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Abstract: In this paper, a range-based cooperative localization method is proposed for multiple
platforms of various structures. The localization system of an independent platform might degrade
or fail due to various reasons such as GPS signal-loss, inertial measurement unit (IMU) accumulative
errors, or emergency reboot. It is a promising approach to solve this problem by using information
from neighboring platforms, thus forming a cooperative localization network that can improve the
navigational robustness of each platform. Typical ranging-based ultra-wideband (UWB) cooperative
localization systems require at least three auxiliary nodes to estimate the pose of the target node,
which is often hard to meet especially in outdoor environment. In this work, we propose a novel
IMU/UWB-based cooperative localization solution, which requires a minimum number of auxiliary
nodes that is down to 1. An Adaptive Ant Colony Optimization Particle Filter (AACOPF) algorithm
is customized to integrate the dead reckoning (DR) system and auxiliary nodes information with
no prior information required, resulting in accurate pose estimation, while to our knowledge the
azimuth have not been estimated in cooperative localization for the insufficient observation of the
system. We have given the condition when azimuth and localization are solvable by analysis and by
experiment. The feasibility of the proposed approach is evaluated through two filed experiments:
car-to-trolley and car-to-pedestrian cooperative localization. The comparison results also demonstrate
that ACOPF-based integration is better than other filter-based methods such as Extended Kalman
Filter (EKF) and traditional Particle Filter (PF).

Keywords: cooperative localization; dead reckoning; inertial measurement; ultra-wideband;
pose estimation

1. Introduction

The cooperative operation among manned and unmanned platforms is becoming increasingly
demanding with the development of navigation, communication, and intelligent control technologies,
etc. Most robotic platforms or even human are equipped with navigation devices such as Global
Navigation Satellite System (GNSS) and inertial measurement unit (IMU) [1]. However, positioning
tasks become difficult in the face of IMU error accumulation, signal occlusion, and environmental
interference (smoke, buildings, forests, canyons, etc.). The concept of joint localization begins to gain
in popularity [2,3]. Unlike positioning platforms with a single node, cooperative localization fully
exploits positioning information exchanged in a multi-node ad hoc network. Not only can it lead to
more accurate estimates for the position of the target node, but also expand the coverage and enhance
the overall stability of the network [4]. Figure 1 illustrates an application scenario in which soldiers
and unmanned vehicles are accurately localized under a collaborative network.
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Another type of formulation, rather than relying merely on auxiliary nodes based on geometry, 
is based on fusion of inertial readings from an IMU deployed on the target node and ranging 
information from auxiliary nodes. IMU is a self-contained system that measures linear and angular 
motion usually with gyroscopes and accelerometers independent of external assistance, it is 
immune to deception and signal jamming [13]. Therefore, IMU is capable of performing 
autonomous localization, but integration of inertial measurements is bound to drift. Typical 
combinations include Wi-Fi/IMUs, cameras/IMUs, UWB/IMUs, etc. In this paper, we focus on 
IMU/UWB collaborative localization in view of the properties of the UWB signal including low 
power consumption, immunity to channel fading (such as multipath, non-line-of-sight (NLOS), etc.), 
powerful signal penetration, and high precision. 

Numerous studies of research have been done on UWB/IMU collaborative localization. Most 
UWB cooperative localization systems assume prior knowledge on the positions of no less than two 
auxiliary nodes. Reference [14] proposed a Simultaneous Localization and Mapping (SLAM) 
solution to localize pedestrians through three UWB auxiliary nodes in the case of unknown prior 
information with the precision to 0.1 m but it needed three nodes to be arranged in advance. 
Reference [15] proposed a framework of indoor autonomous robot localization using a Sage-Husa 
fuzzy self-adaptive filter to fuse Inertial Navigation System (INS) and UWB signals. With two UWB 
nodes deployed, it can perform well with high accuracy and robustness. Reference [16] combines 
UWB ranging measurements with inertial observations to localize based on Extended Kalman Filter 
(EKF) with only one auxiliary node but on the assumption of previous knowledge of the position 
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Current mainstream schemes of collaborative localization fall into two categories in generally,
one of which employs Bluetooth [5], Wi-Fi [6], ZigBee [7], ultrasonic [8], infrared [9], UWB [10] based
on angle of arrival (AOA), time of arrival (TOA), and time difference (TDOA) methods under such
models of geometry as trilateration, triangulation, and hyperbolas, which entails at least 3 auxiliary
nodes together with range information. Unfortunately, this requirement cannot be met in many
cases, and one shortcoming of these schemes is that the localization of the target node is completed
only according to the information of the auxiliary node, while the information about the target node
is ignored. Reference [11] can attain centimeter-level positioning accuracy using multiple UWB
transceivers to co-locate but with a considerable number of nodes involved, thus incurring high costs.
Reference [12] uses geometric features of translation and rotation to estimate the positioning error
in inertial navigation of aircraft. Usually, these commonly employed nodes location methods entail
additional auxiliary nodes, causing waste of resources and introducing extra costs, computational load,
and communication load of the entire network.

