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We use a global metapopulation transmission model to study the establish-

ment of sustained and undetected community transmission of the COVID-19

pandemic in the United States. The model is calibrated on international case

importations from mainland China and takes into account travel restrictions

to and from international destinations. We estimate widespread community
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transmission of SARS-CoV-2 in February, 2020. Modeling results indicate in-

ternational travel as the key driver of the introduction of SARS-CoV-2 in the

West and East Coast metropolitan areas that could have been seeded as early

as late-December, 2019. For most of the continental states the largest contri-

bution of imported infections arrived through domestic travel flows.

The first confirmed case of COVID-19 in the United States (US) was diagnosed in Wash-

ington state on January 21, 2020 (1). In quick succession other cases were confirmed in Illinois,

California, and Arizona (2–4). All initial cases reported in the US had a known travel history

to mainland China, the epicenter of the pandemic. The first reported local transmission on US

soil was discovered on January 30 in Illinois (5). However, very few COVID-19 cases were

detected until the case definition for testing was updated on March 4, 2020, to include symp-

tomatic individuals without travel history (6). On April 1, when the US federal government

issued social distancing guidelines, 26, 655 new reported cases and 1, 050 deaths were recorded

in the United States. In Fig. 1A we show a timeline of initial confirmed cases, testing policies,

and early containment and mitigation initiatives concerning the US COVID-19 outbreak.

Given the narrowness of the initial testing criteria, it is expected that the SARS-CoV-2 virus

causing COVID-19 was spreading through “cryptic transmission” in January and February, set-

ting the stage for the large epidemic wave experienced in March and April, 2020. In this study,

we model the arrival and cryptic phase of the COVID-19 epidemic in the US. We estimate

the time frame for the establishment of local transmission in the different states and provide a

statistical analysis of the domestic spread of the COVID-19 epidemic.

To study the spatial and temporal spread of COVID-19, we use the Global Epidemic and

Mobility Model (GLEAM), an individual-based, stochastic, and spatial epidemic model (7–

11). The model was previously used to characterize the early stage of the COVID-19 epidemic

in mainland China and the effect of travel restrictions on infections exported to other global
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regions (12). GLEAM generates an ensemble of possible epidemics described by the number

of newly generated infections, the time of disease arrival in different regions of the world, and

the number of infected travelers. The model divides the global population into more than 3, 200

subpopulations in roughly 200 different countries and territories. The airline transportation data

encompass daily origin-destination traffic flows from the Official Aviation Guide (OAG) and

the International Air Transport Association (IATA) databases (13,14), whereas ground mobility

flows are derived from the analysis and modeling of data collected from the statistics offices of

30 countries on five continents (7, 8).

The transmission dynamics take place within each subpopulation and assume a classic

SLIR-like compartmentalization scheme for disease progression similar to those used in sev-

eral large scale models of SARS-CoV-2 transmission (15–20). Each individual, at any given

point in time, is assigned to a compartment corresponding to their particular disease-related

state (being, e.g., susceptible, latent, infectious, removed) (12). This state also controls the

individual’s ability to travel (details in the supplementary material, SM). Individuals transition

between compartments through stochastic chain binomial processes. Susceptible individuals

can acquire the virus through contacts with individuals in the infectious category and can sub-

sequently become latent (i.e., infected but not yet able to transmit the infection). The process

of infection is modeled using age-stratified contact patterns at the state level (21). Latent in-

dividuals progress to the infectious stage at a rate inversely proportional to the latent period,

and infectious individuals progress to the removed stage at a rate inversely proportional to the

infectious period. The sum of the mean latent and infectious periods defines the generation

time. Removed individuals are those who can no longer infect others. To estimate the number

of deaths, we use the age-stratified infection fatality ratios from (22). At this stage, the trans-

mission model does not account for heterogeneities due to age differences in susceptibility to

the SARS-CoV-2 infection. This is an intense area of discussion at the moment (25–27).
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We assume a start date of the epidemic in Wuhan, China, that falls between November 15,

2019 and December 1, 2019, with 20 initial infections (12, 20, 28–31) (see SM for sensitivity

analysis). The model generates an ensemble of possible epidemic realizations and is calibrated

using Approximate Bayesian computation (ABC) methods (32) based on the observed inter-

national importations from mainland China through January 21, 2020 (12). Only a fraction

of imported cases are detected at the destination (33). According to the estimates proposed in

(34), we stratify the detection capacity of countries into three groups: high, medium and low

surveillance capacity according to the Global Health Security Index (35), and assume asymp-

tomatic infections are never detected (see SM). The model calibration does not consider corre-

lated importations (family travel) and assumes that travel probabilities are homogeneous across

all individuals in each subpopulation.

