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a b s t r a c t

Drug repositioning aims to find new indications for existing drugs in order to reduce drug development
cost and time. Currently,there are numerous stories of successful drug repositioning that have been
reported and many repurposed drugs are already available on the market. Although drug repositioning
is often a product of serendipity, repositioning opportunities can be uncovered systematically. There
are three systematic approaches to drug repositioning: disease-centric approach, target-centric and
drug-centric. Disease-centric approaches identify close relationships between an old and a new indica-
tion. A target-centric approach links a known target and its established drug to a new indication.
Lastly, a drug-centric approach connects a known drug to a new target and its associated indication.
These three approaches differ in their potential and their limitations, but above all else, in the required
start information and computing power. This raises the question of which approach prevails in current
drug discovery and what that implies for future developments. To address this question, we systemati-
cally evaluated over 100 drugs, 200 target structures and over 300 indications from the Drug
Repositioning Database. Each analyzed case was classified as one of the three repositioning approaches.
For the majority of cases (more than 60%) the disease-centric definition was assigned. Almost 30% of the
cases were classified as target-centric and less than 10% as drug-centric approaches. We concluded that,
despite the use of umbrella term ‘‘drug” repositioning, disease- and target-centric approaches have dom-
inated the field until now. We propose the use of drug-centric approaches while discussing reasons, such
as structure-based repositioning techniques, to exploit the full potential of drug-target-disease
connections.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

1.1. Drug repositioning to tackle pharmaceutical R&D decline

Drug discovery is a complex and challenging process with an
estimated success rate of only 2% [1]. Such a high rate of failure
raises the average cost of drug discovery to US $2–3 billion [2].
However, it is sometimes possible to use approved drugs or inves-
tigational molecules to treat conditions that differ from the
intended purpose. Sildenafil is a well-known example that was
first developed to treat hypertension but was eventually commer-
cialized for the treatment of erectile dysfunction [3]. The story of
dimethyl fumarate, which was used in Europe for over 20 years
in the treatment of psoriasis [4], represents another interesting
example of drug repositioning. Only recently has dimethyl fuma-
rate been re-discovered and in 2013 approved to treat multiple
sclerosis [5]. Even undesired effects of a drug can be beneficial in
the context of another indication. In the tragic case of thalidomide,
its strong antiangiogenic activity turned out to be useful for the
treatment of multiple myeloma [3]. Investigating the efficacy of
approved or discarded drugs for new indications using an approach
called drug repositioning can in fact overcome some of the obsta-
cles in drug discovery, such as the necessity to meet quality stan-
dards [6]. Reducing the failure rate drug repositioning also
represents a reasonable chance to identify pharmacological tools
against rare diseases and make personalized medicine more
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affordable by reducing the failure rate and therefore average cost
of the drug discovery process [7–9].

1.2. Drugs, targets, and diseases

Like the above-mentioned cases of sildenafil and thalidomide,
many drug repositioning stories derive from serendipitous or a
posteriori observations. However, a systematic and rational strat-
egy to link a known drug to a new indication is necessary to fully
exploit the advantages of drug repositioning. Fig. 1 shows a simpli-
fied classification of different rational repositioning approaches.
For all of these approaches, a functionally altered protein target
plays a key role in the disease and a drug treats the disease by
inhibiting or activating the target. Thus, drug repositioning can
act on each of these three levels: disease, target, or drug. Focusing
on the drug/disease relationship is the most direct way to repur-
pose a molecule since it is driven by the hypothesis that a drug’s
use can be expanded from the original to a closely related indica-
tion. For instance, the tyrosine kinase inhibitor nilotinib was orig-
inally approved for the treatment of imatinib-resistant chronic
myelogenous leukemia [10]. A few years later, Novartis proposed
the repositioning of nilotinib to treat gastrointestinal stromal
tumors. Disease-centric repositioning, as we define it, consists of
the re-profiling of drugs among different types of a disease, such
as two types of cancer. The underlying assumption for disease-
centric repositioning is that different types of a disease share
similar guiding principles. In the case of cancer, these guiding prin-
ciples are summarized in the hallmarks of cancer [11]. Despite
such commonalities, even closely related indications can have cru-
cial differences that result in the failure of repositioning. For exam-
ple, Novartis’ efforts to expand nilotinib to treat gastrointestinal
stromal tumors were abandoned after a phase III trial found that
the drug was not advisable to use for this indication [12]. Comple-
mentary to a disease-centric approach, target-centric repositioning
builds on a novel link between a new indication and an established
target. For example, the tyrosine-protein kinase ABL has recently
been suggested as a novel target in Parkinson’s disease [13]. Hence,
its inhibitors, such as nilotinib, might be effective against this syn-
drome [14]. This indication shift from cancer to neurodegeneration
is driven by the target tyrosine-protein kinase ABL and represents a
case of target-centric repositioning. Lastly, drug-centric reposition-
ing occurs when a novel target connected to a certain indication is
predicted for a given drug, as shown in Fig. 1. For example, valproic
acid is for bipolar disorder and seizures because of its ability to
bind to the mitochondrial enzymes succinate-semialdehyde dehy-
drogenase (ALDH5A1) and 4-aminobutyrate aminotransferase
(ABAT). Valproic acid, however, does have an off-target interaction
with the histone deacetylase 2 (HDAC2), a protein that plays a role
in many types of cancers. It has been hypothesized that valproic
acid induces differentiation, growth arrest, and apoptosis in cancer
cells, leading to its repositioning to the treatment of neoplastic
conditions such as familial adenomatous polyposis [15].

1.3. Drug-target interaction prediction in drug repositioning

A precise characterization of drug-target interactions allows for
the generation of novel rational repositioning hypotheses follow-
ing the drug-centric approach. Experimental identification of bind-
ing interactions can be challenging and expensive. Therefore,
computational techniques for drug-target interaction prediction
have gained a lot of attention in rational drug repositioning. Com-
putational approaches can generally be divided into ligand-based,
target-based, and machine learning-based approaches [16].
Ligand-based methods predict the binding affinity of ligands by
comparing the candidate ligand with compounds that are known
to be active against the therapeutic protein target. The perfor-
mance of ligand-based approaches, such as Quantitative Struc-
ture–Activity Relationship (QSAR) and pharmacophore modeling,
depends on the number of ligands known to be active against
the target [17]. Target-based approaches, such as docking and
binding-site similarity, are powerful tools for the identification of
new repositioning cases. However, their performance is limited
due to the scarce availability of target structures, as in the case
of G-protein-coupled receptors (GPCRs). [17,18]. Machine learning
approaches predict novel drug-target pairs by identifying similari-
ties among both compounds and targets. These approaches are
generally classified into feature vector-based machine learning
and similarity-based machine learning. Similarity-based machine
learning methods can be further grouped into three categories:
Kernel-based approaches, matrix factorization-based approaches,
and network-based approaches [19]. Compared to the time con-
suming docking and information-demanding QSAR approach,
machine learning methods can be faster and more efficient [20].
Nonetheless, some limitations to the machine learning approaches
arise from the databases they commonly use, which sometimes
miss important aspects of drug-target interactions, such as their
dose-dependence and quantitative affinities [21].

