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Mortality from liver cancer in humans is increasingly attributable to heavy or long-term
alcohol consumption. The mechanisms by which alcohol exerts its carcinogenic effect
are not well understood. In this study, the role of alcohol-induced endoplasmic reticulum
(ER) stress response in liver cancer development was investigated using an animal model
with a liver knockout (KO) of the chaperone BiP and under constitutive hepatic ER stress.
Long-term alcohol and high fat diet feeding resulted in higher levels of serum alanine
aminotransferase, impaired ER stress response, and higher incidence of liver tumor in older
(aged 16 months) KO females than in either middle-aged (6 months) KOs or older (aged
16 months) wild type females. In the older KO females, stronger effects of the alcohol on
methylation of CpG islands at promoter regions of genes involved in the ER-associated
degradation (ERAD) were also detected. Altered expression of ERAD factors including
derlin 3, Creld2 (cysteine-rich with epidermal growth factor-like domains 2), Herpud1
(homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain
member), Wfs1 (Wolfram syndrome gene), and Yod1 (deubiquitinating enzyme 1) was
co-present with decreased proteasome activities, increased estrogen receptor α variant
(ERα36), and enhanced phosphorylations of ERK1/2 (extracellular signal-regulated protein
kinases 1 and 2) and STAT3 (the signal transducers and activators of transcription) in the
older KO female fed alcohol. Our results suggest that long-term alcohol consumption and
aging may promote liver tumorigenesis in females through interfering with DNA methylation
and expression of genes involved in the ERAD.
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INTRODUCTION
Liver cells are rich in the essential organelle-endoplasmic reticu-
lum (ER), which assumes synthesis of a large amount of secretory
and membrane proteins and lipids, maintains intracellular cal-
cium homeostasis, and detoxifies drugs (Dara et al., 2011; Cao
and Kaufman, 2013). For the protein synthesis and modifica-
tions, the ER ensures correct protein folding and maturation.
Unfolded proteins are normally retained in the ER and targeted
for retro translocation to the cytoplasm for rapid removal through
the ER-associated protein degradation (ERAD). Malfunction of
the ER leads to ER stress and accumulation of unfolded pro-
teins triggering the unfolded protein response (UPR). The UPR is
essentially mediated by molecular chaperones such as the glucose-
regulated protein 78 (GRP78/BiP), which interact with three ER
membrane resident stress sensors: inositol-requiring enzyme-1
(IRE1α), activating transcription factor-6 (ATF6), and protein
kinase R (PKR)-like eukaryotic initiation factor 2α kinase (PERK;
Walter and Ron, 2011). The UPR reduces protein translation,
enhances protein folding capacity, and accelerates degradation of
unfolded proteins, restoring ER homeostasis. However, persistent
or prolonged UPR leads to impaired hepatic lipid synthesis, aber-
rant immune response, and eventually an attempt to eliminate the

over-stressed cells, causing liver injuries (Zhang, 2010; Fu et al.,
2012).

Alcohol is the most socially accepted drug that is mainly
metabolized in the liver. Alcohol is oxidized by alcohol dehydroge-
nase (ADH) or cytochrome P450IIE1 (CYP2E1) to acetaldehyde.
Acetaldehyde dehydrogenase (ALDH) converts acetaldehyde to
acetate which enters the circulation. Alcohol overdose leads to
overproduction of highly reactive acetaldehyde, reactive oxygen
species (ROS) and intracellular NADH, all of which collectively
play etiological roles in alcoholic pathologies (Zakhari, 2006;
Zakhari and Li, 2007; Gao and Bataller, 2011). Growing evi-
dence indicates that alcohol-induced liver ER stress contributes to
liver disease (Ji, 2012). ER proliferation and liver injury is asso-
ciated with microsomal alcohol oxidations by CYP2E1 in rats
and humans (Cinti et al., 1973; Lieber, 1987). Multiple alcohol
consumption-related factors including free radicals, acetalde-
hyde, toxic lipid species, oxidative stress, excessive homocysteine
or S-adenosyl methionine (SAH) from impaired one carbon
metabolism, disruption of calcium homeostasis, and insulin resis-
tance are reported to disturb ER homeostasis and induce hepatic
ER stress in cultured hepatocytes as well as in the livers of sev-
eral species including mouse, rat, minipigs, zebrafish, and humans
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(Ji and Kaplowitz, 2003; Nishitani and Matsumoto, 2006; Passeri
et al., 2009; Esfandiari et al., 2010; Magne et al., 2011; Galligan
et al., 2012; Kao et al., 2012; Longato et al., 2012; Ramirez et al.,
2012, 2013). However, the importance of alcohol-induced ER
stress in liver injury may depend on other genetic and environ-
mental factors, patterns of alcohol exposure, and stages of liver
disease (Ji, 2012). Alcohol-induced liver cirrhosis and hepatocellu-
lar carcinogenesis (HCC) is often enhanced by high fat diet (HFD)
feeding or by aberrant epigenetic factors such as methylation of
genome DNA (Seitz and Becker, 2007; Shukla et al., 2008; Philib-
ert et al., 2012; Loomba et al., 2013; Tsuchishima et al., 2013). It is
unclear whether the alcohol-induced ER stress is also involved in
the development of liver cancer and whether epigenetic modifica-
tions of ER stress factors contribute to alcohol-induced advanced
liver injury. Considering that epigenetic inactivation of genes play
a critical role in many important human diseases such as cancer
and that methylation of CpG islands of the genomic DNA is in gen-
eral a core mechanism for epigenetic inactivation of genes (Rakyan
et al., 2011), we hypothesize that alcohol consumption affects DNA
methylation of genes pertinent to the UPR/ER stress response and
we tested the hypothesis in a liver tumor-prone mouse model
under constitutive hepatic ER stress.