The ABC calibration using a generation time Tg = 6.5 days yields 3, 700 individual realiza-

tions of the global evolution of the pandemic that provide information on imported infections,

locally generated infections, and deaths in all subpopulations considered in the model (36).

The model accounts for international travel restrictions according to available data on traffic

reduction and government issued policies (See SM). The ABC calibration also gives a posterior

distribution for the basic reproductive number R0 in the US (median 2.7 [95% CI 2.4-3.1]). The

median reproductive numbers for each state range from 2.6− 2.8, with doubling times ranging

from 3.3 − 3.6 days (values are calculated using the the specific age stratified contact patterns

for each state). In the SM we also consider an additional calibration based on the deaths ob-

served in the US at the end of March. These results do not exhibit major differences and do not

change the overall picture presented here.
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Figure 1: Early picture of the COVID-19 outbreak in the United States. (A) A timeline of
the daily reported and confirmed cases of COVID-19 in the US including information on the
first 10 reported cases and other significant events related to the outbreak up to March 1, 2020.
(B) Model-based estimates for the median daily number of new infections in the continental
US. Error bars represent the interquartile range. The inset plot compares the weekly incidence
of reported cases with the weekly incidence of infections estimated by the model for the week
of March 8 − 14, 2020, for 48 of the continental states that reported at least 1 confirmed case.
Circle size corresponds to the population size of each state. (C) Model based estimates for the
median number of daily infections in the continental US as of March 1, 2020.
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Onset of local transmission

Stochastic simulations of the worldwide epidemic spread yield international/domestic infection

importations, incidence of infections, and deaths per subpopulation at a daily resolution in the

continental US. In Fig.1B we show the model estimates for the median daily incidence of new

infections up to March 1, 2020 in the continental US. There is a stark contrast between the

model output and the number of officially reported cases by the same date, highlighting the sig-

nificant number of transmission events that may have already occurred before many states had

implemented testing strategies independent of travel history. For model validation we compare

our projections of the number of infections during the week of March 8, 2020, to the number

of cases reported during that week within 48 of the continental states that reported at least 1

case (shown in Fig.1B inset). We see a strong correlation between the reported cases and our

model’s projected number of infections, (Pearson’s correlation coefficient on log-values 0.79,

p < 0.001), although many fewer cases had actually been reported by that time. If we assume

that the number of reported cases and simulated infections are related through a simple bino-

mial stochastic sampling process, we find that on average 5 in 1, 000 infections (90%CI [1 – 25

per 1, 000]) were detected by March 8, 2020. The ascertainment rate grows quickly as testing

capacity increases, and our estimate doubled to detecting 11 in 1, 000 infections (90%CI [2 –

36 per 1, 000]) by March 15, 2020. By April 1, 2020 our model suggests a detection rate of

96 cases per 1, 000 infections (90%CI: [20- 289 per 1, 000]). The Centers for Disease Con-

trol and Prevention (CDC) estimates that 42 to 166 in 1, 000 infections were detected during

March and April, 2020, at different locations in the US, with estimated numbers of infections

at least 10 times greater than the number of reported cases in locations across seven different

states (37, 38). These SARS-CoV-2 infections are also distributed heterogeneously across the

US. In Fig.1C we show the model-based median daily number of new infections on March 1,

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2020. .https://doi.org/10.1101/2020.07.06.20140285doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.06.20140285
http://creativecommons.org/licenses/by-nc-nd/4.0/


2020.

In Fig. 2 we plot the posterior distribution for the earliest date within each state when at

least 10 new infections per day occurred in the community. California, New York and New

Jersey are the first states with a probability larger than 50% to have experienced local transmis-

sion by mid January (California) or beginning of February (New York and New Jersey), 2020.