Another type of formulation, rather than relying merely on auxiliary nodes based on geometry,
is based on fusion of inertial readings from an IMU deployed on the target node and ranging information
from auxiliary nodes. IMU is a self-contained system that measures linear and angular motion usually
with gyroscopes and accelerometers independent of external assistance, it is immune to deception
and signal jamming [13]. Therefore, IMU is capable of performing autonomous localization, but
integration of inertial measurements is bound to drift. Typical combinations include Wi-Fi/IMUs,
cameras/IMUs, UWB/IMUs, etc. In this paper, we focus on IMU/UWB collaborative localization in view
of the properties of the UWB signal including low power consumption, immunity to channel fading
(such as multipath, non-line-of-sight (NLOS), etc.), powerful signal penetration, and high precision.

Numerous studies of research have been done on UWB/IMU collaborative localization. Most UWB
cooperative localization systems assume prior knowledge on the positions of no less than two auxiliary
nodes. Reference [14] proposed a Simultaneous Localization and Mapping (SLAM) solution to localize
pedestrians through three UWB auxiliary nodes in the case of unknown prior information with the
precision to 0.1 m but it needed three nodes to be arranged in advance. Reference [15] proposed a
framework of indoor autonomous robot localization using a Sage-Husa fuzzy self-adaptive filter to fuse
Inertial Navigation System (INS) and UWB signals. With two UWB nodes deployed, it can perform
well with high accuracy and robustness. Reference [16] combines UWB ranging measurements with
inertial observations to localize based on Extended Kalman Filter (EKF) with only one auxiliary node
but on the assumption of previous knowledge of the position and azimuth of the target node. Fallon et
al. proposed a cooperative Autonomous Underwater Vehicle (AUV) navigation method using a single
maneuvering surface craft, but it has a direct access to azimuth estimation [17].
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A Gaussian white noise is often the presupposition in approaching the nonlinearity of the problem
of fusion of IMU and UWB observations. It is well known that most common solutions to nonlinear
filtering problems are based on EKF and Unscented Kalman Filter (UKF). However, EKF often suffers
large errors and deviations in its estimates of states and variances of non-linear stochastic systems [18],
while UKF may miscalculate if the posterior probability density of the system states is non-Gaussian [19].
Compared with EKF and UKF, the main advantage of PF is that they do not place any restrictions
on the form of the propagation and measurement models. Owing to the arbitrariness of particle
distribution, PF is more suitable for arbitrary non-linear and non-Gaussian stochastic systems, although
the computational complexity of PF is relatively large. With the enhancement of computer performance
and the development of parallel computing technology, the problem of PF can be overcome [20].

The standard particle filter algorithm uses the resampling method to prevent particle starvation.
The specific method is to eliminate particles with smaller weight and copy particles with larger weight.
The advantage of this method is simple operation, but after many iterations it will cause lack of particle
diversity. If we use ant colony optimization to make particles with smaller weight move to the optimal
position, and keep the position of particles with larger weight unchanged, the particles will have better
distribution and keep the diversity of particles [21].

