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ABSTRACT: Amorphous selenium lacks the structural long-range order present in
crystalline solids. However, the stark similarity in the short-range order that exists
across its allotropic forms, augmented with a shift to non-activated extended-state
transport at high electric fields beyond the onset of impact ionization, allowed us to
perform this theoretical study, which describes the high-field extended-state hole
transport processes in amorphous selenium by modeling the band-transport lattice
theory of its crystalline counterpart trigonal selenium. An in-house bulk Monte Carlo
algorithm is employed to solve the semiclassical Boltzmann transport equation,
providing microscopic insight to carrier trajectories and relaxation dynamics of these
non-equilibrium “hot” holes in extended states. The extended-state hole−phonon
interaction and the lack of long-range order in the amorphous phase is modeled as
individual scattering processes, namely acoustic, polar and non-polar optical phonons,
disorder and dipole scattering, and impact ionization gain, which is modeled using a
power law Keldysh fit. We have used a non-parabolic approximation to the density functional theory calculated valence band density
of states. To validate our transport model, we calculate and compare our time of flight mobility, impact ionization gain, ensemble
energy and velocity, and high field hole energy distributions with experimental findings. We reached the conclusion that hot holes
drift around in the direction perpendicular to the applied electric field and are subject to frequent acceleration/deceleration caused
by the presence of high phonon, disorder, and impurity scattering. This leads to a certain determinism in the otherwise stochastic
impact ionization phenomenon, as usually seen in elemental crystalline solids.

1. INTRODUCTION
Since the discovery of photoconductivity in amorphous
selenium (a-Se) films in the 18th century,1 devices based on
a-Se have garnered many applications such as digital
radiography,2−5 solar cells,6 threshold and memory switching,7

and Xerography.8 This unique disordered material is a large-
area, room-temperature, direct band gap semiconductor that
has shown ultralow dark current density (∼pA/cm2),9 and has
a wide detectable wavelength range (∼90% in the blue
wavelength), which, in combination with scintillators, covers a
significant part of the electromagnetic spectrum that includes
visible,2 ultraviolet (UV),10 and X-ray applications.11 Two
essential features of the avalanche phenomenon are that first,
in a-Se, only holes get hot and undergo impact ionization
(vacuum tube a-Se devices have achieved gains as high as
∼1000),12 and, second, the avalanche process is deterministic
and non-Markovian, thus leading to a very low excess noise
factor.13,14 Figure 1 compares the impact ionization coefficients
for electrons βe and holes βh in different materials. A k-value (k
= βe/βh) of ∼1 as seen in Ga0.52In0.48P

15 and GaAs16 means
that hole/electron ionization feedback will be unavoidable
during electron/hole avalanche, which can have a deleterious
impact on the excess noise. Although c-Si shows a higher
asymmetry between βe and βh,

17 it is not enough to guarantee
electron-only impact ionization, and excess noise still
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Figure 1. Change in impact ionization coefficient for electrons βe
(stars) and holes βh (open circles) with inverse electric field.
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dominates at higher electric fields. Some wide band gap
materials like 4H-SiC18 and GaN19 exhibit a low k value;
nevertheless, their wide band gap leads to a very high
breakdown voltage and their signal response is confined to
the UV region of the electromagnetic spectrum. In
comparison, a-Se with its hole-only impact ionization (k =
βe/βh ≈ 0 for electric fields E < 1.05 MV/cm)20 exhibits
noiseless avalanche multiplication gain even at high electric
fields.2,9,13,14 Thus, understanding the dynamics of high field
hot carrier transport in a-Se is of paramount importance.
Recently, crystalline compound semiconductors InAs21 and
HgCdTe22 have shown substantial promise and evidence of a
true single carrier (electron only) impact ionization process
with k = βh/βe ≈ 0. However, low yield, low gain (1−50), and
fabrication challenges invigorated by high dark current density
(∼μA/cm2) in these narrow band gap materials with limited
responsivity in the infrared spectrum, and incompatibility with
room-temperature operation, have hindered their potential
growth to establish a true solid-state photo-multiplier with very
high gain, low excess noise, high dynamic range, and linear
mode of operation.
Although glassy/amorphous materials are intrinsically