1.4. Structure-based drug-target interaction prediction for drug
repositioning

Several techniques are applied to predict drug-target interac-
tions. These techniques commonly utilize structural information
of the active or drug-binding site of the target to infer novel con-
nections between drugs and targets. A study by Haupt et al. has
shown that the binding of a drug to multiple different targets cor-
relates with the binding site similarity of these targets. This sug-
gests that there is a role for structural binding site analyses in
drug repositioning [22]. All of the above-mentioned techniques
have been successfully applied in drug repositioning to predict
new therapeutic candidates. For example, Li et al. used a
docking-based approach to find novel targets for existing drugs
by computationally screening the whole druggable proteome. They
validated nilotinib as a potent inhibitor of mitogen-activated pro-
tein kinase 14 (MAPK14), which adds an anti-inflammatory poten-
tial to nilotinib’s effects [23]. A similar strategy was used to
identify new drugs against multi-drug resistant (MDR) and exten-
sively drug resistant (XDR) tuberculosis. Based on the structural
and interaction similarity between the original target catechol o-
methyltransferase (COMT) and the new target inhibin alpha chain
(INHA), the combination of anti-Parkinson’s Disease drug tol-
capone with the drug entacapone (a levodopa anti-Parkinson’s Dis-
ease enhancer) has been predicted to be effective for the treatment
of MDR and XDR tuberculosis [24]. Docking scores have also been
fused with other structural information using data integration
techniques. For example, the ‘‘train, match, fit, and streamline”
(TMFS) method combines docking scores, ligand and receptor
topology descriptor scores, and ligand-target interaction points to
predict potential new drug-target interactions and provide struc-
tural insight into their mechanisms of action. Using this method,
Dakshanamurthy et al. identified and validated two novel drug-
target interactions: mebendazole-vascular endothelial growth fac-
tor receptor 2 (VEGFR2) and celecoxib-cadherin-11 (CDH11) [25].
Furthermore, several structure-based non-docking approaches
found an extensive application in drug repositioning in order to
overcome inefficiency and inaccuracy of docking. For instance,
using information about the active-like state of the serotonin
receptor 5-HT2C in complex with ergotamine and the inactive-
like state of the same receptor in complex with ritanserin, Peng
et al. predicted the binding of ergotamine to the delta-opioid
receptor [26]. In another non-docking structure-based approach,
Salentin et al. used interaction pattern comparison to identify



Fig. 1. Different concepts behind drug repositioning. The relationships among drugs (D), targets (T) and indications (I) are represented for the different drug repositioning
concepts. According to the receptor theory, the interaction of a small molecule drug (D) with one or more targets (T) has several biological effects, which can be useful for a
therapeutic indication (I) or may produce undesired side effects (S). In disease-centric drug repositioning, a drug’s application is expanded from the original indication (I) to a
closely related one (I2). In target-centric drug repositioning, the identification of a new indication (I2) is linked to a well established therapeutic target and in drug-centric
drug repositioning, a newly identified drug target (T2) links the drug to a new indication (I2).
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novel repositioning candidates against the cancer target heat shock
protein beta-1 (Hsp27). While analyzing the interaction patterns of
the Hsp27 inhibitor brivudine, they found approved anti-malaria
drug amodiaquine to be a promising anti-cancer agent [27].
Although many successful cases have proven, structure-based drug
repositioning is limited by the little quantity of available structural
information, particularly concerning certain classes of drug targets
such as GPCRs.
1.5. Pros and cons of disease-, target-, and drug-centric repositioning

At first glance, disease-centric repositioning may appear faster
and more linear than target- and drug-centric repositioning. A
disease-centric repositioning hypothesis is based on a direct con-
nection between the drug and its indication, therefore it allegedly
avoiding a deeper understanding of the physicochemical interac-
tions between drug and therapeutic targets. However, if similar
diseases were always directly connected, one cancer drug would
cure all other forms of cancer. Instead, disease-centric approaches
require a detailed understanding of the disease phenotype and the
underlying molecular processes in order to seek novel indications.
Furthermore, disease-centric approaches may be affected by
patents as the repositioning candidate and the corresponding old
indication are usually protected by patent claims. Hence, the com-
mercial exploitation of a disease-centric repositioning needs to be
closely coordinated with the related patent claims. Systematic
approaches to disease-centric repositioning typically define
numeric similarities of diseases. These approaches include compre-
hensive and computational comparisons of disease phenotypes
and drug side effects [28,29] as well as comparisons of gene
expression profiles [30]. In contrast to disease-centric approaches,
target-centric repositioning approaches only search drugs where
the old and new indications differ more clearly from one another.
Therefore, it becomes less likely that the new indication is already
covered by patents for the drug. However, a novel link from the
target to a new indication is a rare finding. Consequently, these
approaches are limited by the technologies available to uncover
new target-disease associations. In addition to screening methods
such as deep sequencing, micro-arrays and RNAi, which can pro-
vide clues to candidate targets, the target-centric approach
requires a deep understanding of the molecular relation between
the target and the disease. Drug-centric repositioning, on the other
hand, can be considered the least direct approach because the drug
is only linked to a novel indication via the discovery of a target that
is already established for this indication. The best-known
structure-based techniques for drug-centric repositioning are:
molecular docking to screen single compounds against a library
of protein structures [31–37]; pharmacophore modelling algo-
rithm to screen protein–ligand 3D pharmacophoric features
describing the ligand’s binding [38]; and protein–ligand interac-
tion profile similarity approaches, which compare interaction pat-
terns in the form of numerical fingerprints to study binding mode
similarities of drugs and identify novel targets for the repositioning
candidates [39–41]. All of the above techniques have been proven
to be effective tools to illuminate new drug repositioning opportu-
nities. However, the availability of data is a major limitation. Drug-
centric approaches focus on the drug to be repurposed to another
target/disease. Therefore, a crystallized structure describing the
binding mode of the drug to its original targets is required. It is
only possible to perform a screening to search for similar charac-
teristics in other structures if this crystallized structural informa-
tion is available. Since each repositioning approach has
advantages and disadvantages, we performed a retrospective anal-
ysis to examine their distribution to the real cases of successful
drug repositioning and to study the role of drug-target interaction
prediction in drug repositioning.
2. Results

Which of the three approaches dominates the field of drug
repositioning? Are drug-target interaction predictions a driving
force of drug repositioning? To address these questions, we ana-
lyzed all of the repositioned small molecule drugs that are active
against a protein target and present in the Repurposed Drug Data-
base (RDD, http://www.drugrepurposingportal.com/repurposed-
drug-database.php). We performed a classification of repurposed
drugs according to the criteria specified in the ‘‘Methods” section.
With this method, we determined the number of repositioning
cases that can be assigned to the drug-centric approach. It should
be noted that other classification criteria could be applied to shed
light on different characteristics, which would generate different
results from the same data set. It is also important to specify that
the database does not contain any temporal information on the
repositioning approaches. The classification results are summa-
rized in Fig. 2.