MATERIALS AND METHODS
ANIMAL EXPERIMENTS
Mouse models with a liver-specific deletion of the immunoglob-
ulin heavy chain-binding protein (BiP), also known as glucose-
regulated protein 78 (Grp78) were previously created through the
LoxP-Cre strategy (Luo et al., 2006; Ji et al., 2011). Briefly, the
established BiP floxed females (BiPf /f ) were crossed with male
mice carrying the Cre transgene under the control of the rat
albumin promoter (Alb-Cre). The resulting heterozygous mice
carrying the floxed alleles and the Alb-Cre gene were back-crossed
with the BiP floxed founders to yield mice with liver-specific BiP
deletion. The littermates carrying homozygous floxed alleles with-
out the Alb-Cre gene were used as wild type (WT) controls. PCR
genotyping with tail or liver genomic DNA was performed to dis-
tinguish BiP alleles of WT and knockout (KO). The presence of
the Alb-Cre transgene was determined by duplex quantitative PCR
using Cre-specific primers. Animal breeding, genotyping, daily
inspection, and maintenance of the colonies were described pre-
viously (Ji et al., 2011; Lau et al., 2013). The animals were grouped
into two age groups. One group was 6–8 months old termed
middle-aged (Mid) group; the other group was 12–16 months
old termed older (Old) group that corresponds to humans aged
of approximately 50. The older KOs with suspected spontaneous
liver tumor development without alcohol were excluded from the
experiments. Animals that were moribund, unable to move or
failure to respond to gentle stimuli, with labored breathing or
diarrhea, and inability to eat and drink were eliminated from
the experiments. For long-term alcohol treatment, mice were fed
orally a liquid HFD (AIN-93G #710301; Dyets, Inc., Bethlehem,
PA, USA) mixed with alcohol at a dose of 4 g alcohol/kg body
weight or an isocaloric HFD (#710301) without alcohol for 12
months. Pair feeding was conducted by feeding the alcohol group
in the first day of the experiment and by measuring amount of
alcohol diet consumed by each animal in the next day, which was

used to calculate isocalorically matched control diet for the con-
trol group. Occasionally, there were a couple of hours’ waiting
time for the control mice since some of the mice tended to con-
sume the control diet without alcohol more and faster than the
diet with alcohol. All animals were treated in accordance with the
Guide for Care and Use of Laboratory Animals approved by a local
committee for animal care and use.

PARAMETERS OF LIVER INJURY
At the time of killing, serum samples were collected and liver tis-
sues were either snap frozen in liquid nitrogen and stored at −80◦C
or fixed immediately for histological staining. Serum alanine
aminotransferase (ALT) and liver histology for hematoxylin and
eosin (H&E) staining and immunohistochemistry were described
previously (Kao et al., 2012). Histological changes were checked by
a pathologist blinded to the genotypes. The Betazoid DAB Chro-
mogen kit and ancillary reagents (BioCare Medical, CA, USA) were
used for the immunohistochemistry. Primary antibodies against
the molecular marker of proliferation Ki-67 were from Santa Cruz
Biotechnology Inc. (Santa Cruz, CA, USA). Hepatocytes stained
positive with anti-Ki-67 were counted under a microscope at 100×
magnification.

IMMUNOBLOTTING OF LIVER PROTEINS AND PROTEASOME
ACTIVITIES
Proteins (whole or nuclear) were extracted respectively from WT
liver tissues, KO without liver tumors and the normal liver portion
and the tumor portion from tumor bearing livers of KOs, which
were analyzed according to the methods described previously (Kao
et al., 2012; Lau et al., 2013). Immunoblotting was conducted using
horseradish peroxidase-labeled secondary antibodies (1:2000 dilu-
tions), in which the intensity of protein bands on the immunoblots
was quantified with the NIH software, ImageJ. Primary antibodies
against BiP, CCAAT-enhancer-binding proteins (C/EBP) homolo-
gous protein (CHOP; sc-7351), ATF6 (sc-22799), GRP94, protein
disulfide isomerase (PDI), cysteine-rich with epidermal growth
factor (EGF)-like domains 2 (Creld2), Der1p-like protein (derlin),
cyclin D, estrogen receptor α, homocysteine-induced ER protein
(HERP), phosphorylated extracellular signal-regulated protein
kinases 1 (p-ERK1/2), and phosphorylated signal transducers and
activators of transcription 3 (p-STAT3) were from Santa Cruz
Biotechnology Inc. Primary antibodies against the transcription
activator 4 (ATF4) were from Aviva System (San Diego, CA, USA).
Primary antibodies against glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) were from Millipore (Billerica, MA, USA).
Primary antibodies against β-actin were from Sigma. Proteasome
activities were assessed with the 20S Proteasome Activity Assay Kit
from MILLIPORE (Billerica, MA, USA) and the relative fluores-
cent units were recorded with the Omega Microplate Readers from
BGM LABTECH (Gary, NC, USA) using 355/460 nm filter set.

