations. As ex-

pected, the 4 European populations had a higher level of

shared ASAS events, while the YRI African population

had the highest number (87) of ASAS events detected

only in a single population. We should caution that an

ASAS event could be detected only in a single population

due to limited statistical power in other populations, and

a rigorous comparison of ASAS signals across populations

would require a formal statistical test. In fact, there is evi-
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dence that a considerable fraction of ASAS events detected

only in a single population are associated with population-

specific SNPs. As shown in Figure S3, YRI ASAS events that

were also detected in some of the European populations

had high and comparable MAFs across all European and

African populations. By contrast, YRI ASAS events that

were detected only in YRI had significantly lower MAFs

in European populations. In each of the European popula-

tions, approximately half of such YRI ASAS events had a

MAF of 0. These data indicate that a considerable fraction

of ASAS events were detected only in YRI because their

associated SNPs are population specific. However, it is

entirely plausible that if a particular European individual

is heterozygous for such a SNP, the SNP would have the

same association with AS, and an ASAS signal would be

observed in that individual.

We also conducted an sQTL analysis on all five popula-

tions using GLiMMPS (Figure 3A). Of the PAIRADISE

ASAS events detected in the five populations, 50, 49, 42,

37, and 77 were detected as AS events by GLiMMPS and

passed all method-specific filters to be analyzed for poten-

tial sQTL signals in CEU, FIN, GBR, TSI, and YRI, respec-

tively. Among these, 30, 26, 23, 24, and 37 had significant

sQTL signals (GLiMMPS p < 1e�5). Consistent with the

observationmade on GM12878, the Geuvadis ASAS events

that had significant sQTL signals had more significant

PAIRADISE p values than Geuvadis ASAS events that did

not have significant sQTL signals (p ¼ 8.2e�08, one-sided

Wilcoxon rank-sum test).

To compare ASAS detection by different statistical

models on real datasets, we applied all six models (PAIRAD-

ISE, paired t test, paired Wilcoxon test, rMATS paired,

Fisher’s combined, Fisher’s pooled) to the GM12878 data-

set and the Geuvadis CEU dataset. In both datasets, PAIR-

ADISE detected the intermediate number of significant

events, and the majority of its significant events were de-

tected by the majority of the models (R4) (Table S4).

Fisher’s combined and Fisher’s pooled detected the largest

numbers of significant events. This result is not surprising,

because both models are sensitive to outliers which likely

lead to numerous false positive detections. At the other
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Figure 4. Genetic Variation and GWAS As-
sociation of an AS Event in BCL2A1
(A) An ASAS event in BCL2A1with respect to
SNP rs3826007 in the six replicates of
GM12878. The 95% confidence intervals of
exon inclusion levels are indicated as the er-
ror bars for each allele. Each line of the y axis
represents one of the biological replicates of
GM12878.
(B) The same event in 45 individuals hetero-
zygous for rs3826007 in the CEU popula-
tion.
(C) An sQTL event in BCL2A1with respect to
SNP rs3826007 in the CEU population. Each
dot represents data from a particular individ-
ual, and the size of the dot indicates the
number of reads covering the AS event in
that individual. The middle line of the box-
plot represents median value. The low and
high ends of the box represent the 25%
and 75% quantile, respectively.
(D) LD plot for the CEU population showing
three GWAS SNPs (green boxes) linked with
the ASAS/sQTL SNP rs3826007 (purple box)
in BCL2A1.
end of the spectrum, the paired Wilcoxon test and the

paired t test detected the smallest numbers of significant

events. This result was particularly true in the GM12878

dataset, where the sample size of 6 replicates was under-

powered for these two models and neither detected any

ASAS event reaching the 10% FDR threshold.

PAIRADISE Discovery of Functional Splicing Variation in

Human Populations

PAIRADISE identified ASAS events with potential biological

functions. For example, exon 2 of BCL2A1 (BCL2 related

protein A1) had significant ASAS signals inmultiple datasets

(Figures 4A and 4B). In GM12878, the T allele of SNP

rs3826007 had a significantly higher exon inclusion level

than the C allele across all six RNA-seq replicates

(Figure 4A). The T allele also had a significantly higher

exon inclusion level than the C allele across 45 individuals

heterozygous for this SNP in the CEU population

(Figure 4B). A consistent trend was observed in sQTL anal-

ysis of the CEU population, with the TT and CC genotypes

having high and low exon inclusion levels and the CT geno-

type having intermediate exon inclusion levels (Figure 4C).