Fig. 2. Summary of drug classifications. The bar chart shows the percentage of
different typologies of repositioning approaches according to our classification.
More than half of the analyzed cases (59%) were labeled as disease-centric
repositioning cases, a third of the drugs (36%) were assigned to target-centric
repositioning, while only a small group (6%) of cases were classified as drug-centric.
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2.1. Current drug repositioning set contains 128 known cases of small
molecule drugs

The merging of the RDD with the Molecular Drug Targets (MDT)
data has led to a compiled data set comprised of 196 drug reposi-
tioning cases, 263 unique targets and 333 unique indications. After
Fig. 3. Frequency of repositioning cases among indication pairs. The figure shows the freq
disease classes are plotted on both axes and the number of repurposed drugs from one d
the respective disease class pair. The darkest squares lay on the central diagonal, showing
disease class. On the left side of the plot, the number of repositioned drugs is displayed
removing the cases with non-small molecule drugs or non-protein
targets, 128 repositioning cases constituted the starting point for
our classification. A list of these cases is provided in Annex I.
2.2. The majority of repositioning cases (59%) was discovered via a
disease-centric approach

To identify and characterize diseases that are susceptible to
drug repositioning, we first determined the number of repurposed
drugs for each type of disease (Fig. 3). With this in mind, diseases
were distinguished by the root Medical Subject Headings (MeSH)
term key. This key is a comprehensive and controlled vocabulary
that provides a consistent way to retrieve information that may
be described by variable terminology, thus facilitating indexing
and searching. The MeSH vocabulary is organized into groups, of
which one group is diseases (group C). The most common MeSH
disease categories in the RDD are various neoplasms, immune sys-
tem diseases, pathological signs and symptoms (clinical manifesta-
tions that can be either objective when observed by a physician, or
subjective when perceived by the patient) and nervous system dis-
eases. It is something worth nothing that repositioning cases not
only exist in MeSH group C (diseases) but also in groups E01 (Diag-
nosis), F02 (Psychological Phenomena and Processes), F03 (Mental
Disorders), G08 (Reproductive and Urinary Physiological Phenom-
ena), and G11 (Musculoskeletal and Neural Physiological Phenom-
ena). The analysis of the ‘‘original indication – secondary
uency of repositioning cases for each pair of primary and secondary indications. The
isease class to another is expressed by the color intensity of the square representing
that the majority of successful repositioning cases was discovered within the same
for the new indication.
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indication” pairs for the small molecule drugs (see Fig. 3) revealed
that the most interesting repositioning cases are combinations of
bacterial infections (C01) and parasitic diseases (C02 and C03) with
other types of diseases. In these cases, the repositioning occurred
either to a homolog protein with conservation of the function or
to a completely different protein target. The antimycotic drug keto-
conazole is an example of repositioning to a homologous protein
which has been repositioned from a fungal target to the human
homolog (Cytochrome P450) to treat cyclosporine-induced
nephrotoxicity. Doxycycline, on the other hand, is an example of
repositioning to a distinct target as it has been repurposed from
an inhibitor of bacterial 30S ribosomal proteins S4 and S9 to an
inhibitor of human metalloproteinase to treat stomatognathic dis-
ease. However, such repositioning cases are rare. Strikingly, the
main diagonal of the ’original indication – secondary indication’
heatmap (Fig. 3) is the most populated, meaning that most drugs
were repositioned within the same disease class. In total, 76 out
of the 128 cases belong to the disease-centric repositionings. Most
drugs (16 drugs) were repositioned from one type of neoplasm to
another (C04–C04). For instance, the kinase inhibitor nilotinib
has been repurposed from the treatment of Philadelphia chromo-
some positive chronic myelogenous leukemia to the treatment of
gastrointestinal stromal tumors (Table 1). The repositioning within
immune system diseases (C20-C20) is also very common with a
total of 13 cases. For example, the steroid beclomethasone has
been repositioned from the treatment of rhinitis to treat intestinal
graft-versus-host disease (Table 1). Among nervous system dis-
eases (C10-C10), eight repositioning cases were detected, including
the repositioning of intravenous midazolam hydrochloride from its
use as a preoperative sedation to being used against epileptic sei-
zure activity (Table 1). Five cases were identified within ‘‘patholog-
ical conditions, signs, and symptoms” (C23-C23). In one of these
cases, the repurposing of aminocaproic acid from enhancing
hemostasis to topical treatment of traumatic hyphema of the eye
Table 1
Disease-centric repositioning cases. The 76 disease-centric repositioning cases grouped by
secondary therapeutic indication fall within the same MeSH category, no further analyses o
of repositioned drugs.

N MeSH category Drug names

1 Neoplasms Alitretinoin, Arsenic trioxide, Clofarabine, D
hydrochloride, Floxuridine, Idarubicin, Lapa
Paclitaxel protein-bound particles for inject

2 Immune System Diseases Azathioprine, Beclomethasone 17,21-diprop
Lenalidomide, Mesalamine, Mycophenolate
Pralatrexate, Thalidomide, Vorinostat

3 Nervous System Diseases Apomorphine, Clonazepam, Gabapentin, Ga
Tetrabenazine

4 Bacterial infections and Mycoses Aztreonam, Clindamycin, Doripenem, Levofl
5 Digestive System Diseases Fluorouracil, Nitazoxanide, Nitisinone, Synt
6 Mental Disorders Aripiprazole, Atomoxetine hydrochloride, F
7 Pathological Conditions, Signs and

Symptoms
Aminocaproic acid, Bupivacaine, Medroxyp
hydrochloride

8 Respiratory Tract Diseases Ambrisentan, Bosentan, Mifepristone, Nitric
9 Virus Diseases Disoproxil fumarate, Ribavirin, Tenofovir
10 Cardiovascular Diseases Bethanidine Sulfate, Nitroprusside
11 Female Urogenital Diseases and

Pregnancy Complications
Progesterone, Testosterone propionate

12 Hemic and Lymphatic Diseases Anagrelide, Decitabine
13 Behavior and Behavior

Mechanisms
Bupropion

14 Diagnosis Synthetic porcine secretin
15 Eye Diseases Brimonidine
16 Musculoskeletal and Neural

Physiological Phenomena
Mepivacaine

17 Nutritional and Metabolic
Diseases

Miglustat

18 Parasitic Diseases Praziquantel
(Table 1). Based on phenotypical and handling similarities, the
groups C10, C23, and F03 (mental disorders) could even be com-
bined to a large group of brain related diseases and perception
modification. This would form the most frequent disease category
in disease-centric drug repositioning. The overall high proportion
of disease-centric repositioning cases could be explained by the
existence of therapeutic targets that play a key role in the treat-
ment of multiple similar diseases.