disordered on the atomic scale, many of their electrical and
semiconducting properties originate from the local structural
characteristics. This observation by Ioffe and Regel states that
medium- to short-range order must be maintained for
amorphous solids, for a continuum of semiconducting
properties to be observed across its allotropic forms.23 Mott
employed this observation and predicted the occurrence of a
minimum conductivity in disordered systems considering
delocalized extended-state charge transport.24,25 The Mott
criterion has been corroborated for a-Se using time-of-flight
(TOF) measurements, when the activated hole mobility
saturated with a value of ∼1.5 cm2 V−1 s−1,

26 beyond the
onset of impact ionization avalanche once activated trap-
limited transport shifts to band-like transport via delocalized
extended states.
The multiscale simulation approach we have adopted in this

work uses density functional theory (DFT) to calculate the
electronic structure, band energies, valence band density of
states (VB-DOS), Hamiltonians, Hamiltonian derivatives,
dynamical matrix, and phonon dispersion in the crystalline
counterpart of a-Se, that is, t-Se (as seen from molecular
dynamics simulations; refer to the Supporting Information,
Supplementary S1 for further details). The simulated reduced
radial distribution function of a-Se compared well with both m-
Se and t-Se (showed strong correlations up to 10 Å, indicating
a similar short-range order). Yet, the intrinsic metastability of
the monoclinic phase results in a lack of experimentally
verifiable results, thus leading us to choose t-Se as the
crystalline counterpart of selenium that was modeled using
DFT.27 The parameters calculated using DFT are coupled to
an in-house Monte Carlo (MC) simulation framework that
solves the semiclassical Boltzmann transport equation (BTE)
to gain insight into the extended-state high field hole-transport
process in a-Se. (refer to the Supporting Information,
Supplementary S2 for further details ).
In the past, we considered an MC-BTE solution using a

parabolic band approximation to the VB-DOS, to model
acoustic and non-polar optical phonon-limited hole transport
in t-Se.27−29 In contrary to previous considerations,30 we
showed how holes in selenium can undergo both elastic and
inelastic collisions and yet get hot, thus gaining energy at a

higher rate from the electric field than they lose to the lattice in
the form of phonon scattering.27 While our model was good
enough to study low electric field drift mobilities, which
compared well to experimental results, in this work, we had to
extend the model to examine high-field transport in a-Se by
accounting for the lack of long-range order that exists in the
amorphous phase.
A feature common to all amorphous chalcogenide solids is

the presence of bonding defects that occurs due to atoms being
over- or under-coordinated. The most studied defect in a-Se is
the so-called valence alternation pair (VAP) formed via an
exothermic reaction with a negative effective correlation
energy.31,32 VAP defects are represented by two selenium
atoms in close proximity, found as a combination of a
positively charged three-fold coordinated atom, Se3

+, and a
negatively charged one-fold coordinated atom, Se1

−.33 Exper-
imental observations of thermally activated hole and electron
drift mobility indicate the presence of traps in the mobility gap
of a-Se, whose exact nature, though inconclusive, has been
widely attributed to VAP defects (a large concentration of
1018−1020 cm−3) in the atomic structure of a-Se.34 In the
regime of extended-state transport at high electric fields in a-
Se, these VAP defects will not act as trap states but instead
associate themselves into pairs, thus acting as scattering centers
for holes causing hole−dipole scattering. Such an approach
limits the validation of our simulation results with experiments
to high electric fields only, when the transport has shifted from
activated localized hopping to non-activated extended-state
band-like transport. The thermal agitation of the a-Se lattice
causes oscillations of the VAP type dipoles, resulting in a
second source of perturbation, modeled using polar optical
phonon scattering. Lucovsky et al. performed infrared
reflectivity measurements,35,36 and arrived at the conclusion
that the chalcogenide family, including the homopolar
selenium and tellurium, has fairly strong optical phonon
coupling.37 After adding polar optical phonon scattering,
disorder was introduced as an additional scattering process
whose primary effect is to produce elastic and isotropic hole-
lattice scattering. The strength of this scattering mechanism is
inversely proportional to the magnitude of the short-range
order parameter.38 Additionally, a non-parabolic band
approximation to the VB-DOS is used in the MC-BTE
simulation to better stabilize the hole energy distributions and
eliminate the artificial polar runaway effect. Finally, we model
the hole impact ionization avalanche in a-Se as a separate
inelastic but isotropic scattering process.