The proteins encoded by the BCL2 family are involved in a

range of cellular activities, including embryonic develop-

ment, homeostasis, and tumorigenesis.25 BCL2A1 regulates

the release of pro-apoptotic cytochrome c from mitochon-

dria and blocks caspase activation.26 This ASAS/sQTL SNP
The American Journal of Human Gen
(rs3826007) is in high LD with three

GWAS SNPs (rs147934515, r2 ¼ 1;

rs76648483, r2 ¼ 1; rs11632488, r2 ¼
0.97). rs147934515 has previously

been associated with neutrophil per-

centage of granulocytes and eosinophil
percentage of leukocytes; rs76648483 has been associated

with granulocyte percentage of myeloid white cells and

monocyte percentage of leukocytes; rs11632488 has been

associated with sclerosing cholangitis (Figure 4D).

Another ASAS event identified by PAIRADISE is for

exon 6 of LGALS9 (galectin 9), which shows consistent

splicing differences between the G/A alleles in all five

populations (Figure 5A, CEU, PAIRADISE ASAS p value

¼ 6.7e�16; Figure 5C, YRI, PAIRADISE ASAS p value ¼
1.6e�8). The same SNP rs361497 was also significantly

associated with exon 6 splicing in the sQTL analysis

(Figure 5B for CEU and Figure 5D for YRI; also see

Figure 5E for the RNA-seq sashimi plot of each genotype

in the CEU population). Galectin 9 is an S-type lectin

involved in modulating cell-cell and cell-matrix

interactions27,28 and has been implicated in the impair-

ment of natural killer cells29 and the maturation and

migration of human dendritic cells.30,31 This ASAS/

sQTL SNP (rs361497) is in high LD with two GWAS

SNPs (rs113216780, r2 ¼ 0.89; rs62055780, r2 ¼ 1), previ-

ously identified as being associated with blood protein

measurement (Figure 5F).

We analyzed the LD associations of significant ASAS

SNPs found in the five Geuvadis populations with GWAS

trait/disease-associated SNPs (defined by the NHGRI-EBI

GWAS catalog22). We found 52, 35, 18, 22, and 42 ASAS

events (AS event-SNP pairs) in CEU, FIN, GBR, TSI, and
etics 107, 461–472, September 3, 2020 467



A C E

B D F

Figure 5. Genetic Variation and GWAS Association of an AS Event in LGALS9
(A) An ASAS event in LGALS9with respect to SNP rs361497 in 32 individuals heterozygous for this SNP in the CEU population. The 95%
confidence intervals of exon inclusion levels are indicated as the error bars for each allele. Each line of the y axis represents an individual
with the heterozygous SNP.
(B) An sQTL event in LGALS9with respect to SNP rs361497 in the CEU population. Each dot represents data from a particular individual,
and the size of the dot indicates the number of reads covering the AS event in that individual. The middle line of the boxplot represents
median value. The low and high ends of the box represent the 25% and 75% quantile, respectively.
(C) The same ASAS event in (A) across 13 individuals heterozygous for rs361497 in the YRI population.
(D) The same sQTL event in (B) in the YRI population.
(E) Sashimi plots corresponding to the ASAS event in LGALS9 shown in (A) with average exon read density and splice junction counts for
the three genotypes of the CEU population.
(F) LD plot for the CEU population showing two GWAS SNPs (green boxes) linked with the ASAS/sQTL SNP rs361497 (purple box) in
LGALS9.
YRI, respectively, whose SNPs were in high LD with GWAS

SNPs, suggesting that many ASAS events identified by

PAIRADISE may contribute to population variation in

complex traits and diseases. To investigate whether ASAS

can enrich GWAS signals, for the ASAS events detected in

each dataset (the five populations in Geuvadis, and

GM12878), we counted the non-redundant number of

ASAP SNPs in high LD with GWAS SNPs. To obtain a

random expectation of this number based on a control

set of non-ASAP SNPs, for each ASAS SNP we randomly

selected one SNP from a region of 51,000 bp of the ASAS

exon, excluding the ASAS SNP itself and other SNPs within

the LD block of the ASAS SNP. We then counted the num-

ber of these random non-ASAP SNPs in high LD with

GWAS SNPs. We repeated this process 10,000 times to

obtain a distribution. As illustrated in Figure S4, ASAS
468 The American Journal of Human Genetics 107, 461–472, Septem
SNPs were significantly enriched for LD with GWAS SNPs

as compared to the random expectation (p value < 1e�4

in each of the six datasets). The full list of ASAS events asso-

ciated with GWAS traits is provided in Table S3.