2.3. 36% of the repositioning cases fall into the target-centric category

For the 52 remaining repositoning cases (128 total minus 76
disease-centric cases) the drug targets were linked to the original
and secondary indications using data mining and literature infor-
mation. If the targets were the same for both indications or showed
a protein sequence identity of at least 30% [42], the drug reposi-
tioning was classified as target-centric. There were 5 target-
centric repositioning cases based on the binding of the drug to
two homologous targets with the same function (orthologs) (see
Table 2). The calculated sequence identities of the protein targets
were 49% for ketokonazole, 57% for eflornithine, 60% for dapsone,
65% for atovaquone and 66% for trimetrexate. These values are
much higher than the herein defined 30% similarity threshold. In
total, 45 drug repositioning cases were classified as target-centric
(Table 2). An example is chlorpromazine, whose interaction with
the serotonin receptor HTR2A is involved in both the antiemetic/
antihistamine indication (pathological conditions, signs and symp-
toms) and the non-sedating tranquillizer action (mental disorder)
(Table 2). As an inhibitor of cyclooxygenase-2, the non-steroidal
anti-inflammatory drug celecoxib was originally approved for the
treatment of osteoarthritis and adult rheumatoid arthritis (im-
mune system diseases). It has subsequently been repurposed to
familial adenomatous polyposis (congenital, hereditary and neona-
tal diseases) (Table 2).
indication category according to the MeSH tree classification. Since the original and
n the targets were carried out. The MeSH indication names are ordered by the quantity

Number
of drugs

aunorubicin liposomal, Doxorubicin, Erlotinib
tinib, Nilotinib, Paclitaxel, Paclitaxel aqueous gel,
ion suspension, Pazopanib, Sorafenib, Toremifene

16

rionate, Fludarabine phosphate, Leflunomide,
mofetil, Nabumetone, Nevirapine, Pentostatin,

13

lantamine, Midazolam HCl, Memantine, Riluzole, 8

oxacin, Rifabutin 5
hetic human secretin, Ursodiol, 5
luoxetine, Milnacipran, Pramipexole 5
rogesterone acetate, Midazolam nasal spray, Tramadol 5

oxide, Tiotropium bromide 5
3
2
2

2
1

1
1
1

1

1



Table 2
Target-centric repositioning cases. Disease (MeSH category) and protein target (gene name or Uniprot ID) for both the primary and the secondary indication are shown. For 40
cases of target-centric repositioning, the target UniprotIDs are identical for original and secondary indication. Five drugs have been repurposed to/from a non–human ortholog
target with a sequence similarity higher than 30%. The drugs are listed in alphabetical order. The references of target-disease associations retrieved from PubMed are given in the
respective cells.

N Drug name Original Indication Secondary Indication

MeSH Category Gene Target MeSH Category Gene Target

1 Adenosine Congenital, Hereditary and
Neonatal Diseases

ADORA1/2A/2B/3 Nervous System Diseases ADORA1/2A/2B/3

2 Albuterol Respiratory Tract Diseases ADRB2 Pathological Conditions,
Signs and Symptoms

ADRB2

3 Alfetanil Musculoskeletal and Neural
Physiological Phenomena

OPRM1 Nervous System Diseases OPRM1

4 Alprostadil Mental Disorder PTGER1/PTGER2 Cardiovascular Diseases PTGER1/PTGER2
5 Amiloride Nutritional and Metabolic

Diseases
SCNN1A Congenital, Hereditary and

Neonatal Diseases
SCNN1A

6 Atovaquone Pneumonia Cytochrome b
(Pneumocystis carinii)

Toxoplasma gondii
encephalitis

Cytochrome b
(Toxoplasma gondii)

7 Azacitidine Hemic and Lymphatic
Diseases

DNMT1/3A Neoplasms DNMT1/3A

8 Buprenorphine Eye Diseases OPRK1,OPRM1,OPRD1 Mental Disorder OPRK1,OPRM1,OPRD1
9 Capsaicin Pathological Conditions, Signs

and Symptoms
TRPV1 Cardiovascular Diseases TRPV1

10 Celecoxib Immune System Diseases PTGS2 Congenital, Hereditary and
Neonatal Diseases

PTGS2

11 Chlorpromazine Pathological Conditions, Signs
and Symptoms

DRD2-4,HTR2A/2C,HRH1/
4

Mental Disorder HTR2A

12 Dapsone Dermatitis herpetiformis Dihydropteroate
synthase (Mycobacterium
leprae)

Toxoplasmosis Dihydropteroate
synthase (Toxoplasma
gondii)

13 Desmethylmifepristone Respiratory Tract Diseases NR3C1 Endocrine System Diseases NR3C1
14 Dexamethasone Eye Diseases NR3C1 Immune System Disorders NR3C1
15 Difluprednate Pathological Conditions, Signs

and Symptoms
NR3C1 Eye Diseases NR3C1

16 Dihydrodigitoxin Cardiovascular Diseases ATP1A1-4 Endocrine System Diseases ATP1A and more [43]
17 Dimethylstilberstrol Female urogenital Diseases

and Pregnancy Complications
KEAP1 Skin and Connective Tissue

Diseases
KEAP1

18 Duloxetine Mental Disorder SLC6A,SLC6A4 Pathological Conditions,
Signs and Symptoms

SLC6A4

19 Eflornithine African trypanosomiasis Ornithine decarboxylate
(Trypanosoma Brucei)

Pneumocystis carinii
pneumonia

Ornithine
decarboxylate
(Pneumocystis carinii)

20 Epoprostenol Sodium Respiratory Tract Diseases PTGIR,PTGER1 Pathological Conditions,
Signs and Symptoms

PTGIR,PTGER1

21 Ethinyl Estradiol Respiratory Tract Diseases ESR1 Skin and Connective Tissue
Diseases

ESR1

22 Everolimus Immune System Diseases FKBP1A Digestive System Diseases FKBP1A
23 Finasteride Male Urogenital Diseases SRD5A1/2 Pathological Conditions,

Signs and Symptoms
SRD5A1/2

24 Glycopyrrolate
Bromide

Digestive System Diseases CHRM1-5 Stomatognathic Diseases CHRM1-5

25 Guanethidine Cardiovascular Diseases SLC6A2 Nervous System Diseases SLC6A2
26 Guanfacine Mental Disorder ADRA2A/2B/2C Congenital, Hereditary and

Neonatal Diseases
ADRA2A/2B/2C

27 Histamine Immune System Diseases HRH1 Neoplasms HRH1
28 Iloprost Respiratory Tract Diseases PTGIR Cardiovascular Diseases PTGIR
29 Ketokonazole Fungal infection Cytochrome P450

(Candida albicans)
Nephrotoxicity induced by
cyclosporine

Cytochrome P450
(Homo sapiens)

30 Levomilnacipran Mental Disorder SLC6A2/4, Nervous System Diseases SLC6A2
31 Mecamylamine

Hydrochloride
Cardiovascular Diseases CHRNA3/B4 Mental Disorder CHRNA3/B4

32 Metyrosine Neoplasms TH Mental Disorder TH
33 Minoxidil Cardiovascular Diseases ABCC9 Pathological Conditions,

Signs and Symptoms
ABCC9

34 Misoprostol Digestive System Diseases PTGER3 Pathological Conditions,
Signs and Symptoms

PTGER3

35 Oxandrolone Physiological Phenomena AR Congenital, Hereditary and
Neonatal Diseases

AR

36 Phentolamine Cardiovascular Diseases ADRA1A/1B/1D/2A/2B/2C Mental Disorder ADRA1A/1B/1D/2A/2B/
2C

37 Propranolol Pathological Conditions, Signs
and Symptoms

ADRB1-3 Neoplasms ADRB1-3

38 Raloxifene Nutritional and Metabolic
Diseases

ESR1/2 Skin and Connective Tissue
Diseases

ESR1/2

39 Ropinirole Cardiovascular Diseases DRD2-4 Mental Disorder DRD2-4
40 Sibutramine Mental Disorder SLC6A2-4 Physiological Phenomena SLC6A2-4
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Table 2 (continued)