However, the wide distribution of dates suggests that SARS-CoV-2 cryptic transmission may

have started as early as December, 2019. The posterior distribution for the timing of the on-

set of local transmission peaks by mid February in Florida, Illinois, Maryland, Massachusetts,

Texas, Washington, Arizona, Colorado, Connecticut, Georgia, Indiana, Michigan, Minnesota,

Nevada, New Hampshire, North Carolina, Ohio, Oregon, Pennsylvania, Tennessee, and Utah

Virginia. From the posterior distribution of Fig. 2, all states have a median date of the onset of

local transmission by early March, with the large majority of them in February, 2020, a critical

month for the cryptic spread of SARS-CoV-2 in the continental US. However, during that time,

testing in the US was still focused on returning travelers from China.

International and domestic seeding

As the model allows the recording of the origin and destination of SARS-CoV-2 carriers at the

global scale, we can study the possible sources of infection importation for each state. In partic-

ular, we are able to record the flow of latent and infectious individuals through international and

domestic flight connections. However, the model also considers the effect of possible infections

through commuters that may spend a few hours in a neighboring subpopulation (7). It is im-

portant to stress that the model’s realizations explore the many possible paths of the epidemic.

Thus, the analysis provided here must be considered as a statistical description of the potential

sources of SARS-CoV-2 importations, rather than providing a specific, single causal chain of

events.
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Figure 2: Timing of the onset of local transmission. Posterior distributions of the week when
each state first reached 10 locally generated SARS-CoV-2 transmission events per day.
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To identify seeding importation events relevant to the onset of local transmission in each

stochastic realization of the model, we record the number of importations (of latent and in-

fectious individuals) before the local transmission chains were established (defined as 10 daily

local transmission events). We visualize the origin of the seeding importations relevant for

establishing local transmission by aggregating the importation sources, considering some key

geographical regions (e.g. Europe and Asia) while keeping the US and China separate and

aggregating all the other countries (i.e. Others) in Fig. 3. It is worth clarifying that seeding

importations are different from the actual number of times the virus has been introduced to each

state with subsequent onward transmission. Even after local transmission has started, future

importation events may give rise to additional onward transmission forming independently-

introduced transmission lineages of the virus as seen in the United Kingdom (39). Statistics for

importations through March 1, 2020, are reported in the SM file.

Importations from mainland China may be relevant in seeding the epidemic in January (no-

tice the width of the blue arrows from China for the first couple of states), but then play a small

role in the COVID-19 expansion in the US because of the travel restrictions imposed to/from

mainland China after January 23, 2020. About 60% and 24% of the virus introductions before

the onset of local transmission in California and New York State, respectively, were from main-

land China. While importations from mainland China contribute to early introductions of the

virus in the US, our analysis highlights other potential sources of importations, such as Europe,

where additional travel advisories and restrictions were implemented a month later; i.e. the end

of February and early March. Noticeably, the share of infection importations originating from

Europe in California is estimated to be about seven times smaller than those in New York State.

Among the states for which the model estimates an early onset of local transmission before the

second week of February (considering median values), European sources are statistically con-

tributing 13% of SARS-Cov-2 importations for Florida, 16% for New Jersey, and only 5% for
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Figure 3: Importation sources. Each state is displayed in a clockwise order with respect to the
start of the local outbreak (as seen in Fig. 2). Importation flows are directed and weighted.
We normalize links considering the total in-flow for each state so that the sum of importations
flows, for each state, is one. In the SM we report the complete list of countries contributing, as
importation sources, in each group (i.e., geographical region).
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Washington. Interestingly, the domestic importations are, across the board, statistically relevant

in seeding the epidemic in many states. Among the states for which we estimated a late onset of

local transmission (second half of February or first week of March), domestic sources account

for 77% of the virus introductions in Utah, 84% in New Mexico, 81% in Arkansas, and 90% in

North Dakota.