2. COMPUTATIONAL METHODS
Experimental measurements of neutron inelastic scattering, X-
ray ultraviolet, and inverse photo-emission in a-Se and t-Se
have shown an almost identical phonon and electronic density
of states.39−41 Moreover in a-Se, the extended-state wave-
function involved in the impact ionization process has a
comparable dispersion and phase-coherence to that of t-Se and
thus allows this quantum mechanical MC-BTE high-field
modeling using the wave-vector k (k is not considered a good
quantum number in disordered materials due to the lack of
periodic potentials).27

To improve accuracy of the MC-BTE model, an analytical
approach, using the k·p method, is implemented to obtain the
non-parabolic equation:42 E(1 + αE) = ℏ2k2/2mc, where mc is
the conductivity mass and α is the non-parabolicity factor from
the k·p method, which depends on the material as α = 1/Eg(1

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c04922
ACS Omega 2021, 6, 4574−4581

4575

http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c04922/suppl_file/ao0c04922_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c04922/suppl_file/ao0c04922_si_001.pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c04922?ref=pdf


− mc/mo)
2, where Eg is the band gap for a-Se (2.1 eV) and mo

is the hole rest mass. The value of mc has been reported in t-Se
to be 0.29mo in the direction parallel to the c-axis (m∥) and
0.75mo in the direction perpendicular to the c-axis (m⊥).

43

Given that we are ultimately interested to study the extended-
state hot hole transport in the amorphous phase with
topological disorder, we treat all solids as an isotropic
continuum without any directional dependence. Acousto-
electric current saturation observations of hole drift mobility44

backed up by our previous MC-BTE simulations in t-Se27 show
that the mobility ratio between the ⊥ and ∥ directions to the c-
axis in t-Se is μ∥/μ⊥ ≈ 4. The higher scattering rates and lower
mobility of holes (closer to that of a-Se: μ ≈ 1.5 cm2 V−1 s−1)
along the ⊥ direction to the c-axis in t-Se lead us to the
assumption that transport and hole-phonon coupling param-
eters in the ⊥ direction to the c-axis in t-Se should be used in
the scattering rate calculations for a-Se (Table 1).
The effective conductivity mass in the amorphous phase was

calculated using the Herring−Vogt transformation, which
resulted in an α of ∼0.15.45 In this work, the density of states
mass md (1.4mo)

46 is used for the calculations of the scattering
rates, and mc (m⊥ = 0.75mo) for the equation of motion and
the E−k dispersion relation. Figure 2a compares the DFT-
calculated VB-DOS with its non-parabolic band approxima-
tion. The use of α ≈ 0.15 that arises from the simplistic
assumption of a single isotropic band prevents the hole energy
and drift velocity distribution from running away to higher
values at electric fields substantially lower than those measured
experimentally.
In the regime of extended-state transport at high electric

fields in a-Se, we assume that VAP defects act as a single source

of perturbation causing hole−dipole and polar optical phonon
scattering. For the first time, we have formulated the hole−
dipole scattering interaction for non-parabolic bands (Support-
ing Information, Supplementary S3 and Supplementary S4).
To account for the lack of long-range order, we assume that
the disorder existing in the amorphous phase causes a hole−
lattice elastic/isotropic interaction, which is only governed by
the VB-DOS and a constant matrix element (Supporting
Information, Supplementary S3).38