N Drug name Original Indication Secondary Indication

MeSH Category Gene Target MeSH Category Gene Target

41 Sildenafil Pathological Conditions, Signs
and Symptoms

PDE5A Mental Disorder PDE5A

42 Tadalafil Cardiovascular Diseases PDE5A Mental Disorder PDE5A
43 Tranexamic Acid Pathological Conditions, Signs

and Symptoms
PLG Immune System Disorders PLG

44 Tretinoin Neoplasms RARA/B/G Musculoskeletal and Neural
Physiological Phenomena

RARA/B/G

45 Trimetrexate Pneumonia Dihydropholate
reductase (Pneumocystis
carinii)

Metastatic carcinoma of the
head and neck

Dihydropholate
reductase (Homo
sapiens)

Table 3
Drug-centric repositioning cases. For each drug-centric case, therapeutic indications (MeSH category) and protein targets (gene name or Uniprot ID (*:Non–human, (+):multiple
subunits)) for both the original and the secondary indications are shown. According to our definition of drug-centric repositioning, these seven cases must have a different MeSH
code and protein target for the primary and secondary indication. The seven cases are most interesting for the application of drug-target interaction prediction techniques
because they have the highest target and indication diversity. The drugs are listed in alphabetical order. The references of target-disease associations retrieved from PubMed are
given in the respective cells.

N Drug name Original Indication Secondary Indication

MeSH Category Gene Target Category Gene Target

1 Allopurinol Neoplasm Xanthine dehydrogenase/
oxidase (Homo sapiens)

Parasitic Diseases Hypoxanthine
phosphoribosyltransferase
(Trypanosoma Cruzi [44])

2 Doxycycline Bacterial Infection and Mycoses *rpsD,*rpsI Stomatognathic Diseases MMP1/7/8/13
3 Lidocaine Musculoskeletal and Neural

Physiological Phenomena
SCN1A/2A/3A/4A/5A/7A/8A/
9A/10A/11A

Immune System Disorders various/not specified (cytokines
release) [45]

4 Mazindol Stomatognathic Diseases SLC6A2-4 Congenital, Hereditary and
Neonatal Diseases

various/not specified (growth hormone
release) [46]

5 Topiramate Nervous System Diseases GABR(+),GRIK1-5,GRIA1-4,
SCN(+)

Stomatognathic Diseases CA2/4

6 Valproic
acid

Nervous System Diseases ALDH5A1,ABAT Congenital, Hereditary and
Neonatal Diseases

HDAC2

7 Zidovudine Neoplasms HIV1 Reverse transcriptase
[45]

Immune System Disorders Human DNA polymerase [47]
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2.4. 5% of the repositioning cases were classified as drug-centric

The remaining seven cases that could not be assigned to either
disease- or target-centric repositioning were classified as drug-
centric repositioning. In these cases, the primary and secondary
indications are linked to distinct protein targets. Valproic acid is
one instance of this. Valproic acid was originally developed to treat
episodes of bipolar disorder and seizures (nervous system dis-
eases) by hitting the mitochondrial enzymes succinate-
semialdehyde dehydrogenase (ALDH5A1) and 4-aminobutyrate
aminotransferase (ABAT). Since then it has been repurposed for
the treatment of familial adenomatous polyposis (congenital,
hereditary and neonatal diseases) based on its interaction with his-
tone deacetylase 2 (HDAC2), as shown in Table 3. The drug allop-
urinol has been repurposed from a human protein target
(Xanthine dehydrogenase/oxidase) to a parasitic target (Hypoxan-
thine phosphoribosyltransferase of Trypanosoma Cruzi) with a low
protein sequence identity (6%).

2.5. Indication-target-drug network analysis

Three different network graphs, one for each repositioning
approach (disease-, target-, and drug-centric), were built to illus-
trate and analyze the relationship between the identified reposi-
tioning cases. The results of the analysis are shown in Table 4.
First, we analyzed the general structure of the networks (Table 4,
General network information). The networks differ significantly
in size due to the higher number of disease- and target-centric
cases in comparison to the number of drug-centric repositioning
cases. Interestingly, the disease- and drug-centric networks exhibit
two main clusters, whereas the target-centric network features
only one main cluster, comprising 84% of the nodes. Because dis-
ease descriptions varied, top-level MeSH categories were used as
disease identifiers to integrate the different drug repositioning
cases into a single network. It is important to know that, although
the disease- and drug-centric networks both have two main clus-
ters, the MeSH categories included in these clusters differ between
the two repositioning approaches (disease-centric: C02-C20-C06-
E01-C04 and C08-C14-F01-F03-C11-G11-C10-C23-C13, discon-
nected C03, C15, C18, and C01; drug-centric: C03-C04-C20-G11
and C10-C07-C16-C01). This shows that different approaches to
drug repositioning allow the combination of different diseases.
Secondly, we calculated the clustering coefficients for the drug, tar-
get, and the disease nodes in all three networks (Table 4, Nodes
clustering). Clustering coefficients express how likely it is that
the nodes form subsets that constitute an independent subgraph.
The formation of such an independent subgraph is undesirable
for drug repositioning because it excludes the possibility that a
node is connected to a distinct part of the network. For instance,
a drug might not be connected to a new target. Hence, a low clus-
tering coefficient indicates that the respective node type (drug, tar-
get, or disease) plays a crucial role in the particular repositioning
approach. For all three repositioning approaches, there are differ-
ences between the clustering coefficients of the drug, the target,
and the disease nodes. Conspicuously for all three node types,
the type of repositioning approach for which the lowest clustering



Table 4
Analysis of indication-target-drug networks. Three different networks were generated, one for each repositioning approach (disease-centric, target-centric, and drug-centric).
General network information, average clustering coefficients of the different node types, and small-world network properties are listed for each repositioning approach. For all
three node types, the lowest clustering coefficient was found for the type of repositioning approach that matches the type of the nodes (lowest coefficient is highlighted in bold
for each node type), which demonstrates the importance of the respective node type in drug repositioning. Small-world network properties (estimated as the product of
transitivity and the number of nodes divided by the effective diameter) are highest for the disease-centric network (5.90) and lowest for the drug-centric network (4.01).