PCR ANALYSIS OF PROMOTER METHYLATION
For analysis of promoter methylation of ER stress marker genes,
genomic DNA was extracted from the mouse liver tissues using the
QIAGEN DNeasy Tissue Kit (Valencia, CA, USA). Methylation
was analyzed with a methylation promoter PCR kit (Panomics;
Fremont, CA, USA). Briefly, the isolated genomic DNA was
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digested with MseI, and the resulting DNA fragments were incu-
bated with the methylation binding protein MeCP2 (a.k.a. MBP).
The methylated DNA fragments were isolated with a spin column
and then amplified with PCR using promoter specific primers for
gene markers of ER stress. The Tag PCR Master Mix kit from
QIAGEN was used for the PCR. The PCR products were visual-
ized through agarose gel electrophoresis and were semi-quantified
by Image J after normalized against corresponding input PCR
products from the genomic DNA fragments without the MeCP2
incubation. The following primer pairs were used:

Atf6, 5′-CTTCTTTAGGAGGTAAGTGCG-3′; 5′-TGAGTAACC
TGAAACGGCG-3′;

Chop, 5′-AGAGAAGCGGGTGGACTATC-3′; 5′-TAACTGACC
TCAAGAGCGG-3′;

Gapdh, 5′-AAGCAAAGGTTATCACCAGG-3′; 5′-TACGCCAT
AGGTCAGGATG-3′;

Grp94, 5′-ACTCAGAGACATTTCCCGC-3′; 5′-GAACTCACC
AATCGTGCCTC-3′;

PDI, 5′-AGCCACCCAAATCTCCATC-3′; 5′-TGCTGCTCCCA
GGAATAAG-3′.

For real-time PCR analysis of promoter methylation of ERAD
factors, genomic DNA was extracted with Wizard® Genomic
DNA Purification Kit (Promega, Madison, WI, USA) from mouse
liver tissues. Then the DNA was fragmented with Episonic Mul-
tifunctional Bioprocessor (Epigentek, Farmingdale, NY, USA)
into average size of 400 bp with an average power delivery of
170∼190 W for 40 cycles. The size and quality of the fragment
were confirmed with gel electrophoresis and Nanodrop, respec-
tively. The methylated DNA was enriched with MethylMinerTM

Methylated DNA Enrichment Kit (Invitrogen) and the resulting
DNA fragments were isolated by binding to magnetic beads con-
jugated with methylation binding protein MeCP2 and eluted with
high concentration of NaCl followed by purification with ethanol
precipitation in the presence of glycogen. The promoter methy-
lation was quantified by qPCR with ABI qPCR system and levels
of methylation were calculated after normalized with input. The
following primer pairs were used:

β-actin, 5′-GTTCCGAAAGTTGCCTTTTATG-3′; 5′-CAACGA
AGGAGCTGCAAAGAA-3′;

Creld2, 5′-CCGATAGAAGATTACGGTTCTG-3′; 5′-CTGATG
TGGACCAATTGAGG-3′;

Derl3, 5′-GATTCTAGAGTTTTACAGAATGTCA-3′; 5′ATCTA
GAAAAGAACCAATAGCAAG-3′;

Herpud1, 5′-GTTCCGAAAGTTGCCTTTTATG-3′; 5′-AAATT
GTGCCCTCACAAAGC-3′;

Wfs, 5′-CACACACACTTTTTGTACTCG-3′; 5′-GCTATTACA
ATACTGACTAAGGTC-3′;

Yod1, 5′-CCATGATGAAGTGTCTTCCTA-3′; 5′-GCTATTACA
ATACTGACTAAGGTC-3′.

MICROARRAY ANALYSIS OF TRANSCRIPTIONAL EXPRESSION OF
GENES
Total hepatic RNA was isolated from fresh liver tissues using the
RNeasy Mini Kit from QIAGEN following the manufacturer’s
instructions and with an addition of 500 U of an RNase inhibitor
(RNAguard, Amersham Pharmacia Biotech) to each starting mate-
rial of 300 mg. Gene profiling and analysis was performed

in the Cancer Center Microarray Core Facility of Keck School
of Medicine of USC using Illumina’s Sentrix MouseRef-8 V2.0
Expression BeadChip (Illumina, San Diego, CA, USA). The quality
of total RNA from liver samples was evaluated using an Experion
apparatus (Bio-Rad Laboratories, Hercules, CA, USA). Total RNA
(0.5 μg) from each sample was labeled and the hybridized biotiny-
lated cRNA was detected with streptavidin-Cy3 and quantitated
using Illumina’s BeadArray Reader Scanner in accordance with
the manufacturer’s instructions. Microarray data were processed
and analyzed with the Illumina BeadStudio software. Data of the
average signal was filtered with a p-value (<0.05) and normalized
via rank invariant normalization, after which significant changes
(2- to 10-folds) were clustered for ER stress pathways and exported
for heat-mapping comparisons.

STATISTICAL ANALYSIS
Values are expressed as means ± SD unless otherwise indicated.
Statistical analyses were performed using ANOVA for compari-
son of multiple groups or the Student’s t-test for pair-fed groups.
p < 0.05 was considered significant.