PAIRADISE Analysis of Rare Variants

Compared to sQTL analysis across individuals in a popula-

tion, which detects the effects of common variants on

splicing, a unique advantage of ASAS analysis is the ability

to examine allelic differences in AS levels of rare variants.

In GM12878, by aggregating signals from six RNA-seq repli-

cates, PAIRADISE identified ten genetically regulated exon

skipping events as being significantly associated with rare

variants (minor allele frequency or MAF < 5% in CEU).

For example, an exon skipping event in IFI16 (interferon

gamma inducible protein 16) was significantly associated
ber 3, 2020
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Figure 6. PAIRADISE Identifies Rare Vari-
ants’ Effects on AS
(A) An ASAS event in IFI16 with respect to
SNP rs62621173 (CEU MAF: 3.4%; C:
96.6%, T: 3.4%) identified from the six
RNA-seq replicates of GM12878. The 95%
confidence intervals of exon inclusion
levels are indicated as the error bars for
each allele.
(B) An ASAS event in the FERMT2 gene
with respect to SNP rs72686362 (1000 Ge-
nomes Project CEU MAF: 1%; A: 99%, G:
1%). None of the 89 individuals in the
Geuvadis CEU population possess the mi-
nor allele G.
(C) An ASAS event in SCAMP3 with respect
to SNP rs11557757 (CEU MAF: 1.7%; G:
98.3%, A: 1.7%) identified from three het-
erozygous individuals in the CEU popula-
tion.
(D) The cumulative density function (CDF)
comparing the absolute value of the allelic
difference of exon inclusion levels for ASAS
events associatedwith rare variants (MAF<
5%) or common variants (MAF R 5%) in
GM12878.
with SNP rs62621173. The MAF of this SNP was only 3.4%

in CEU, so this SNP would conventionally be filtered out in

an sQTL analysis due to low MAF.32 However, the six RNA-

seq replicates of GM12878 showed a reproducible difference

in exon inclusion levels between the two alleles, generating

a significant ASAS signal (Figure 6A, PAIRADISE ASAS p ¼
1.0e�5), with the minor allele associated with lower exon

inclusion. IFI16 plays a role in innate immunity by acting

as a sensor for intracellular DNA.33 The IFI16 exon skipping

isoform contains one less copy of the 56-amino acid serine-

threonine-proline (S/T/P)-rich spacer region within the pro-

tein product.34 This rare variant (rs62621173) was reported

to be associatedwith the age of onset of Alzheimer disease.35

Another example is FERMT2 (fermitin family member 2), in

which an exon skipping event is significantly associated

with a rare variant (rs72686362) (Figure 6B). The minor

allele G was consistently associated with higher exon inclu-

sion across the six GM12878 RNA-seq replicates. This SNP

had a MAF of 0% in the Geuvadis CEU population and

1% in the CEU population of the 1000 Genomes proj-

ect.19 Taken together, these examples demonstrate that

PAIRADISE can identify and interpret rare variants’ effects

on AS and disease.

PAIRADISE also identified 11, 10, 6, 5, and 32 significant

ASAS events associated with rare variants in the five popu-

lations of the Geuvadis data (CEU, FIN, GBR, TSI, and YRI,

respectively). A significant ASAS event in the gene SCAMP3
The American Journal of Human Gene
(secretory carrier membrane protein

3) was associated with the rare variant

rs11557757, identified from three in-

dividuals in the CEU population

(Figure 6C). The major allele G had

an average exon inclusion level of
84% compared to 59% for the minor allele A. As expected,

rare variants associated with ASAS events had larger effect

sizes than common variants. In GM12828, which had no

ascertainment bias in detecting the ASAS signals of com-

mon versus rare variants, the average allelic difference in

exon inclusion levels was 25% for ASAS-associated rare var-

iants, as compared to 18% for common variants

(Figure 6D; two-sided Wilcoxon p ¼ 0.09).