Disease-centric Target-centric Drug-centric

General network information
Number of edges 466 327 84
Number of nodes 232 147 51
Percentage nodes biggest component 45.26 83.67 52.94
Percentage edges biggest component 42.92 90.83 54.76

Nodes clustering
Average drug nodes clustering coefficient 0.72 0.57 0.25
Average disease nodes clustering coefficient 0.28 0.52 0.50
Average target node clustering coefficient 0.78 0.69 1.00

Small-world network properties
Effective diameter of the biggest component 5.16 4.99 3.43
Graph transitivity 0.13 0.17 0.27

transitivity � number of nodes
effective diameter

5.90 5.13 4.01
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coefficient was calculated matches the node type. This shows that
target-nodes play a more important role in target-centric reposi-
tioning than in disease- or drug-centric repositioning. Moreover,
the average clustering coefficient of the drug nodes decreases from
the disease- over the target- to the drug-centric network. This
means that in drug-centric repositioning, drugs are less prone to
cluster around a single indication than in target- or disease-
centric repositioning. Furthermore, none of the protein targets in
the drug-centric network are connected to multiple drugs at the
same time. Thirdly, we evaluated the small-world network proper-
ties of the graphs (Table 4, Small-world network properties).
Small-world network is a graph-theory concept that is applied to
measure how likely it is that the neighbors of one node are also
neighbors of each other. In drug repositioning it is expected that
a drug is highly unspecific or that the novelty of a repositioning
case is low if the clustering of the nodes is too high. We calculated
the small-world properties as the product of transitivity and the
number of nodes divided by the effective diameter. The higher
the coefficient, the higher the small-world network properties.
The lowest and highest small-world network properties were iden-
tified for the drug-centric network and the disease-centric network
respectively. The low small-world properties of the drug-centric
network indicate that the drugs in this network are more likely
to engage in distant connections.
2.6. None of the drug-target pairs from the drug-centric repositioning
cases had sufficient structural data for structure-based drug-target
interaction prediction

Finally, we wanted to use our classification system to assess the
putative impact of structure-based drug-target interaction predic-
tion on drug repositioning. Three dimensional information about
the position of the drug inside the active site of a target can be
extremely helpful to understand the drug’s binding behavior and
to generate repositioning hypotheses. Such data can be generated
by crystallography or ligand–protein docking, and may be analyzed
via interaction-profile similarity approaches. Many drug reposi-
tioning pipelines use structure-based techniques to obtain and
confirm molecular binding hypotheses. However, the impact of
these approaches on the actual status of drug repositioning is not
clear. Hence, after defining a list of drug-centric repositioning cases
(the ones which could benefit most from structure-based tech-
niques), we tried to understand to what extent structure-based
techniques could be useful for drug repositioning. We screened
the Protein Data Bank (PDB) [48] to check the availability of struc-
tural data for the seven repositioning cases classified as drug-
centric. Interestingly, the structures of the drug in complex with
both the original and the secondary target were not available for
any of the drug-centric repositioning cases.

3. Discussion

3.1. More than a third of the cases do not fit the ’small molecule drug –
protein target’ definition

We focused our analysis exclusively on small molecule drugs
because they usually bind to a higher number of different targets
and form more defined interactions with those targets. Moreover,
we only considered drug targets that are proteins. Altogether, 68
out of 196 repositioning cases were excluded from the analysis
as they did not fit into the ‘‘small molecule drug – protein target”
scheme. Non-small molecule drugs were typically antibodies while
non-protein targets included RNA, DNA and other non-protein bio-
molecules. Examples of repositioned therapeutic antibodies are
infliximab and adalimumab, which are both used for Crohn’s dis-
ease and juvenile rheumatoid arthritis. The database also included
therapeutic proteins such as somatropin, which is used to treat
children with growth disorders and to induce ovulation in infertile
women. An example of drugs that have a non-protein drug target is
melphalan. Melphalan binds DNA and is applied in multiple mye-
loma as well as in metastatic melanoma. DNA is also the target of
cladribine, which is used for the treatment of hairy cell leukemia
and chronic lymphocytic leukemia.

3.2. Drug repositioning is mostly disease- and target-centric

The retrospective analysis of the repositioning cases present in
the RDD database gave us an interesting picture of the current
state of drug repositioning. Sixty percent of the repositioned drugs
analyzed (76 cases out of 128) have been redirected to the same
disease family. This tendency was particularly pronounced within
two categories of therapeutic indications: neoplasms and immune
system disorders (Fig. 3). These also have the highest number of
repositioning cases in the database. Thirty percent of the analyzed
drugs (45 out of 128) have been repurposed to a different indica-
tion but to the same protein target, as indicated by an identical
Uniprot ID or high protein sequence identity. Only 5%, or seven
cases, have been repositioned to a different disease and a different
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target. The situation described here seems to reflect a general trend
in drug discovery. This situation is considered one of the reasons
for the structural crisis in pharmaceutical R&D mentioned in the
introduction: the current pharmaceutical R&D situation has been
compared to a oil-drilling process, where the cheapest and easiest
options with highest expected returns are exploited first and less
attractive options are left behind [49]. In terms of our results, this
could mean that certain disease classes and rapid repositioning
approaches within the same disease and target family are priori-
tized, leaving a big pool of drug-target-disease connections virtu-
ally unexplored. In light of this, it might be crucial in the future
to invest in drug repositioning techniques that focus on the fine
characteristics of drugs, targets and diseases (drug-centric
approaches), thereby overcoming the barriers defined by a disease
category or target. A systematic and efficient repositioning
approach that connects unrelated diseases and targets might ben-
efit both the pharmaceutical R&D and the patients by increasing
the profits and delivering novel therapeutic agents in a fast and
cost-effective way.

3.3. Indication-target-drug network analysis confirms our
classification

We analyzed drug-centric, target-centric and indication-centric
networks, and demonstrated that they all have different structures
and represent different approaches to drug repositioning. For the
disease-, target-, and drug-centric networks, disease, target, and
drug nodes played the most important role in drug repositioning,
respectively, showing the validity of our analysis. In addition, we
evaluated the differences in the small-world network properties
between the three networks. Drug-centric approaches showed
the lowest small-world network properties. Based on this result,
we assume that using the drug-centric approach makes it possible
to find drug repositioning cases of superior novelty and higher
specificity compared to disease- and target-centric repositioning.

3.4. The role of drug-target interaction analyses in drug repositioning

Although computational drug repositioning has lately devel-
oped many strategies for predicting drug-target interactions, our
analysis shows that most of the actual repositioning cases could
be the result of a disease-centric or target-centric approach. As
shown in Fig. 1, disease-centric drug repositioning can directly link
a drug to a pathological condition with no need for assessing target
similarity or analyzing drug-target interactions. Target-centric
drug repositioning, on the other hand, requires a firm connection
between target and indication. Platforms like Open Targets [50]
and Beagle [51] facilitate the identification of such connections.
However, the target-indication link is often not so direct and clear.
Finally, the drug-centric repositioning cases are the only ones that
could have really benefited from drug-target interaction prediction
methods (ligand-based, structure-based and machine learning-
based).