Cryptic spreading phase

From late January to early March, SARS-CoV-2 had been spreading across the US mostly

undetected. We estimate that cities such as Los Angeles, New York, Chicago, Seattle, and San

Francisco have possibly experienced local transmission beginning in the first half of February

(Fig. 4A). In the time span of one additional month, through March 15, 2020, most large cities

in the US had sizeable ongoing outbreaks. California most likely generated 10 local infections

by late January (see Fig. 2), around the same time as the adoption of draconian containment

measures and international travel restrictions in mainland China. The model also allows us

to estimate possible COVID-19 related deaths. By March 1, 2020, we estimate a median of 63

[90% CI 10−629] cumulative deaths in the US while only 1 death was reported. Although some

states launched investigations in search of evidence that COVID-19 was the cause of death as

far back as December 2019, it is likely that most deaths were missed because COVID-19 testing

guidelines were based on travel history (40).

To provide a model consistency check with respect to surveillance data concerning the epi-

demic, we compared the model-based estimates with observed surveillance data. Particularly,

early on in the epidemic, surveillance data were known to be highly unreliable because of under-

detection. For each state we compared the order in which they surpassed 100 infections in the

model and in the surveillance data gathered from the John Hopkins University Coronavirus Re-

source Centre (41). In Fig. 4B we plot the ordering for states and compute the Kendall rank
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correlation coefficient τ (see SM for details). The correlation is positive (τ = 0.69, p < 0.001)

indicating that, despite the detection and testing issues, the expected patterns of epidemic dif-

fusion of the states is largely described by the model. As mentioned before, one possible major

driver of the diffusion pattern is air traffic. We compare the ordering of states according to

their air travel volume to their epidemic order as previously defined (Fig. 4C). We consider

both national and international traffic and find a positive correlation (τ = 0.67 with p < 0.001)

between the epidemic ordering derived from surveillance data and air traffic, suggesting the

passenger volume of both international and national traffic are key factors driving the early

phases of outbreak across the country. Similar observations have been reported in China, where

the initial spreading of the virus outside Hubei was strongly correlated with the traffic to/from

the province (42). The correlation between the air travel ordering and the simulations is high

(τ = 0.87, p < 0.001) as actual airline data are used in the model to simulate the mobility

of individuals (see SM). It is worth remarking that population size is also correlated with both

the traveling flows (τ = 0.7, p < 0.001) and the epidemic order of each state (τ = 0.68,

p < 0.001) as discussed in the SM. In our model it is not possible to exclude increased con-

tacts in highly populated places before social distancing interventions and disentangle this effect

from increased seeding due to the correlation between travel volume and population size. As

yet another independent test for the model, in Fig. 4D we show the positive correlation between

excess deaths, as estimated in (43), and the order in which the states reached the threshold of

10 daily transmissions (τ = 0.51, p < 0.001).

The model is consistent with the picture emerging from the genomic epidemiology (44–46)

of an early start of the COVID-19 epidemic in coastal states, followed by the propagation, dom-

inated by the domestic traveling patterns, to the less globally connected regions in the US. The

model suggests that COVID-19 spread across the US in about 7 weeks, and that by the end

of February many states were experiencing sustained SARS-CoV-2 local transmission. The
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Figure 4: Comparing model projections to surveillance and air traffic data. (A) Map of
the US showing the date where regions observed at least an average of 100 infections. (B) The
correlation between the ordering of each state to reach 100 infections in the model projections
and to reach 100 reported cases in the surveillance data. The correlation is computed using the
Kendall rank correlation coefficient, τ . (C) The correlation between the ordering of each state
considering the time needed to reach 100 reported cases in the surveillance data and the ranking
of the combined international and domestic air traffic. (D) The order correlation of the onset
of excess deaths due to pneumonia and influenza and the order of the model projection for the
date of 10 transmissions per day. Circle size in A, B, and C corresponds to the population size
of each state. (E) The cumulative distribution of the probability that the US reached 100 locally
generated transmissions per day by a given day for both a scenario using the real timelines of
travel restrictions and a counterfactual scenario where the travel restrictions to/from mainland
China are shifted one week before. The median dates for the real and counterfactual timelines
are February 2, 2020, and February 4, 2020, respectively. We show a horizontal line at a density
of 0.5
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median time for the onset of local transmission in coastal states is as early as February 2020,