RESULTS
EFFECTS OF LONG-TERM ALCOHOL FEEDING ON LIVER TUMOR
DEVELOPMENT
Previous studies demonstrated that genetic ER stress predisposi-
tion with a liver-specific deletion of BiP led to fatty liver injury in
both male and female mice and hepatic tumorigenesis in a signif-
icant portion of female mice at age of greater than 17 months (Ji
et al., 2011; Lau et al., 2013). To know effects of alcohol on the liver
tumorigenesis in the BiP KOs, we fed the mice with an alcohol
HFD abbreviated as alcohol diet. Premature death was observed
in greater than 50% of the KO mice fed a standard high dose of
alcohol diet (6.5 g alcohol/kg body weight). Alcohol doses at less
than 4 g/kg body weight were thus adopted for the experiments.
At the reduced alcohol doses, liver tumors were not observed in
either WT or KO males during an experimental period of 2.5
years. Thus, all subsequent studies and comparisons were focused
on females. Figure 1 demonstrates that liver tumors were observed
in less than 2% of WT females fed alcohol at 12–16 months old
(Old) but not in those at 6–8 months old (Mid). Alcohol induced
liver tumors in 30% of the Mid female KOs and 70% of the Old
female KOs (Figure 1A). The tumor occurrence was associated
with severity of liver injury that was indicated by increased serum
ALT. The alcohol feeding increased ALT by less than threefold in
WT. ALT levels were constitutively higher in the KOs than in WT
(Figures 1B,C), which were further increased by more than five-
fold in response to alcohol (Figure 1C). Interestingly, ALT levels
were significantly higher in the female KOs of older age than those
of middle-aged. Histologically, mild to moderate lipid accumu-
lation was observed in the WT females fed alcohol (Figure 2),
which was consistent with previous findings (Ji et al., 2011). In
contrast, two or more tumor masses were observed in the livers
of the middle-aged female KOs fed alcohol and multiple prolifer-
ative nodules were observed in the livers of the older female KOs
fed alcohol (Figure 2). Neutrophil infiltration was observed in the
liver tumors of KOs fed alcohol. The number of Ki-67 positive
hepatocytes was significantly increased in the KO compared to the
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FIGURE 1 | Effects of alcohol on liver tumorigenesis in mice under

constitutive endoplasmic reticulum (ER) stress. Female mice at age of 6–8
months (Mid) and at age of 14–16 months (Old) were fed alcohol respectively
for 12 months. (A) Liver tumor occurrence in mice fed alcohol and high fat

diet; (B) serum alanine aminotransferase (ALT) levels in wild type mice fed
alcohol; (C) ALT in knockout mice fed alcohol. *p < 0.05; **p < 0.01
compared to pair-fed control; §p < 0.05 compared between mid and old age
groups, n = 5.

WT (Figures 2C,D). More proliferative cells were found in the
older KO mice fed alcohol than in the middle-aged KO fed alcohol
(Figure 2D).

EFFECTS OF CONSTITUTIVE ER STRESS ON METHYLATION OF DNA
PROMOTERS OF UPR MARKERS
DNA methylation of cytosine residues at CpG dinucleotides is
a commonly occurring modification of human DNA. Aberrant
methylation of CpG islands is often related with cancer (Rakyan
et al., 2011). Evidence is emerging for aberrant methylation of
hepatic ER stress pathways (Lenz et al., 2006; Leclerc and Rozen,
2008; Esfandiari et al., 2010). In order to seek evidence to support
a potential role of DNA methylation in constitutive ER stress-
induced liver tumorigenesis in mice of different ages, we focused
on examining the methylation of DNA promoters of selective UPR
stress marker genes: Hsp90b1 (Grp94), Ddit3 (Chop or Gadd153),
Atf6, and Pdia3 (PDI). The CpG island regions of Grp94, Chop,
Atf6, and PDI genes were methylated in DNA isolates from the
livers of WT mice of both age groups while only low and moder-
ate levels of the DNA methylation were observed in the livers of
KO mice of both age groups (Figure 3). There was no difference

in the methylation of the DNA promoters of the UPR marker
genes between the middle-aged and older WT mice (Figure 3).
However, in KO mice without liver tumors, the methylation of
Grp94, Chop, and PDI was lower in the older group than in the
middle-aged group and the methylation of Atf6 was increased in
the older group than in the middle-aged group. In the older KO
mice with liver tumors, overall methylation of Grp94, Chop, or
PDI was increased compared to middle-aged KO and there was a
significant methylation difference between the normal liver por-
tion and the tumor portion of the tumor bearing livers. The methy-
lation of Grp94 and PDI tended to be lower in the tumor portion
of KO mice with liver tumors than in the normal liver portion
whereas the methylation of Chop and Atf6 tended to be higher in
the tumor portion of the tumor bearing livers than the normal liver
portion. These data indicate differential or abnormal methylation
patterns of the UPR factors in the BiP KOs of different ages.