Figure 2b shows the scattering rates obtained from the non-
parabolic band approximation discussed above. Collisional
broadening effects come into play at scattering rates of ∼1015
s−1, when the average time between two successive collisions
become too short.51 However, these higher order effects are
not incorporated at present and will be a topic of future
investigation. Figure 2c shows the anisotropic nature of polar
optical phonon scattering and hole−dipole scattering, thus
favoring forward angle scattering, which further increases with
an increase in hole energy. It is worthwhile to notice that at
small energies/low electric fields, the VAP dipoles increases the
lateral spread of holes.
This idea is illustrated in Figure 2d where a comparison

between low and high electric field trajectories shows that
while the actual hole path lengths are substantially increased,
the VAP defects lead to more lateral spread at lower electric
fields when the hole energies are comparable to the thermal
energy at room temperature (∼38 meV). The longer effective
path length of holes leads to an enhanced probability of energy
loss via polar and non-polar phonons, which helps in stabilizing
the ensemble energy distributions. Furthermore, the proba-
bility of a sharp rise in carrier energies decreases and a ″delay

Table 1. Hole-Phonon Coupling Parameters Used in our Calculation of Scattering Rates in a-Se

mechanism type parameter value exp conditions/method

acoustic phonons elastic/isotropic acoustic deformation potential Ξac
(eV)

6 (t-Se⊥c) computational DFT27

sound velocity vs (m s−1) 2150 (t-Se⊥c) comp. DFT slope of acoustic modes of vibration27

DOS mass md 1.4mo (t-
Se⊥c)

estimated from thermoelectric power with an isotropic single
valence band maximum46

density (kg/m3) 4819 (t-Se⊥c) T = 298 K47 calc. From X-ray data

non-polar optical
phonons

inelastic/
isotropic

optical phonon energy ℏωo (meV) 28.9 (t-Se⊥c) computational DFT27

optical deformation potential D0
(eV/Å)

3 (t-Se⊥c) computational DFT27

polar optical
phonons

inelastic/
anisotropic

low ε0 frequency dielectric
constant

7.35 (t-Se⊥c) oscillator fit-IR data48

high ε∞ frequency dielectric
constant

6.66 (t-Se⊥c) oscillator fit-IR data48

non-parabolic factor α (eV−1) 0.15 analytical approach to the k·p method42

disorder elastic/isotropic short-range order ∼10 Å (a-
Se)

molecular dynamics sim.;49 constant matrix element38

VAP dipole elastic/
anisotropic

density of scattering dipole pairs
NT (cm−3)

8 × 1019 (a-
Se)

density of VAP defects34

dipole radius ao (Å) 17.32 (a-Se) order of nearest neighbor distance50

dielectric constant ε 7 average of low ε0 and high ε∞ in t-Se⊥c
Debye length LD (Å) 6.6 calculated analytically
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time″ arises before a hole−hole impact ionization event occurs,
which is expected to reduce (and potentially eliminate) the
excess noise in a-Se.
The only hole−hole interaction that has been accounted for

in this work is impact ionization avalanche, which has been
modeled using a single term power law fit, shown in Figure 2e
(Supporting Information, Supplementary S3). We have
neglected Coulomb scattering, which occurs due to charged
impurities and defects. Although the VB-DOS for t-Se
indicates the existence of a second band at energies greater
that 10 eV, as investigated by the empirical pseudo-potential
method (EPM),52 when the VB-DOS increases abruptly, high
energy processes such as intervalley scattering and interband
impact ionization have been neglected. While such a process
could significantly alter the high-energy tail of the hot hole
distribution, in this work, we shall restrict our attention to the
gross features of high electric field transport in a-Se when
carrier transport shifts from hopping conduction via localized
states to band-like transport via extended states.27

3. RESULTS AND DISCUSSION

The bulk MC-BTE is used to follow the real-time scattering
processes and calculate average transport characteristics on a

picosecond time scale. Figure 3a shows the time-averaged
ensemble drift-velocity calculated as a function of electric field.
The saturated drift velocity is an important limiting parameter
for the semiconductor industry. Experimental studies of the
hot hole drift velocity in a 0.4 μm-thick a-Se HARP (high-gain
avalanche rushing amorphous photoconductor) target at
electric field strengths of 1000 kV/cm was measured to be
1.87 × 104 m/s.55 The drift velocity calculated using the non-
parabolic model shows a gentle peak of 1.83 × 104 m s−1 at
1000 kV/cm and saturates thereafter. This velocity saturation
effect could not be observed with a parabolic bulk MC-BTE
model where the drift velocity increases monotonically as a
function of electric field. Figure 3b shows the average hole
energy in a-Se as a function of electric field. The hot carrier
energy in the 0.4 μm-thick a-Se HARP increases linearly as the
electric field increases (as shown by solid marks in Figure 3b).
The increase in the simulated hot hole energy in the non-
parabolic MC-BTE simulation compares well to these
experimentally measured values.53 The ensemble energy of
holes calculated under the parabolic approximation rapidly
spreads to higher energies at electric fields much lower than
the threshold for impact ionization (1000 kV/cm), a result due
to polar runaway.56 The parabolic band approximation to the