and it raises the question of what would the unfolding of the epidemic have looked like in the

case of an earlier warning and issuing of travel restrictions to/from China. For this reason we

have performed simulations of a counterfactual scenario in which the timeline of all the travel

restrictions to/from mainland China and interventions is shifted one week earlier compared to

the actual one. In Fig. 4E, we show the distribution of the probability that the US experiences

sustained local transmission by a given date in both the counterfactual scenario and the real

timeline of interventions. We define sustained national transmission as 100 new infections per

day. Interventions implemented one week earlier amount to a proportional delay of the onset of

local transmission in the continental US. In particular we find that in the real timeline interven-

tion analysis a 50% cumulative probability of reaching the 100 locally generated transmissions

mark is reached by February 2, 2020, compared to February 4, 2020, in the counterfactual sce-

nario. This is in agreement with the evidence provided by several studies (12, 47, 48) that a

considerable number of infections had already traveled from mainland China to international

destinations before mid January, thus potentially seeding multiple epidemic outbreaks across

the world, and leading to the international expansion of the COVID-19 epidemic, despite the

mainland China travel ban. Our analysis however does not consider spontaneous behavioral

changes that people might have adopted before the official national and local guidelines were

announced. While certainly some individuals might have taken precautions as a result of the

news from China, evidence from surveys of public concern from several countries in Europe

suggest that in late February only a very limited fraction of people considered COVID-19 as

a concrete threat (49). Our model also does not contain any calibration or constraint on the

trajectory of the outbreak in the months of March and April. We provide this analysis in the SM

showing the consistency of the results.
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Discussion

Our study characterizes the cryptic transmission phase during which SARS-CoV-2 spread largely

undetected in the US. The results suggest that the first sustained local transmission chains took

place as early as mid January, and by the end of February the infection was spreading to many

other domestic locations. This timeline is shifted several weeks ahead with respect to the detec-

tion of cases in surveillance data. This is consistent with the fact that in January and February no

country had the capacity to do mass testing. Countries adopted a policy of testing symptomatic

individuals with a travel history linked to China, thus, generally missing the cryptic transmis-

sion occurring domestically. We find that the order in which the virus initially progressed across

states according to our model is highly correlated with the official record. The model highlights

that the geographical heterogenities in the observed spreading patterns are explained by the fea-

tures of the air transportation network and population distributions. The results also indicate

that the source of introduction of SARS-CoV-2 infections into the US changed substantially

and rapidly through time. While early importations were from international sources, most in-

troductions occurred during February and March 2020. Our results indicate that many states

were seeded from domestic sources rather than international. The presented results could be

of potential interest in combination with sequencing data of SARS-CoV-2 genomes to recon-

struct in greater detail the early epidemic history of the US COVID-19 epidemic. The estimated

SARS-CoV-2 importation pattern and the cryptic transmission phase dynamic are of potential

use when planning and modelling public health policies in the context of international travel.
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51. F. Simini, M. C. González, A. Maritan, A.-L. Barabási, A universal model for mobility and

migration patterns, Nature 484, 96-100 (2012).

52. J. A. Backer, D. Klinkenberg, J. Wallinga, Incubation period of 2019 novel coronavirus

(2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020.Eu-

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2020. .https://doi.org/10.1101/2020.07.06.20140285doi: medRxiv preprint 

http://sedac.ciesin.columbia.edu/gpw
http://sedac.ciesin.columbia.edu/gpw
https://doi.org/10.1101/2020.07.06.20140285
http://creativecommons.org/licenses/by-nc-nd/4.0/


rosurveillance 25(5), 2000062 (2020). https://doi.org/10.2807/1560-7917.ES.2020.25.5.

2000062

53. Baidu Qianxi, http://qianxi.baidu.com/ (2020).

54. New York Times, “North Korea Bans Foreign Tourists Over Coronavirus, Tour Op-

erator Says”, https://www.nytimes.com/2020/01/21/world/asia/coronavirus-china-north-

korea-tourism-ban.html (2020).