EFFECTS OF LONG-TERM ALCOHOL FEEDING ON PROTEIN EXPRESSION
OF ER STRESS MARKERS
Although both chronic (1–2 months) and acute (1–7 days) treat-
ments with high doses of alcohol (i.e., 6.5 g/kg body weight) have
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FIGURE 2 | Histology of alcohol-induced liver tumors in female mice

under endoplasmic reticulum stress. Female mice at age of 6–8 months
(Continued)

FIGURE 2 | Continued

(Mid) and at age of 12–16 months (Old) were fed alcohol (EtOH) respec-
tively for 12 months. (A) Liver images showing alcohol-induced liver tumors
in knockout (KO) mice. WT, wild type; (B) hematoxylin and eosin (H&E)
staining of the liver tissues reveal alcohol-induced moderate lipid accumu-
lation in WT mice of middle age, severe lipid accumulation in older WT
mice, neutrophil infiltration and nodular formation in KO mice of middle
age, and severe inflammation and multiple neoplastic hepatic lesions in older
KO mice; original magnification: ×100; (C) liver immunohistochemistry with
anti-proliferative cell nuclear antigen Ki-67 antibodies. Original magnification:
×200. (D) Quantitation of anti-Ki-67 positive hepatocytes.

been reported to induce ER stress response that contributed to liver
injury (Ji, 2012; Galligan et al., 2012; Longato et al., 2012; Ramirez
et al., 2013), it is not clear whether long-term (i.e., 1 year) alcohol
feeding at moderate doses induces ER stress response and con-
tributes to the observed hepatic tumorigenesis as well. To know
that, we examined protein expression of the ER stress markers:
GRP94, CHOP, active ATF6 (nATF6), and PDI in the liver of WT
versus KO animals of different age groups. Figure 4 demonstrates
that moderate alcohol increased GRP94 expression in the KO mice
but not in the WT mice. There was no difference of GRP94 expres-
sion between different age groups treated with alcohol. CHOP that
mediates ER stress-induced cell death was low abundant in the
liver tissues in general and was increased in response to alcohol
feeding in WT of both age groups and in KO of the middle-aged
group. CHOP expression in the older KO was significantly differ-
ent from that of the middle-aged KO. Both nATF6 and PDI were
increased in the middle-aged KO and the inductions of nATF6
and PDI appeared to be suppressed in the older KO in response to
alcohol.

MARKED EFFECTS OF ALCOHOL ON TRANSCRIPTIONAL EXPRESSION
OF GENES OF ERAD
DNA microarray analysis of approximately 19,000 transcripts of
known genes was further performed to identify genes that were
related to UPR/ER stress and induced by the long-term moder-
ate alcohol feeding. Three hundred eighty two transcripts were
altered significantly in the alcohol-fed animals. Among them,
molecular chaperones including Grp170, oxygen-regulated pro-
tein 150 (ORP150), PDI, Dnajc3 (DnaJ homolog, subfamily C,
member 3, also known as p58IPK), Grp94, ERdj5 (ER-resident
protein containing DnaJ and thioredoxin domains), and calreti-
culin; ubiquitin and protein degradation factors including Usp 4
and 18, Ube3b, EDEM2, and Der1p-like protein 3 (Derl3), tran-
scription factors regulating apoptosis including Nupr1 (nuclear
protein 1), Chop, Trib3 (tribbles homolog 3), Gadd45, and
FoxO, some nuclear factor-kappaB (NFκB) targeted genes includ-
ing tumor necrosis factor (TNF) related protein 1 and TNF
receptor-1 (TNFR1) were increased, whereas Biklk and hepcidin
1 were decreased in response to the long-term alcohol feed-
ing. Interestingly, the long-term alcohol feeding seemed to have
strong effects on transcriptional expression of genes involved in
ERAD in the KO mice (Figure 5). Two- to eightfold increase
in derl3, Chop, and Ccnd1 (cyclin D1) was detected in the
alcohol-fed KO in comparison with the pair-fed WT. Two- to
eightfold decrease in Eif2ak2 (eukaryotic translation initiation
factor 2α kinase 2), Wfs1 (Wolfram syndrome gene), Xbp1
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FIGURE 3 | Methylation of CpG islands of ER stress gene promoters

in the livers of mice at different ages. Grp94, glucose-regulated
protein 94; Gapdh, glyceraldehyde-3-phosphate dehydrogenase; Chop,
DNA damage-inducible transcript 3, also known as C/EBP homologous
protein; Atf6, activating transcription factor 6; PDI, protein disulfite
isomerase; MW, wild type of middle age; OW, wild type of older age;
MK, BiP knockout of middle age; OK, BiP knockout of older age

without liver tumors; OKL, normal liver portion from tumor bearing
livers of older BiP knockouts; OKT, tumor portion from tumor bearing
livers of older BiP knockouts; *p < 0.05, compared between wild type
of same age; αp < 0.05, compared between middle and older mice of
same genotype; βp < 0.05, compared between normal liver portion
and tumor portion of tumor bearing livers of knockouts of same age.
n = 3.

(X-box binding protein 1), Creb3 (cAMP responsive element
binding protein 3), Nfe2I2 (NF-E2-related factor 2), Vapb (the
vesicle-associated membrane protein B), Casp12 (caspase-12),
Herpud1 (homocysteine-inducible, endoplasmic reticulum stress-
inducible, ubiquitin-like domain member also known as Herp),
Aars (alanyl-tRNA synthetase), Amfr (autocrine motility factor
receptor), E3 ubiquitin protein ligase, Stc2 (stanniocalcin 2 also
known as Hrd1), and Yod1 (hydrolase that removes conjugated
ubiquitin from proteins and participates in ERAD was detected in
the alcohol-fed KO in comparison with the pair-fed WT.