Discussion

We introduce PAIRADISE, a statistical model for detecting

allele-specific AS from population-scale RNA-seq data.

PAIRADISE leverages the pairing structure of two alleles

within any given individual to identify consistent allelic

differences in AS across multiple replicates of a single indi-

vidual or multiple individuals in a population. We demon-

strate through simulation studies that PAIRADISE outper-

forms alternative statistical models for ASAS analysis. In

particular, for datasets with small sample size, PAIRADISE

requires approximately 2–3 times smaller number of repli-

cates to achieve the same level of performance as compared

to alternative models (Figure 2). Additionally, as we

demonstrate in both single-individual (GM12878) and

population-scale (Geuvadis) RNA-seq datasets (Figure 6),

a particular advantage of PAIRADISE is that it can detect

the effects of rare genetic variants on AS.
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The PAIRADISEmodel shares similarities with the rMATS

paired model, previously developed for differential AS

analysis of RNA-seq data with paired replicates.17 Both

models use a binomial distribution to account for the

RNA-seq estimation uncertainty of PSI values in individual

samples (alleles). However, these two models have a key

difference in how they model the paired structure. The

rMATS paired model uses a covariance structure with a cor-

relation parameter to model the correlation among

matched pairs.17 However, this extra correlation parameter

lacks an intuitive statistical interpretation, and unreliable

estimation of the correlation parameter can lead to inflated

p values. PAIRADISE uses an additive structure to model

the variability in PSI values between the two alleles and

across individuals (or replicates). The difference between

matched pairs (alleles) is modeled by an intuitive and

interpretable parameter di (Equation 2). This leads to a sig-

nificant improvement in the model performance of PAIR-

ADISE over rMATS paired, as evidenced by our simulation

studies (Figure 2).

PAIRADISE adopts the widely used PSI metric5,16 to

define and quantify individual AS events. The statistical

framework of PAIRADISE is designed to analyze basic

types of AS patterns, such as exon skipping events.

Such an event-based analytic approach allows allelic

splicing differences to be attributed to splicing regulation

at specific exons or splice sites while circumventing the

challenging problem of inferring and quantifying full-

length mRNA isoforms from short-read RNA-seq data.5

Unlike the sQTL analysis that tests the association be-

tween splicing levels and genotypes across all individ-

uals, the ASAS analysis tests the allelic difference in AS

in heterozygous individuals. Each approach has its

distinct features and requirements, so not all AS events

can be analyzed by both approaches. The ASAS approach

has a unique advantage of detecting rare variants’ effects

on AS. Additionally, the two alleles of any given individ-

ual are exposed to the same cellular environment, poten-

tially reducing the influence by other non-genetic con-

founding factors or batch effects in population-scale

RNA-seq datasets. The sQTL approach, on the other

hand, is not limited by the distance between the SNP

and the AS event, and can be used to test the association

with any exonic or intronic SNP. We should note that the

PAIRADISE ASAS test, as well as other methods for testing

sQTLs, are designed to identify the associations between

genetic variants and AS events. We envision many of the

identified SNPs as tagging (i.e., in very strong LD with)

the causal SNPs that affect splicing regulation, while

the causal SNPs could be located within the alternative

exons or nearby intronic regions and are not tested by

PAIRADISE.

Several published methods, such as MMSEQ36,37 and

EAGLE,38 model expression levels or ratios derived from

RNA-seq read count data and can be used to test for differ-

ential allelic expression or isoform ratio. However, they

do not account for paired structure of data. The key
470 The American Journal of Human Genetics 107, 461–472, Septem
distinction—and contribution—of PAIRADISE is that

the data are treated as matched pairs of replicates, and

the detection of ASAS is framed as a statistical problem

of identifying differential ratios from count data with

paired replicates. The use of pairing information can

help reduce the individual-specific variation and improve

the statistical power. Of note, setting si¼ 0 in PAIRADISE

will remove the correlation between matched pairs

and reduce PAIRADISE to an unpaired model similar to

EAGLE and rMATS.