Figure 2. (a) DFT calculations of the VB-DOS are shown by the solid blue line. The dotted red line represents the non-parabolic band
approximation (α = 0.15) to the VB-DOS. (b) Scattering rates of the mechanisms relevant for a-Se. Elastic and isotropic mechanisms (acoustic and
disorder) correspond to the dashed lines. Inelastic and anisotropic polar optical phonon scattering is denoted by dashed dotted lines. The dotted
lines denote isotropic but inelastic scattering caused by non-polar optical phonon vibrations. Impurity scattering from VAP dipoles is denoted by a
solid line. (c) The probability of the scattering angle is shown for the three anisotropic scattering mechanisms in the simulation. Scattering from
polar optical phonons and the VAP type dipoles become more anisotropic at high electric fields when the hole energy increases, thus favoring small
angle forward scattering. (d) Real space trajectories of seven holes comparing lateral spread at low (100 kV/cm) and high (1000 kV/cm) electric
fields. (e) The impact ionization Keldysh fit used. The distribution of the hole impact ionization band shows a narrow normal distribution (full
width at half maximum ≈ 0.45 eV), an indication toward the deterministic nature of the avalanche process in a-Se.
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DFT-calculated valence-band DOS overestimates the steady-
state drift velocity and energy values at fields beyond 600 kV/
cm.
Figure 3c compares TOF-measured saturated mobility in a-

Se26 where transport has shifted from activated (trap-limited)
transport at lower fields to extended-state (band-like) trans-
port. The activated experimentally measured mobility for a-Se
increases with increase in electric field and finally saturates at
very high electric fields, around 900 kV/cm. The saturated
extended-state experimental TOF mobility has a value of 1.5
cm2 V−1 s−1 and matches the non-activated MC-BTE
calculated mobility. The MC-BTE TOF mobility is calculated
as μ = L/(E × ttr), where L is the the length of the device, E is
the applied electric field and ttr is the transit time of holes to
cross the length of the device. The TOF mobility was
calculated across device lengths of 0.5−35 μm. Although the
length dependence of the TOF mobility was minute, thicker
selenium simulations, in general, showed smaller mobilities as
compared to thinner samples. However, there were outliers,
which lead us to believe that deviation in mobility as a function

of device length originates from the statistical nature of the
Monte Carlo simulations, denoted by the error bars in Figure
3c.
Our MC-BTE calculated impact ionization gain in Figure 3d

compares well to experimental results for 0.5−35 μm-thick a-
Se samples across a wide range of electric fields. The MC-BTE
simulation results, as shown in Figure 3d, correctly predict the
decreasing onset of the avalanche electric field with increasing
device thickness. Figure 3e compares MC-BTE-calculated hole
impact ionization coefficients with experimentally measured
values (refer to the Supporting Information, Supplementary S6
for the calculation of the hole impact ionization coefficient).
The Ergodic theorem states that in a statistical dynamic

system, the time and space average shows similar behavior.
Figure 3f shows the hole energy distribution for various electric
fields. The histories of 1000 independent holes were simulated
over a fixed distance, sufficiently far from the starting position
so as to guarantee the achievement of a steady-state regime
(Supporting Information, Supplementary S7). The energy of
the carriers was recorded at the end of the travel. Holes starting