DEFERENTIAL EFFECTS OF LONG-TERM ALCOHOL FEEDING ON DNA
METHYLATION OF ERAD FACTORS
The above strong effects of long-term alcohol on the expression
of ERAD prompted us to examine further methylation of the
promoters of selective ERAD factors. In the middle-aged group,
the methylation of the promoters of Derl3, Creld2, Herp, and
Yod1 was not significantly changed in the KO compared to the WT
(Figure 6). In contrast in the older mouse group, the methyla-
tion of the promoters of Derl3, Creld2, Herp, Wfs, and Yod1 was
lower in the KO than in the WT. In addition, the methylation of
Derl3, Herp and Yod1 was increased in the normal liver portion of
tumor bearing livers of older KO compared to older KO without
liver tumors. In the tumor bearing livers, the methylation of Derl3,
Herp, and Yod1 was reduced in the tumor portion compared to

the normal liver portion whereas the methylation of Creld2 or
Wfs was not significantly changed in the tumor portion compared
to the liver portion. The data suggest a potential association of
impaired methylation of the ERAD factors in the livers of BiP KOs
with aging and liver tumor development.

CO-OCCURRENCE OF ALTERED ERAD AND TUMORIGENESIS SIGNALING
IN THE LIVER OF STRESSED MICE
From our previous research with feeding of a diet contained much
higher purified fat, we found both ERK (the Ras-dependent extra-
cellular signal-regulated kinase) and Jak-Stat pathways were likely
involved in stress induced liver tumorigenesis in this KO model
(Lau et al., 2013). To know also whether the ERAD alterations by
long-term alcohol feeding activate the two signaling pathways of
liver tumorigenesis, we examined protein expression of ERAD and
phosphorylation of ERK1/2 and STAT3. Increased expression of
the transcription factor-ATF4 was detected in the liver of both
middle-aged and older KOs (Figure 7). However, ATF4 was inhib-
ited in the tumor portion compared to the liver portion. Cyclin
D was slightly inhibited in all KOs compared to WT. Consistent
with previous findings, ERα36 (estrogen receptor α variant 36) was
increased in the middle-aged KO and was greatly increased in older
KO and in the tumor portion. DERL3 was increased in both older
and the tumor portion. CRELD2 was increased in both middle-
aged and older KOs. The expression pattern of HERP was similar

Frontiers in Genetics | Genomic Endocrinology October 2013 | Volume 4 | Article 224 | 6

http://www.frontiersin.org/Genomic_Endocrinology/
http://www.frontiersin.org/Genomic_Endocrinology/archive


“fgene-04-00224” — 2013/10/30 — 18:35 — page 7 — #7

Han et al. Altered ERAD in alcohol-induced liver tumors

FIGURE 4 | Immunoblotting analysis of liver proteins of ER stress

markers from alcohol-fed mice. KO, liver-specific knockout of
immunoglobulin heavy chain-binding protein (BiP), also known as
glucose-regulated protein 78 (GRP78); WT, wild type littermate; GRP94,
glucose-regulated protein 94; CHOP, DNA damage-inducible transcript 3,
also known as C/EBP homologous protein; nATF6, activated form of the
activating transcription factor 6; PDI, protein disulfide isomerase; MC,

pair-fed wild type of middle age; ME, alcohol-fed wild type of middle
age; OC, pair-fed knockout of older age; OE, alcohol-fed knockout of
older age; (A) representative western blots of the selective ER stress
markers; (B) relative expression of each marker protein; *p < 0.05
compared between pair-fed and alcohol-fed; αp < 0.05, ααp < 0.01
compared between alcohol-fed middle and older mice of same
genotype. n = 3.
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FIGURE 5 | Effects of alcohol consumption on mRNA expression of

ER-associated degradation (ERAD) factors in the liver of wild type

versus BiP knockout. Ccnd1, cyclin D1; Ddit3, DNA damage-inducible
transcript 3, also known as C/EBP homologous protein (CHOP); Derl2 and
3, Der1p-like protein called derlin; Eif2ak2, eukaryotic translation initiation
factor 2-α kinase 2; Dnajc3, DnaJ (Hsp40) homolog, subfamily C, member
3, also known as p58IPK; Wfs1, Wolfram syndrome gene; Xbp1, X-box
binding protein 1; Creb3, cAMP responsive element binding protein 3;

Nfe2I2, NF-E2-related factor 2; Vapb, the vesicle-associated membrane
protein B; Casp12, caspase-12; Herpud1, homocysteine-inducible,
endoplasmic reticulum stress-inducible, ubiquitin-like domain member; Aars,
alanyl-tRNA synthetase; Amfr, autocrine motility factor receptor, E3 ubiquitin
protein ligase; Yod1, hydrolase also known as Otud2 that removes
conjugated ubiquitin from proteins and participates in ERAD; Stc2,
stanniocalcin 2. The solid arrow indicates strong induction by alcohol; the
dashed arrow indicates strong inhibition by alcohol.

to CRELD2. Phosphorylation of ERK1/2 was detected in older WT
and KOs whereas phosphorylation of STAT3 was observed only in
the KOs with liver tumors (Figure 7). The mRNA expression of
Hrd1 and Yod1 was increased by three- to sixfold in the older KO
with liver tumors (Figure 8A). In addition, the 20S proteasome
activities were reduced by 44% in older KO compared to middle-
aged KO, by 45% in older KO compared to older WT, and by 53%
in the tumor portion compared to the liver portion (Figure 8B).
There were no significant differences in the proteasome activi-
ties between middle-aged KO and middle-aged WT or between
middle-aged and older WT.