55. CNA, “Scoot cancels flights to China’s Wuhan over virus outbreak”, https:

//www.channelnewsasia.com/news/singapore/wuhan-virus-scoot-cancels-flights-mtr-

train-12309076 (2020).

56. Toui tre News, “Vietnam aviation authority ceases all flights to and from coronavirus-

stricken Wuhan”, https://tuoitrenews.vn/news/business/20200124/vietnam-aviation-

authority-ceases-all-flights-to-and-from-coronavirusstricken-wuhan/52707.html (2020).

57. Reuters, “Russia ramps up controls, shuts China border crossings over virus

fears”, https://www.reuters.com/article/us-china-health-russia-border/russian-regions-in-

far-east-close-border-with-china-amid-coronavirus-fears-tass-idUSKBN1ZR0TU (2020).

58. Center for Disease Control, “Novel Coronavirus in China”, https://wwwnc.cdc.gov/travel/

notices/warning/novel-coronavirus-china (2020).

59. The Australian, “Travelers from China to be denied entry to Australia”, https:

//www.theaustralian.com.au/subscribe/news/1/?sourceCode=TAWEB WRE170 a&dest=

https%3A%2F%2Fwww.theaustralian.com.au%2Fnation%2Ftravellers-from-china-to-be-

denied-entry-into-australia%2Fnews-story%2F7b7619d44af78dd7395a934e22b52997&

memtype=anonymous&mode=premium (2020).

24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2020. .https://doi.org/10.1101/2020.07.06.20140285doi: medRxiv preprint 

https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
http://qianxi.baidu.com/
https://www.nytimes.com/2020/01/21/world/asia/coronavirus-china-north-korea-tourism-ban.html
https://www.nytimes.com/2020/01/21/world/asia/coronavirus-china-north-korea-tourism-ban.html
https://www.channelnewsasia.com/news/singapore/wuhan-virus-scoot-cancels-flights-mtr-train-12309076
https://www.channelnewsasia.com/news/singapore/wuhan-virus-scoot-cancels-flights-mtr-train-12309076
https://www.channelnewsasia.com/news/singapore/wuhan-virus-scoot-cancels-flights-mtr-train-12309076
https://tuoitrenews.vn/news/business/20200124/vietnam-aviation-authority-ceases-all-flights-to-and-from-coronavirusstricken-wuhan/52707.html
https://tuoitrenews.vn/news/business/20200124/vietnam-aviation-authority-ceases-all-flights-to-and-from-coronavirusstricken-wuhan/52707.html
https://www.reuters.com/article/us-china-health-russia-border/russian-regions-in-far-east-close-border-with-china-amid-coronavirus-fears-tass-idUSKBN1ZR0TU
https://www.reuters.com/article/us-china-health-russia-border/russian-regions-in-far-east-close-border-with-china-amid-coronavirus-fears-tass-idUSKBN1ZR0TU
https://wwwnc.cdc.gov/travel/notices/warning/novel-coronavirus-china
https://wwwnc.cdc.gov/travel/notices/warning/novel-coronavirus-china
https://www.theaustralian.com.au/subscribe/news/1/?sourceCode=TAWEB_WRE170_a&dest=https%3A%2F%2Fwww.theaustralian.com.au%2Fnation%2Ftravellers-from-china-to-be-denied-entry-into-australia%2Fnews-story%2F7b7619d44af78dd7395a934e22b52997&memtype=anonymous&mode=premium
https://www.theaustralian.com.au/subscribe/news/1/?sourceCode=TAWEB_WRE170_a&dest=https%3A%2F%2Fwww.theaustralian.com.au%2Fnation%2Ftravellers-from-china-to-be-denied-entry-into-australia%2Fnews-story%2F7b7619d44af78dd7395a934e22b52997&memtype=anonymous&mode=premium
https://www.theaustralian.com.au/subscribe/news/1/?sourceCode=TAWEB_WRE170_a&dest=https%3A%2F%2Fwww.theaustralian.com.au%2Fnation%2Ftravellers-from-china-to-be-denied-entry-into-australia%2Fnews-story%2F7b7619d44af78dd7395a934e22b52997&memtype=anonymous&mode=premium
https://www.theaustralian.com.au/subscribe/news/1/?sourceCode=TAWEB_WRE170_a&dest=https%3A%2F%2Fwww.theaustralian.com.au%2Fnation%2Ftravellers-from-china-to-be-denied-entry-into-australia%2Fnews-story%2F7b7619d44af78dd7395a934e22b52997&memtype=anonymous&mode=premium
https://www.theaustralian.com.au/subscribe/news/1/?sourceCode=TAWEB_WRE170_a&dest=https%3A%2F%2Fwww.theaustralian.com.au%2Fnation%2Ftravellers-from-china-to-be-denied-entry-into-australia%2Fnews-story%2F7b7619d44af78dd7395a934e22b52997&memtype=anonymous&mode=premium
https://doi.org/10.1101/2020.07.06.20140285
http://creativecommons.org/licenses/by-nc-nd/4.0/