In this paper, a cooperative localization method with only one auxiliary node is proposed based
on the Adaptive Ant Colony Optimization Particle Filter (AACOPF) [22] and dead reckoning (DR) [23].
Even if the INS suffers power-down and hot reboot, there is no need for initial positioning information
to realign itself. Only one auxiliary node is enough to help estimate the real-time position and azimuth
of the target node. In the cooperative localization based on ranging information, communication
between target nodes and auxiliary nodes as well as that between target nodes themselves is delivered
so that the distances between target nodes and auxiliary nodes can be combined with the positions
of auxiliary nodes themselves to localize more effectively. The cooperative localization method can
establish single-to-multi, multi-to-single, and multi-to-multi network topologies making full use of the
nodes in the network, which means, one auxiliary node can locate multiple target nodes whereas one
or multiple target nodes may also be located by multiple auxiliary nodes.

Compared with existing approaches, this work has the following innovative aspects:

1. This paper proposes a formulation in which collaborative localization is realized with recourse to
only one auxiliary node in motion along with its feasibility proof. Allowing for the multipath
effects of UWB and NLOS coupled with occlusion by buildings and pedestrians, an AACOPF
algorithm is designed which recognizes and eliminates auxiliary nodes with larger errors in
ranging. The algorithm can be applied to Gaussian or non-Gaussian nonlinear models, implying
a higher degree of positioning accuracy and robustness.

2. When the topology network containing more than one auxiliary node, the particle filter is able to
perform collaborative localization by virtue of adaptive weight adjustment, no extra treatment
is needed with the addition of other sensors, thereby permitting a plug and play mechanism,
as opposed to traditional schemes bases on the EKF and UKF which, in this situation, necessitate
re-linearization or even remodelling.

3. The system has been verified not only by simulation but through real data garnered in real
situation and effects including errors in the monitoring of human gait and measurement errors
have been taken into account, all of which demonstrate the feasibility and generality of the system.

4. To qualitatively and quantitatively analyse the observability of our cooperative localization
system, different from the method in Fallon’s paper, we applied a Piece-Wise Constant System
(PWCS) method to analyze the observability of the cooperative navigation system, which can not
only qualitatively shows the observability based on the rank of Observability Matrix (OM), but
also quantitatively presents the degree of observability based on its eigenvalues.
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2. Problem Statement

2.1. Adaptive Cooperative Localization Problem

For the problem studied in this paper, we define node that does not have accurate coordinates or
azimuth due to various reasons such as GPS failure, system malfunction, hot restart, etc. and need
to be relocated as target node, and nodes that have access to localization information accuracy as
auxiliary nodes.

To ensure the observability and convergence of the system, quantitative and qualitative analysis
of the observability of our cooperative localization system is necessary. For the dynamical multiple
auxiliary nodes topology network, we need to consider the measurement disruption caused by
multipath or NLOS effects, particle depletion and dynamical multiple auxiliary nodes data fusion.
In the complex collaborative network shown in Figure 1, if a node cannot be self-positioned due to low
GPS accuracy or IMU power-down restart, the algorithm of Figure 2 is triggered to detect surrounding
auxiliary nodes with UWB information, and combines IMU incremental information from the target
node to decide on a co-location algorithm and then achieve coordinated positioning by AACOPF.

There are four presumptions based on which the proposed cooperative navigation algorithm
can work properly: (1) Auxiliary node has higher localization accuracy. (2) The target node does
not need the initial coordinates or the azimuth, but it is required to have dead reckoning ability.
(3) Each node in the network of cooperative localization is capable of ranging with the auxiliary node.
(4) Wireless communication is available between nodes to ensure the transmitting of ranging and
localization information.

The kinematic model of the cooperative localization system

X(t) = φ(t− 1)X(t− 1) + B(t− 1)U(t− 1) + ν(t− 1) (1)

Let X(t) =
[
Px(t), Py(t),ϕ(t)

]T
denote the 3D navigation state, comprising the position[

Px(t), Py(t)
]T

, azimuth ϕ(t) of the robot X(t) can be estimated by DR model.
The observation equation of the cooperative localization system

Z(t) = H(t)X(t) +ω(t) (2)

where Z(t) = [di(t)] represents all the measurements from IMU and UWB up to the current time t, i
represents the i-th sensor. In our positioning localization model, the distance d(t) is between the target
node and the auxiliary node.