Figure 3. Steady state simulation results of ensemble time-averaged (a) drift velocity and (b) average energy of holes as a function of electric fields
ranging from 1−1200 kV/cm. The hollow square markers show velocity and energy spread to higher values under the parabolic band
approximation. The hollow circles show average drift velocity and average energy simulated under the non-parabolic band approximation. The solid
line joining solid marks shows experimentally reported values of hot hole energy in a-Se.53 (c) TOF non-parabolic MC-BTE calculated mobility
(hollow circles) compared with experimental measured saturated and electric field-independent mobility (solid markers) in a-Se.26 The error bars
indicate the statistical errors on the TOF mobility simulated for 0.5−35 μm thick a-Se bulk device lengths. (d) Impact ionization gain calculated
using non-parabolic MC-BTE and compared with experimentally measured gain for 0.5−35 μm-thick a-Se films.20,54 (e) Theoretically modeled
hole impact ionization coefficient compared with measured values from Tsuji et al.20 (f) A simulation of hole energy distribution in a 1 μm-thick a-
Se film calculated using the non-parabolic MC-BTE model at different electric fields.
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from thermal energy (38 meV), on average, gain significant
energy in the first 10 nm. At high electric fields, corresponding
to high scattering rates, a short ″heat-up″ distance51 (10−20
nm) is sufficient to achieve a steady-state distribution. At lower
electric fields, this heat-up distance increases to 50−100 nm. In
Figure 3f the carrier energies were frozen after they crossed a
distance of 1 μm. At high electric fields (1200 kV/cm), the
energy tail (hole energies of 2.1 eV and beyond; the impact
ionization band) existing in lower field distributions undergoes
the impact ionization process. At 1200 kV/cm, the total
number of carriers at the end of the simulation was 2979 and
6061 (avalanche gains of 2.98 and 3.03) for 1000 and 2000
initial carriers, respectively. The MC-BTE gain is calculated by
dividing the final number of carriers collected at the end of
travel by the initial number of carriers.
Experimental results have previously shown that the excess

noise in a-Se ≈ 1 because of the non-Markov branching of hot
holes.13 This might be a result of the high scattering rates
existing in the disordered phase of selenium, which leads to a
non-zero “dead space” distance, defined as the minimum
distance of travel in the direction of electric field before a
carrier can attain the ionization threshold energy required for
avalanche.21,57 This, in turn, can average out the noise arising
due to the stochastic avalanche process and increase
determinism, thus leading to a very low excess noise factor
in a-Se.13

4. CONCLUSIONS
A modeling scheme was presented and discussed, which is
used to study charge carrier transport in disordered structures,
which lack the long-range order present in their crystalline
counterparts. In other words, we have studied the transport of
holes in a-Se by using an MC-BTE technique in which the
carrier free-flights are interrupted by scattering from acoustic,
polar and non-polar optical phonons, disorder, and dipole
scattering. Material parameters for selenium’s crystalline
allotropic form t-Se were calculated using DFT, and the
approximation of a single isotropic non-parabolic band with
non-parabolicity factor α = 0.15 was used in the MC-BTE. The
saturated drift velocities and ensemble hole energies obtained
with our model matched closely with experimentally measured
values in a 0.4 μm-thick a-Se HARP target.55 Calculations of
our MC-BTE TOF mobility matched exactly to experimentally
measured non-activated extended state mobility.26 Moreover,
the calculated impact ionization gain matched closely to
experimentally measured values in 0.5 to 35 μm a-Se HARP
samples.20,54 Our MC-BTE model correctly predicted the
decreasing onset of the avalanche electric field with increasing
device thickness, a characteristic of the avalanche phenomenon
in a-Se. We speculate that the deterministic nature of impact
ionization avalanche in a-Se occurs due to the existence of a
non-zero dead space and the non-ballistic nature of hole
transport in a-Se, fostered by frequent scattering at high
electric fields. Consequently, there is an increased spread of
holes in the direction lateral to the applied electric field,
seasoned by frequent acceleration and deceleration caused by
the cumulative affect of the electric field and lattice/impurity/
disorder scattering, which results in averaging of the distance
traveled by the hot holes over a finite delay time before an
impact ionization event occurs. Moving ahead, this multiscale
approach of combining molecular dynamics, DFT, and MC-
BTE will be used in calculating the excess noise and spatial
resolution in a-Se-based devices.
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