3.5. The limits and potential of structure-based drug repositioning as
drug-centric approach

Structure-based drug repositioning techniques are examples of
drug-centric approaches. They can be applied to infer new interac-
tions between drugs, targets, and indications by considering infor-
mation about the structure of the drugs, the targets, and their
interactions. Although structure-based drug repositioning has
great potential for the repurposing of known drugs to different tar-
gets and indications [52,27], several limitations make it less easy to
apply this approach in a relevant and systematic way. In fact, struc-
tural data for both the original drug and its target are required.
Structural data may also be required for the potential new target
and, possibly, its ligands. Lack of this information considerably lim-
its the searching space for drug repositioning. Actually, there were
no cases classified as drug-centric repositioning where both the
original and the repositioned drug-target complex were available
in the PDB. This confirms the barriers of structure-based drug repo-
sitioning. To tackle the scarce data availability, various techniques
such as homology modeling and molecular docking can be used to
predict the structure of a protein and its interaction with a query
drug. However, generating reliable data requires considerable
expertise and computational power.
3.6. Database selection and data availability

By the time we started this work (2016), the RDD was the only
comprehensive drug repositioning database available. Later, other
data sets of repurposed drugs were published. For instance a new
gold standard database of successful and failed repositioning cases,
repoDB, was released in 2017 [53]. Despite differences in size
between the RDD and the repoDB, we have decided to present
our analysis as a proof-of-concept for the present drug reposition-
ing situation. We are currently unaware of previous work based on
the RDD, but the database is manually curated and validated. We
used the MDT database to retrieve drug-target connections.
Although many others such as DrugBank were available for this
scope. The MDT database is the result of a comprehensive and
accurate annotation that considers several sources of targets for
FDA approved drugs [54]. However, the combination of the RDD
and the MDT has resulted in a data reduction that may have com-
promised the quality of our analysis.
3.7. Issues related to the classification process

The aim of this study was to assess the impact of new drug-
target interactions on the analyzed drug repositioning cases. In
fact, our work is a retrospective analysis based on the final results
of different successful repositioning processes and does not take
into account the specific techniques used to repurpose the respec-
tive drugs (i.e. ligand-based, target-based, network-based and
machine-learning based). The assignment of specific methods or
hypotheses to each case of repositioning would have required a
tremendous manual effort and would not have added essential
information to our analysis. In addition, many repositioning pro-
cesses require the application of multiple techniques. This made
it difficult to assign a clear and unambiguous classification. Fur-
thermore, we assume that many repurposed drugs that we have
assigned to disease-centric repositioning could also be a product
of a target-centric or drug-centric approach. This assignment was
based off of a similarity between the drugs’ original and secondary
indication. For example, following target affinity experiments, the
drug nilotinib, which we have classified as disease-centric reposi-
tioning, has been repurposed to treat gastrointestinal stromal
tumors by affecting a different protein target [7]. Moreover, the
classification process was carried out step by step, beginning with
the cases where the indications had an identical MeSH code
(disease-centric) and continuing with those where the target was
identical (target-centric). If a case was labeled as disease-centric,
no further examination of the target was performed, thereby pos-
sibly missing overlaps between the different drug repositioning
categories. For the reasons given above, a deeper molecular under-
standing of drug repositioning databases could lead to a more
detailed analysis and provide a clearer picture of the true state of
repurposing.



Fig. 4. Collection and classification of known repositioning cases. Merging of the
Repositioned Drug Database (RDD), containing 196 drugs and 333 indications
linked through 388 connections, the Molecular Target Database from Santos (MTD),
containing 4632 links between 196 drugs and 263 targets, and PubMed, which
allowed us to find 780 different links between 263 targets and 333 indications.

1052 D. Parisi et al. / Computational and Structural Biotechnology Journal 18 (2020) 1043–1055
4. Methods

The data presented above are the product of a retrospective
analysis carried out on a list of repurposed drugs, their indications,
and protein targets from the Repurposed Drug Database (RDD), a
list of Molecular Drug Targets (MDT), and literature. The results
are the product of a classification process explained in details
below, consisting of a step-wise division of the drug repositioning
cases into a same-disease group and a same-target group.

4.1. Identification of current drug repositioning cases

The RDD was downloaded from www.drugrepurposingportal.-
com in January 2017. The database contains 438 drugs that have
been repurposed and provides information about the drugs with
their original and new indications. This includes drugs that have
been unsuccessful, approved, or experimental in connection with
the original indication and have later been approved for another
new indication. Given the above, it was necessary to integrate this
data into another source providing information about the protein
targets involved in both indications.

4.2. Retrieval of molecular drug targets data

The therapeutic targets of both launched and potential drugs
are often poorly defined in the literature. Several databases provide
data on drug-target interactions with different foci on the content.
Examples of such databases are the Therapeutic Targets Database
[55], Drugbank[56], SuperTarget [57], and the IUPHAR/BPS Guide
[58]. Despite the variety of valuable online resources, it is still chal-
lenging to retrieve consistent and comprehensive data of drug tar-
gets with their molecular efficacy and therapeutic use, especially
when mapping targets to specific genes and gene products. Santos
et al. [54] presented a solution to the problem. They carried out a
‘‘comprehensive map of molecular drug targets” in which they
curated 893 human and pathogen-derived biomolecules, which
are targeted by 1578 FDA-approved drugs. Santos data set was
downloaded in.php format in January 2017 and the list of MDT
was retrieved from it. Importantly, Santos et al. specified that ’bio-
molecules that the drug may also bind to, or be metabolized by, but
which are not known to be responsible for its therapeutic effect,
are not defined as targets’. Moreover, the work defines a drug as
any therapeutic agent, including not only small molecules, but also
other biological agents that are used to enhance health.

4.3. Identification of targets involved in the repositioning cases

The data in the RDD were merged with the data in the MDT
based on the commonly known drug names. This resulted in a data
set of 196 drugs, 263 unique targets, and 333 unique indications
(see Fig. 4 or Annex I for more details). The data was merged in
April 2017 using a Python 2.7 script and complemented with other
biologically relevant databases in order to enrich the analysis (see
Annex I). For some drugs, no protein target was stored in the MDT
and a manual literature search was necessary.

4.4. Filtering of non-small molecules and non-protein targets

This study only considered proteins and small molecules as
therapeutic targets and drugs, respectively. Cases differing from
this definition were excluded. These cases included antibody drugs
and biomolecular targets distinct from proteins (e.g enzymes, DNA,
or unknown). Of the 196 drugs included in the merged RDD and
MDT data set, 68 were removed using these filter criteria (see
Annex II).
4.5. Identification of disease-centric repositioning cases

A repositioning case was considered as disease-centric if the
repurposing was based on disease phenotype similarity. Several
databases support the correct indexing of diseases: ICD-10 [59],
the Elsevier Emtree [60], and the Medical Subject Headings (MeSH
[61]. MeSH and Emtree are the most commonly used databases.
MeSH is usually preferred due to free access, its extensive history
notes, its large scope notes [62], and its terminology in nursing,
veterinary medicine and dentistry. For each repositioning case,
the MeSH tree root keys were assigned to the respective indica-
tions (see Table 5). The frequency of repurposed cases among the
indications was calculated and visualized using the Matplotlib
python library. The number of cases for each root MeSH key pair
was plotted in R with the ggplot2 package (see Fig. 3). The number
of targets was calculated for each indication pair with identical
root MeSH key. References to the applicability of these targets
was also collected. Drugs linked to the same MeSH key were clas-
sified as cases of disease-centric repositioning.