2.2. Kinematic Model

In this paper, we assume that the target node has basic relative dead reckoning capability. The
navigation device needs to provide real-time information ∆ϕ(t − 1) and displacement increment
∆L(t− 1). As shown in Figure 3, this information is used to estimate the current coordinates of the
carrier by DR model [24]. At time (t − 1), the current position is (x(t− 1), y(t− 1)). If the next step is to
move a distance of ∆L(t− 1) with an azimuth angle of ϕ(t− 1) + ∆ϕ(t− 1) to the position of time (t),
the coordinates of time (t) can be calculated by Equation (3) [25].

x(t) = x(t− 1) + ∆L(t−1) cos[ϕ(t−1)]
y(t) = y(t− 1) + ∆L(t−1) sin[ϕ(t−1)]

ϕ(t) = ϕ(t−1) + ∆ϕ(t−1)

 (3)

The cooperative localization algorithm proposed is insensitive to platforms, no matter they
are manned or unmanned. We consider two major types of DR models in this paper. One is
based on land vehicle’s odometer and IMU, and the other is based on the shoe-mounted IMU for
pedestrian localization.
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Figure 3. The principle of the dead reckoning (DR) model (the position of the carrier at the next time is
estimated using the speed of the velocity, heading, and position of the carrier at the previous time.).

(1) DR model based on vehicle’s odometer and the IMU

The azimuth angle and displacement incremental information required for co-location is obtained
by the Strapdown Inertial Navigation Solution (SINS). Due to the maturity of the development of the
SINS based on odometer and IMU, this article does focus much on it. We recommend readers refer
to [26].

(2) The DR model for pedestrian localization

From our previous work [27], pedestrian localization is based on the kinematics of the pedestrian,
extracting the gait information during pedestrians’ movement, detecting the zero-velocity interval,
and triggering the error correction algorithm based on the EKF to achieve the effect of restraining
the navigation positioning error. In this paper, velocity information is selected as the observation to
establish the current state of the pedestrian, and the EKF is used to suppress the velocity error in the
detected zero speed range. Since the observation can only be obtained in the standing period, the EKF
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only updates the time and measurement information in standing duration (zero speed intervals), and
only updates the time in the non-standing period. The state variables of EKF is as follows:

X =
[
δγ δθ δϕ δpx δpy δpz δνx δνy δνz

]T
(4)

where
[
δγ δθ δϕ

]T
are attitude angle errors,

[
δpx δpy δpz

]
are position errors,[

δνx δνy δνz
]

are speed errors. The linearized system state transition matrix is

Φk,k−1 =


I3×3 03×3 03×3

03×3 I3×3 ∆t× I3×3

Sk 03×3 I3×3

, Sk =


0 ∆t× αn

zk −∆t× αn
yk

−∆t× αn
zk 0 ∆t× αn

xk
∆t× αn

yk −∆t× αn
xk 0

 (5)

Taking the actual speed value during standing periods in a pedestrian gait cycle as an
observation measurement Zk = νn

k − 0 = δνn
k , the corresponding observation matrix is H =[

03×3 03×3 I3×3
]
, the variance matrix of system process noise and observation noise are

defined as Q = diag
[
(0.01)2 (0.01)2 (0.01)2 0 0 0 (0.01)2 (0.01)2 (0.01)2

]
, R =

diag
{
(0.01)2 (0.01)2 (0.01)2

}
, respectively.

When the state error estimate of the filter output is brought into the strapdown inertial navigation
system for error compensation, then at time k, the error-corrected position increment information can
be expressed as

∆Lk = pk|k−1 − δpk − pk−1 (6)

Attitude error compensation is accomplished by updating the attitude transformation matrix
as follows:

Cn
k =

(2I3×3 + δΘk) ·Cn
k−1

2I3×3 − δΘk
, δΘk =


0 δϕk −δθk
−δϕk 0 δγk
δθk −δγk 0

 (7)

The information of the azimuth angle increment after error correction is expressed as follows:

∆ϕk = ϕk|k−1 − δϕk −ϕk−1 (8)