We emphasize that our approach and results were inten-

tionally conservative with respect to the number of ASAS

events detected because we did not restrict si1 to be equal

to si2. By allowing si1 s si2, a large portion of the differ-

ences in PSI values is absorbed into the variance parame-

ters instead of di; hence, the constrained and uncon-

strained models perform more similarly than they

otherwise would. We have left it as a user option to assume

equal variances between the two alleles; this will produce

more significant events. By running PAIRADISE with

si1 ¼ si2, the number of significant ASAS events increased

from 116 to 133 in GM12878 and from 91 to 153, 82 to

116, 75 to 101, 71 to 104, and 143 to 199 in the Geuvadis

CEU, FIN, GBR, TSI, and YRI populations, respectively. The

choice to set si1 ¼ si2 is left as a user option in the PAIRAD-

ISE software.

In PAIRADISE, RNA-seq reads are aligned to haplotype-

modified personal genomes following the procedures in

our rPGA pipeline.20 Then, for any given exon, PAIRADISE

tests one SNP at a time for evidence of ASAS. Aligning reads

to haplotype-modified personal genomes can correct for

reference genome bias in RNA-seq read mapping and

enable optimal haplotype assignment of RNA-seq reads.

If a read contains multiple SNPs, the read is assigned to a

specific haplotype based on majority voting or discarded

if there is a draw. Additional quality-control criteria are

used to filter out spurious alignment or mapping bias.

For example, we require that any read assigned to a specific

haplotype has to be aligned to both versions of the haplo-

type-modified personal genomes uniquely at the same

location. In addition to our approach of aligning reads to

haplotype-modified personal genomes, other approaches

for reducing the reference genome bias in RNA-seq read

mapping exist. These approaches include mapping reads

to the N-masked version of the genome at all heterozygous

SNP sites,39 as well as the allele swapping and RNA-seq re-

mapping strategy employed by WASP.15 The PAIRADISE

model can be applied to allele-specific count data gener-

ated by alternative RNA-seq alignment procedures.

The PAIRADISE model is designed to detect consistent

ASAS signals across multiple individuals sharing a given

heterozygous SNP. It is possible that the ASAS signals of

certain alternative exons may vary across individuals, de-

pending on other factors, such as other cis SNPs or the con-

centration or activity of trans-acting splicing regulators. In

future work, we plan to address this issue by introducing

an additional layer into the PAIRADISE hierarchical
ber 3, 2020



framework to model an individual-specific allelic differ-

ence as being dependent on a certain covariate, such as

the status of an adjacent cis SNP or the expression level

of a trans-acting splicing regulator in the individual. How-

ever, a much larger population sample size would be

needed to identify potential covariates that affect the

magnitude of ASAS signals across individuals. Another

important limitation of the PAIRADISE ASAS approach,

especially for short-read RNA-seq data, is that it requires a

heterozygous SNP outside of the alternative exon to enable

allele-specific read assignment, but this SNP also needs to

be close enough to the AS event for them to be detected

on the same RNA-seq read. SNPs located within or too

distant from alternative exons cannot be analyzed by PAIR-

ADISE using short-read RNA-seq data.

In summary, PAIRADISE provides a powerful tool for

elucidating the genetic variation and phenotypic associa-

tion of AS using RNA-seq and genotype data. The statistical

model of PAIRADISE is a generic model for testing differen-

tial isoform proportions between alleles and is applicable

to other forms of allele-specific isoform variation, such as

allele-specific RNA editing.39 Moreover, use of paired repli-

cates is a popular study design in many basic and clinical

RNA-seq research projects. The PAIRADISE model can be

used in other RNA-seq studies with paired replicates,

such as paired discovery of cancer-specific AS using RNA-

seq data of patient-matched tumor-normal pairs.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.07.005.
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37. Turro, E., Su, S.Y., Gonçalves, Â., Coin, L.J., Richardson, S., and

Lewin, A. (2011). Haplotype and isoform specific expression

estimation using multi-mapping RNA-seq reads. Genome

Biol. 12, R13.

38. Knowles, D.A., Davis, J.R., Edgington, H., Raj, A., Favé, M.J.,
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