60. T. Hale, S. Webster, A. Petherick, T. Phillips, B. Kira Oxford COVID-19 Government Re-

sponse Tracker, Blavatnik School of Government (2020).

61. Google LLC ”Google COVID-19 Community Mobility Reports”, https://www.google.

com/covid19/mobility/ Accessed: August 4,2020.

62. G. De Luca,K. Van Kerckhove, P. Coletti, C. Poletto, N. Bossuyt, N. Hens, V. Colizza,

The impact of regular school closure on seasonal influenza epidemics: a data-driven spatial

transmission model for Belgium. BMC infectious diseases 18, 1-16 (2018).

63. The New York Times, ”See which states and cities have told their residents to stay at home.”

https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html

64. D. Oran, E. Topol, Prevalence of asymptomatic SARS-CoV-2 infection. Ann. Internal Med

(2020,). https://doi.org/10.7326/M20-3012.

65. CDC,“COVID-19 Pandemic Planning Scenarios.” https://www.cdc.gov/coronavirus/2019-

ncov/hcp/planning-scenarios.html

66. M. G. Kendall, A new measure of rank correlation. Biometrika 30, 81 (1938).

67. Scipy.org: Kendall Tau. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.

kendalltau.html.

Acknowledgements

M.E.H. acknowledges the support of the MIDAS-U54GM111274. S.M. and M.A. acknowl-

edge support from the EU H2020 MOOD project. C.G. and L.R. acknowledge support from

the EU H2020 Icarus project. M.C. and A.V. acknowledge support from Google Cloud and

Google Cloud Research Credits program to fund this project. The findings and conclusions

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2020. .https://doi.org/10.1101/2020.07.06.20140285doi: medRxiv preprint 

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html
https://doi.org/10.7326/M20-3012
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html
https://doi.org/10.1101/2020.07.06.20140285
http://creativecommons.org/licenses/by-nc-nd/4.0/


in this study are those of the authors and do not necessarily represent the official position of

the funding agencies, the National Institutes of Health, or the U.S. Department of Health and

Human Services.

Author Contributions

Author contributions: J.T.D., M.C., N.P. and A.V. designed research; M.C., J.T.D. ,N.P., K.M.,

A.P.P, M.A., N.E.D., C.G., M.L., S.M.,L.R., K.S., X.X., M.E.H., I.M.L., C.V., and A.V. per-

formed research; M.C., J.T.D., N.P., A.P.P., K.M. and A.V. analyzed data; and M.C., J.T.D.,

N.P., K.M., A.P.P., M.A., N.E.D., C.G., M.L., S.M., L.R., K.S., X.X., M.E.H., I.M.L., C.V., and

A.V. wrote and edited the paper.

Competing Interests

M.E.H. reports grants from National Institute of General Medical Sciences, during the conduct

of the study; A.V. reports grants and personal fees from Metabiota inc., outside the submitted

work; M.C. and A.P.P. report grants from Metabiota inc., outside the submitted work. No other

relationships or activities that could appear to have influenced the submitted work.

Data and materials availability

Proprietary airline data are commercially available from Official Aviation Guide (OAG) and

IATA databases. The GLEAM model is publicly available at http://www.gleamviz.org/.

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2020. .https://doi.org/10.1101/2020.07.06.20140285doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.06.20140285
http://creativecommons.org/licenses/by-nc-nd/4.0/