2.3. Measurement Model Based on UWB

Since the observation model is based on UWB ranging measurements, we analyze the sources of
UWB observation errors in order to improve positioning precision. In general, the sources of ranging
error are multipath fading εm and NLOS propagation εnlos [28]. References [29,30] claimed that the
propagation error εnlos is not relevant to d, but rather the penetration coefficient describing how the
LOS path is impeded. The distance ranging error εd can be expressed explicitly as a function of the
Transport-Receive (TX-RX) separation distance and system bandwidth as follows:

εd = εm + εnlos (9)

At time (t), assuming that the position of an auxiliary node in navigation coordinates is p j(t) =
[x j(t), y j(t)]

T, where j = 1, 2 · · · n denotes the auxiliary serial number, and n is the total number of
auxiliary node. Then the measurement distance from the j-th auxiliary node with UWB tag to the
target node with UWB is written as:

d1 j(t) =
√
(x1(t) − xj(t))

2 + (y1(t) − yj(t))
2 + εd (10)

d̂i
1,k(t) =

√
(x̂i

1,k(t) − xj(t))
2
+ (ŷi

1,k(t) − yj(t))
2 (11)
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where the distance d12(t) between true target node and j-th auxiliary node can be measured by
ranging sensor, p̂i

1,k(t) is the position of the i-th particle, and the distance d̂i
1,k(t) between the particle

p̂i
1,k(t) = [x̂i

1,k(t− 1), ŷi
1,k(t− 1)]T and the auxiliary node p j(t) = [x j(t), y j(t)]

T can also be obtained.

The particle weight updating equation is established by taking the deviation between p̂i
1,k(t) and p j(t).

2.4. Algorithm Overview

The cooperative localization method based on AACOPF and dead reckoning is proposed that
performs without prior knowledge of the initial location and azimuth of the target node and with only
one auxiliary node capable of localization and one ranging sensor measuring the Euclidean distance
between a target node and an auxiliary node. The AACOPF algorithm is designed to solve the effects
of UWB-related peak offset error and non-Gaussian error caused by UWB multipath and NLOS factor
on cooperative localization error in the multiple auxiliary nodes topology network structure. It can
realize multi-to-single collaborative localization by adjusting the weight ω(k) update adaptively. It has
the function of plug and play, because the new auxiliary node is only an additional source added to
the weight update. Thus, if the auxiliary node cannot be used due to signal loss or sensor failure,
the system only needs to avoid adding relevant factors, without special procedures to re-model and
re-linearize the system model.

3. Cooperative Localization Algorithm with an Adaptive Ant Colony Optimization Particle Filter

PF is another non-parametric implementation of Bayesian filtering, whose notion is to represent
posterior by a series of random state samples obtained from posteriors. In PF principle, let χt be
a sample of posteriors distribution (particles), defined as χt := x[1]t , x[2]t , · · · , x[m]

t , and each particle

x[m]
t (1 ≤ m ≤M) is a possible hypothesis of the state at time t. The intuitive sense of PF is to approximate

confidence bel(xm
t ) with a series of particles χt. Ideally, the probability that state xt is included in

particles set χt is proportional to its posterior bel(xm
t ) of Bayesian filter: x[m]

t · p(xt|z1:t, u1:t ), where ut is
the control and zt is the observation [31].

As shown in Figure 4, at time (1), p2(1) represents the position of auxiliary node 2 with normal
localization function, p∗1(1) represents the true position of target node 1. d∗12(1) denotes the measured
distance between true target node 1 and auxiliary node 2 obtained by ranging sensor. More precisely,
with p2(1) as the center of the circle and d∗12(1) ± ∆d as the radius. The N ×M particles p̂i

1,k(1), k =

1, 2, . . .N, i = 1, 2, . . .M of the target node 1 are generated at the time (1) and each particle represents the
possible location and initial azimuth of the target node 1. After time (1), N ×M particles are propagated
by DR model.
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Let d∗12(t) be the measured true distance between true target node 1 and auxiliary node 2 at (t) time.
The predicted distance between p̂i

1,k(t) and auxiliary node 2 is denoted as d̂i
1,k(t).