DISCUSSION
Alcohol consumption is well known to be a risk factor for
chronic liver disease, from steatosis or fatty liver to steato-
hepatitis to fibrosis to cirrhosis and even liver cancer (HCC;
Gao and Bataller, 2011; Brandon-Warner et al., 2012; Testino
et al., 2012). Alcohol attributes to cancer related death sig-
nificantly (Morgan et al., 2004). Alcohol metabolism directly
contributes to the initiation of cancer. For instance, the first
metabolite of alcohol-acetaldehyde is highly reactive, forming
DNA-acetaldehyde adducts that can incorporate into the genome,

leading to mutagenesis and transformation of healthy cells into
tumor cells. Alcohol consumption induces CYP2E1 and results
in the production of ROS, directly damaging DNA or generating
lipid peroxidation products capable of forming mutagenic DNA
adducts. ROS promotes inflammatory environments damaging to
healthy host tissue leading to the development of cancer through
mutagenesis (Jerrells, 2012). Alcohol-induced organelle stress,
especially ER stress has been associated with a spectrum of liver
diseases (Dara et al., 2011). Evidence for ER stress-induced hep-
atic tumorigenesis is emerging (Wang et al., 2010; Lau et al., 2013).
However, how alcohol influences ER stress and liver tumorigenesis
is not clear. Our current study using the animal model with a liver
KO of the chaperone BiP and under constitutive hepatic ER stress
may reveal a few critical clues with respect to alcohol-induced
cancer. First, the long-term moderate alcohol-induced liver tumor
development was observed only in the ER stress-predisposed KO
animals. This suggests that additional insults such as genetic and
environmental stresses may be required for the alcohol-induced
hepatic tumorigenesis. This can also explain why, to date, no
rodent model has demonstrated the formation of HCC in the
setting of chronic alcohol consumption alone. Alcohol-induced
HCC is often reported under circumstantial conditions such as an
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FIGURE 6 | Methylation of CpG islands of ERAD gene promoters in

the liver of alcohol-fed mice of different ages. Derl3, Der1p-like protein;
Creld2, cysteine-rich with EGF-like domains 2; Herp, homocysteine-
inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain
member also known as Herpud1; Wfs1, Wolfram syndrome gene; Yod1,
hydrolase that removes conjugated ubiquitin from proteins and
participates in ERAD. MW, middle-aged wild type; MK, middle-aged

knockout; OW, older wild type; OK, older knockout without liver tumor;
OKL, the normal liver portion of tumor bearing livers of KO; OKT, the
tumor portion of tumor bearing livers of KO. *p < 0.05, compared
between wild type of same age; αp < 0.05, compared between middle
and older mice of same genotype; βp < 0.05, compared between normal
liver portion and tumor portion of tumor bearing livers of knockouts of
same age. n = 3.
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FIGURE 7 | Effects of alcohol and aging on ERAD and tumorigenesis

pathways. ERα, estrogen receptor α variants (ERα36, 46, and 66);
p-ERK1/2, phosphorylated extracellular signal-regulated protein kinases 1
and 2; p-STAT3, phosphorylated signal transducers and activators of
transcription; MW, middle-aged WT; MK, middle-aged KO; OW, older WT;
OK, older KO; OKL, the liver portion of tumor bearing livers of older KO;
OKT, the tumor portion of tumor bearing livers of older KO.

alcohol-preferring (P) rat line that voluntarily drinks large quan-
tities of alcohol (Yip-Schneider et al., 2011), in combination with
obesity (Thompson et al., 2013) or co-dosing with carcinogenic
diethylnitrosamine (DEN; Brandon-Warner et al., 2012), in the
presence of expression of hepatitis C virus (HCV) components
(Machida et al.; 2009), or consuming alcohol for an excessively
long period of more than 70 weeks (Tsuchishima et al., 2013).
While some of the observations reported by others may not be
clinically relevant, our results support the concept of necessity
of additional insults for the alcoholic HCC development and
are significant since alcohol-induced ER stress occurs in human
alcoholics and emerging evidence has already demonstrated that
polymorphic responses (SNPs) of BiP are associated with alcohol,
HCC, and other types of cancer in the human population
(Zhu et al., 2013).

FIGURE 8 | Effects of alcohol and age on mRNA expression of ERAD

factors and proteasome activities. (A) Relative expression of mRNA of
Hrd1 (synoviolin, an E3 ubiquitin ligase) and Yod1 analyzed with quantitative
PCR and normalized with Gapdh; (B) comparison of 20S proteasome
activities between wild type (WT) and knockout (KO). Data are presented
as RFU (relative fluorescent unit) recorded with a fluorometer, n = 5. PC,
positive control from analysis kit; BG, negative background; MW,
middle-aged WT; MK, middle-aged KO; OW, older WT; OK, older KO; OKL,
the liver portion of tumor bearing livers of older KO; OKT, the tumor portion
of tumor bearing livers of older KO.