4.6. Target assignment to original and secondary indication

In order to divide the targets into original and secondary indica-
tion we used literature evidence in PubMed (see Fig. 4). Target-
indication connections were retrieved manually from literature
by searching for direct, indirect, or generalized evidence. Direct
evidence included the improvement of a condition upon the treat-
ment with a certain drug due to the action of this drug on the ther-
apeutic protein target. The correlation between a disease condition
and a certain target activity was considered as indirect evidence.
Generalized evidence included single reports of target-condition
links without a strong correlation being detected. The validation
of the above-described manual curation was done via text-
mining using the ensemble biclustering algorithm (EBC), which
allows to extract the connections from a natural text in a
machine-processable form. The text-mining data set used in this
work consists of two parts. Part I connects dependency paths to
labels or ‘‘themes”. They were introduced in this data set to label
what kind of interactions exist between two terms, e.g. whether
a causal mutation has a role in pathogenesis or promotes progres-
sion of the disease. The second part of the data set contains infor-



Table 5
Root MeSH tree keys for the disease groups with corresponding disease descriptions. MeSH category codes (left column) and common names (right column) of all diseases and
conditions for which drug repositioning cases are recorded in the RDD.

MeSH
Category

Disease group MeSH
Category

Disease group

C01 Bacterial Infections and Mycoses C16 Congenital, Hereditary, and Neonatal Diseases and
Abnormalities

C02 Virus Diseases C17 Skin and Connective Tissue Diseases
C03 Parasitic Diseases C18 Nutritional and Metabolic Diseases
C04 Neoplasms C19 Endocrine System Diseases
C06 Digestive System Diseases C20 Immune System Diseases
C07 Stomatognathic Diseases C23 Pathological Conditions, Signs and Symptoms
C08 Respiratory Tract Diseases C25 Chemically-Induced Disorders
C10 Nervous System Diseases E01 Diagnosis
C11 Eye Diseases F01 Behaviour Mechanisms
C12 Male Urogenital Diseases F03 Mental Disorders
C13 Female Urogenital Diseases and Pregnancy

Complications
G07 Physiological processes

C14 Cardiovascular Diseases G08 Reproductive and Urinary Physiological Phenomena
C15 Hemic and Lymphatic Diseases G11 Musculoskeletal and Neural Physiological Phenomena
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mation about drug-target-indication associations. To validate the
manual PubMed curation and estimate how applicable text-
mining is for this aim in general, target-indication associations in
this data set were used. To make the text-mining data set compat-
ible with the drug repositioning data set, UniProt IDs were turned
into gene IDs using the UniProt API service and MeSH on demand
was used to assign indication IDs to the textual description of dis-
eases. Afterwards, all of the records containing genes of therapeu-
tic protein targets for drug repositioning were checked for the
presence of a gene ID – MeSH ID pair. To identify whether the gene
encodes a drug target, Part I and Part II of the text-mining data set
were linked and the entries in which the gene actually had a ‘‘drug
target” label were selected. In this way, targets were again divided
into original and secondary indication (see Annex III). The resulting
distribution was compared to the manual distribution.

4.7. Identification of target-centric repositioning cases

A repositioning case was considered as target-centric if the
same protein target is used in different pathological contexts.
The repositioning cases that were not classified as disease-centric
were analyzed to determine whether the drug acts on two different
protein targets related to original and secondary indication. First, a
repositioning case was marked as target-centric if the UniProt IDs
of the therapeutic protein targets were the same for both indica-
tions. Furthermore, a repositioning case was considered as
target-centric if the UniProt IDs were different but the targets were
homologous proteins with the same function in different organ-
isms (ortholog). Therefore, the protein sequence identity was eval-
uated using Clustal Omega alignment (https://www.ebi.ac.uk/
Tools/msa/clustalo), where the number of similar and identical
aligned amino acids was summarized and divided by the length
of the alignment. According to the accuracy cutoff established by
Rost et al. [42] protein targets showing a sequence identity higher
than 30% were considered as homologous and the respective repo-
sitioning case was classified as target-centric.

4.8. Identification of drug-centric repositioning cases

A repositioning case was considered as drug-centric if it
exploits the chemical properties of a drug. First, the cases that were
neither classified as disease-centric nor target-centric were consid-
ered as potential drug-centric repositioning cases. Cases were also
classified as drug-centric if the target associated with the sec-
ondary indication was not included in the comprehensive map
but there was literature evidence for different therapeutic targets.
4.9. Structural data availability for drug-centric repositioning cases

Finally, we evaluated whether it would have been possible to
identify the drug-centric repositioning cases using a structure-
based approach. Therefore, the UniProt IDs of the protein targets
were mapped to PDB IDs and the PDB was searched for all available
structures describing the binding between the drugs and their cor-
responding targets (associated to both primary and secondary indi-
cation). Additionally, structures that describe the binding of the
drugs to targets that are not related to the drug repositioning cases
(not described in the MDT) were considered. These structures were
also evaluated regarding their potential for structure-based drug
repositioning.

4.10. Analysis of the drugs-targets-indications network

To investigate the drugs-targets-indications network, the
Python Networkx and SNAP [63] modules were used. The graph
structure was established for each of the graphs (indication-
centric, target-centric, drug-centric). For the indication-centric
graph, the nodes are indications as the top-level of MeSH category.
For the target- and drug-centric graph, the nodes for the indica-
tions are based on the data presented in Tables 2 and 3. In all
graphs, unique protein targets and unique drugs are illustrated as
unique nodes. Edges represent drug-target, target-indication, and
drug-indication associations, which were established via the
above-described analyses. The effective diameter is the 90th per-
centile of the distribution of the shortest path lengths of a graph.
Diameters were calculated using the SNAP module. Since small-
network properties are higher when the transitivity of the graph
is higher and the diameter of the graph is smaller, we estimated
relative small-world properties based on the (1).

transitivity � number of nodes
effective diameter

ð1Þ
5. Conclusion

Drug-target interaction prediction is an important part of most
of the rational drug repositioning approaches. In fact, different bio-
chemical, physical, and mathematical techniques have been
designed and optimized to accurately infer links between ligands
and proteins. In this work, we analyzed various successful drug-
repositioning cases. Based on the similarity between old and new
indications and old and new targets, we evaluated the actual
impact of drug-target interaction prediction on these cases. By
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dividing all the cases falling within the definition ‘‘small molecule
– protein target” (128) into disease-centric (with very similar indi-
cations), target-centric (with identical or orthologue targets), and
drug-centric (with different targets in different indications) drug
repositioning, we found that only 7 out of 128 cases would have
required drug-target interaction prediction to rationally initiate
drug repurposing. This unexpectedly small number could poten-
tially be explained by the higher amount of information, time,
and money required for drug-target interaction prediction com-
pared to target- and disease-centric approaches. A more detailed
analysis of the drug-target complexes present in the PDB revealed
that there is currently not enough structural data available for any
of the repositioning cases classified as drug-centric. Therefore it is
impossible to identify new drug-target interactions using
structure-based techniques such as interaction profile similarity.
On the other hand, these results highlight the existence of a big
unexplored niche for drug-target interaction prediction in drug
repositioning. This great potential will increasingly be used since
the techniques for detecting new links between ligands and pro-
tein targets, such as structure-based drug repositioning, are con-
stantly evolving.
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