∣∣∣(d̂i
1,k(t) − d∗12(t))

∣∣∣
denotes the difference between the predicted distance and the measured distance of each particle,
which is used in the calculation of particle weight. The particle with predicted distance that best
matches the measured distance gets the highest weight. Through PF, the particles swarm will gradually
converge to the true state. The position of the target node 1 is replaced by the position of cooperative
localization to realize the trajectory tracking of the target node 1, and the initial azimuth of the target
node 1 is derived from the optimal trajectory.

In this paper, ant colony optimization is used to improve the traditional particle filter algorithm.
The steps are as follows.

Step 1: Particles initialization

Through the known prior probability density distribution P(x0) of the random dynamic system,

the initial particles
{
x(i)0

}
, i = 1, 2, 3 · · ·N ×M at (t = 0) are obtained by N ×M samples and the

corresponding initial weight of each particle is ω(i)
0 = 1/(N ×M).

Step 2: Importance sampling

According to xi
t ∼ q

(
xi

t

∣∣∣xi
t−1, h(t)

)
, i = 1, 2, 3 · · ·N ×M, the particle set xi

t at time (t) is obtained by
the Equation (3).

Step 3: Adaptive cooperative localization

The error in ranging observations are modelled as a Gaussian distribution. In view of the multipath
and ULOS effects of UWB and occlusion by pedestrians and buildings along with their consequent
impacts on UWB peak values. Adaptive ranging recognition is involved to detect and eliminate
auxiliary nodes with unacceptable errors. Updating the weights in the Step 4 leads to higher accuracy
and robustness.

Let ρ j denote the residual between the measured distance d1 j and the one calculated with estimated
position. If the mean value of ranging error is greater than the threshold value Ω1 and the variance is
greater than threshold Ω2, that is E

[
ρ j

]
> Ω1&D

[
ρ j

]
> Ω2, the node will be eliminated followed by

weight updating.

Step 4: Update weights

The predicted value of each particle is obtained by Equation (12), and the weight of each particle
xi

t is calculated by the following equation according to the current observation zt:

ωi
t = ωi

t−1

p
(
zt
∣∣∣xi

t

)
p
(
xi

t

∣∣∣xi
t−1

)
q
(
xi

t

∣∣∣xi
t−1, zt

) (12)

In order to get better tracking effect with the ant colony algorithm, it is necessary to eliminate the
particles whose estimated values contradict the real value. That is, when xi

t · x < 0, the weight is given
ωi

t = 0; otherwise, the weight remains unchanged.
Normalized particle weights

ωi
t =

ωi
t

N∑
j=1

ω
j
t

(13)

Step 5: Ant colony optimization resampling [32]

The transition probability set of
{
Pi j(t)

}N×M

j=1
from the i-th particle to the j-th particle at time (t) is

obtained by the Equation (14). In particle selection, a threshold value λ is set, when the maximum
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transfer probability Pbest
i j (t) is less than λ, the particle does not change its position. When it is

greater than λ, let xi
t = x j

t , the particle set
{
xi

t

}N×M

i=1
is updated to maintain particle diversity, and the

corresponding weight set of each particle is
{
ωi

t

}N×M

i=1
= 1

N×M . The value of λ can be obtained by
experiments or experience.

Pi j(t) =
ω̂αi j(t)η

β
i j(t)∑

ω̂αi j(t)η
β
i j(t)

(14)

Define the particle transition probability Pi j(t) to represent the probability that particle i will shift
to j at the time (t) and ω̂αi j(t) denote the difference between the weights of particle i and j at the time
(t). The greater the difference between weights, the greater the probability that particle i will move to
particle j. ηi j(t) is the moving distance of the particles. The shorter the distance the particles move, the
greater the probability. α and β respectively reflect the weight information and position information of
the particles during the transfer process.

Step 6: Output state estimation

According to the steps above, the current state of target node 1 can be estimated by Equation (15),
and let t = t + 1, return to Step 2.

x̂t =
N×M∑
i=1

ωi
tx

i
t (15)

At time (t), the particle with the largest weight among all particles is selected and its corresponding
particles index L is calculated by the following equation:

L = r(modm) (16)

where, in Equation (16), m represents each initial particle have m directions, and r is the index of the
largest weight particle.