Second, alcohol-induced ER stress and liver cancer may also
depend on aging of this animal model. We found in the present
study that a tendency for liver cancer development was higher in
ER stress-predisposed (KO) mice fed alcohol at older age (12–16
months) than at middle age (4–6 months). Remarkably robust and
consistent impacts on ALT levels and the ER stress were detected
in the older mice. Long-term alcohol apparently suppressed the
protective UPR, i.e., inhibition of GRP94, PDI, and ATF6 and
promoted ER stress-mediated elimination of injured cells, i.e.,
increase of CHOP. Aging might deteriorate the shift from adap-
tion by the UPR to injury by alcohol. The underlying mechanism
is currently not known and may be complex. In other systems,
aging had a prominent role in determining genomic DNA methy-
lation and aberrant methylation of CpG islands has often been
related with cancer (Rakyan et al., 2011; Ozen et al., 2013). Alco-
hol is known to affect DNA methylation by its interference with
one carbon metabolism and by alteration of the methylation of
specific promoters (Medici and Halsted, 2013; Ozen et al., 2013).
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In relevant to the animal model with constitutive ER stress, we
assumed that aging might impair methylation of DNA promoters
of the UPR components. As we expected, there was no difference
in the methylation of the DNA promoters of the UPR marker
genes between the middle-aged and older WT mice (Figure 3).
However, differential effects of alcohol on the methylation of ER
components were observed in the KO mice. The methylation of
Grp94, Chop, and PDI was lower in the older KO group than in the
middle-aged KO group whereas the methylation of Atf6 was higher
in the older KO group than in the middle-aged group. In addi-
tion, there were significant differences between older KO with and
without liver tumors and between normal liver portion and tumor
portion of tumor bearing livers. For instance, hypomethylation of
Grp94 and hypermethylation of Chop were seen in the tumor
portion of older KO mice, which were respectively consistent
with increased protein expression of GRP94 and decreased protein
expression of CHOP in the tumors. Thus, our findings indicate
that alterations of methylation patterns of the UPR/ER stress fac-
tors in the aging BiP KOs are likely contribute to liver tumor
development.

Third, proteins that fail to fold and assemble into their mature
forms are usually removed by the ERAD process that depends
on activities of ubiquitin and proteasome. Although it is not clear
based on the current data whether the methylation of UPR causally
influences the methylation of ERAD or vice versa, the constitu-
tive ER stress in the liver of animals without the chaperone BiP
must burden the ERAD, which may be worsened by additional
stress such as altered cellular levels of S-adenosyl-L-methionine
(the principal biological methyl donor) as a consequence of
chronic alcohol consumption (Kharbanda, 2013). We support this
assumption with the observations that the effects of the long-
term alcohol on transcriptional and translational expression of
the ERAD related genes including derlin 3, Creld2, Herpud1, and
Wfs1 were stronger than on the expression of the UPR related
genes such as Chop, cyclin D, and Xbp-1. The alterations of ERAD
expression corresponded to decreased proteasome activities and
were age-related. In the middle-aged groups, methylation of the
promoters of Derl3, Creld2, Herpud1, and Yod1 was not altered
significantly in the KO than in the WT (Figure 6) whereas in the
older mouse groups, the methylation of the promoters of these
ERAD genes was lower in the KO than in the WT. Particularly,
the methylation of Derl3 and Herp was reduced in the tumor
portion of older KOs, methylation of Creld2, Wfs, and Yod1 was
not changed in the normal liver portion, and mRNA expression
of Hrd1 and Yod1 was remarkably increased in both liver and
tumor portions of KO with liver tumors. These differential effects
of alcohol and aging on the ERAD factors may reflect a severe
impairment of protein processing in the liver under long-term
stress. Therefore, we speculate that long-term alcohol has pro-
found effects on protein quality control in aging animals, which
in general, affects protein turnover leading to accumulation of
excessive unfolded proteins, which continuously stimulates patho-
logical changes leading to tumorigenesis. One identified potential
tumorigenic factor in this study is the abundant estrogen receptor
α variant ERα36, which might result either from malfunction-
ing of proteasomal degradation, impaired physical interactions
between cyclin D and the authentic ERα, or alternative splicing

of internal exons of ERα (Zwijsen et al., 1997; Fu et al., 2004;
Rao et al., 2011; Lau et al., 2013). ERα36, perhaps together with
other improperly processed proteins yet to be identified, inter-
fered with phosphorylation of ERK1/2 and STAT3 in the older KO
female fed alcohol resulting in high incidence of tumors. The exact
molecular mechanisms up and downstream of ERα36 pertinent
to UPR/ER stress signaling or abnormal methylation await further
investigations.

Fourth, there are reports that human males are more likely
developing HCC than females in some regions of the world
(Venook et al., 2010; Center and Jemal, 2011). However, the
male prevalence of HCC is circumstantial and not contradic-
tory to our findings for a couple of reasons. The male prevalence
usually occurs in areas such as Asia where men tend to expose
themselves more to additional HCC risk factors such as hepati-
tis B virus (HBV) and aflatoxin from contaminated maize and
peanut. The other reason is that higher levels of estrogen in young-
and middle-aged females may play some protective role against
HCC development, which might be age-dependent. There are epi-
demiological data demonstrate that the incidence of HCC drops
significantly in old individuals of both genders (El-Serag, 2011).
Since the age range of the experimental animals of this study cor-
responds to humans aged of greater than 50, which is generally
a post-menopause age for women, the possible protective effects
of estrogen are diminishing and there should be equal odds of
HCC development for aged men and women without additional
gender-specific risks. In this respect, the impaired expression of
estrogen receptor α caused by long-term ER stress in females con-
sists of a gender-specific risk and is most likely responsible for the
high incidence of liver tumors observed in aged females.

In summary, in ER stress-predisposed older animals fed alco-
hol for a prolonged period, we observed marked alterations in
expression and promoter methylation of ERAD genes that were
co-present with development of liver tumors. We propose that
long-term alcohol consumption and aging may promote liver
tumorigenesis through interfering with DNA methylation and
expression of genes related to the ERAD.
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