4. Observability Analysis of Cooperative Localization System with One Auxiliary Node

For discrete time-varying linear systems, Goshen-Meskin et al. proposed a Piece-Wise Constant
System (PWCS) observability analysis theory [33]. According to the motion characteristics of the
system, the system can be divided into time segments and the observability matrix of each time
segment can be calculated, so that the total observability matrix of the system can be obtained. The
following introduces an observability analysis method based on singular value decomposition of the
observability matrix of the system.

Without considering the process noise and the observation noise, the linearized system model is:

∆X(t) = Φ∆X(t− 1)+B∆u(t− 1)
∆Z(t) = H∆X(t)

(17)

where,

Φ =


1 0 −∆L(t−1) sin[ϕ(t−1)]
0 1 ∆L(t−1) cos[ϕ(t−1)]
0 0 1

, B =


cosϕ(t−1) 0
sinϕ(t−1) 0

0 1

, H =
[

x(t)−x2(t)
d(t)

y(t)−y2(t)
d(t) 0

]

For a set of observations H(0), H(1), H(2), · · · , H(k), based on the observability analysis theory of
PWCS, the observability matrix of dynamic system is:
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Rk =



H(0)
H(1)Φ(0)

H(2)Φ(1)Φ(0)
...

H(K)
k−1∏
i=0

Φ(i)


(18)

where φ is the state transition matrix of the system, and H is the observation matrix.
The singular value decomposition of Rk is expressed as:

Rk = U
∑

V
T

(19)

where U =[u1, u2, · · · , uk] is an k× k dimensional orthogonal matrix; V =[v1, v2, v3] is a 3× 3 dimensional
orthogonal matrix;

∑
=

[
S3×3, 0(k−3)×3

]
is a k× 3 dimensional matrix; S = diag(σ1, σ2, σ3) is a diagonal

matrix composed of the singular value of Rk and 0.σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0, n = 3.
The singular value σi of Rk is greater than 0. The magnitude of the singular value can effectively reflect
the observability of the state of the system. The larger the singular value, the better the observability of
the corresponding state.

Gadre and Stilwell [34] proposed that the system is locally unobservable when the auxiliary
node is fixed or the range of target node to the auxiliary node located at the same relative direction.
According to the observability analysis theory of PWCS, the observability of the system is determined
by singular value σ which is calculated by Rk. Suppose the target node (blue line) makes a linear
motion with a slope of 0.5, the estimated trajectory of target node is shown in Figure 5.

As shown in Table 1, when the auxiliary node is fixed or the range of target node to the auxiliary
node located at the same relative direction, there is a singular value of 0, which denotes the system is
not observable. When the auxiliary node does not move with respect to the target node, the system is
observable for the full rank of observable matrix Rk. Therefore, to make the system observable, in the
process of cooperative localization, the PWCS observability analysis method can be used to optimize
the appropriate auxiliary node trajectory.

Table 1. The singular value of the system state under three kinds of motion states.

Auxiliary Node Fixed Relative Movement Non-Relative Movement

σ1 1.2884 103.0097 124.9266
σ2 0.0016 1 4.0294
σ3 0 0 0.8866

According to PF algorithm and DR model, if auxiliary node 2 is moving, the particles propagation of
the AACOPF algorithm is shown in Figure 6. pi

1,k(t) =
[
xi

1,k(t), yi
1,k(t)

]
(k = 1, 2, . . . , N, i = 1, 2, 3, . . . , m)

are the possible positions of target node 1. p∗(t) = [x∗(t), y∗(t)] are the true position of target node 1,
and p2(t) = [x2(t), y2(t)] denotes the position of moving auxiliary node 2. At time (0), N particles are
generated, and each particle is given m directions, after particles propagate by DR model, we can get
N ×M particles at time (1). The red line denotes the true trajectory of target node 1, the blue line is the
estimated trajectory, and the yellow line denoted the true trajectory of auxiliary node 2. According to
the proof of cooperative positioning algorithm, only when node 2 is in motion, the error converges,
thus, the coordinates of the target node 1 can be estimated.
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Figure 6. Particle’s propagation model of target node 1 with a moving auxiliary node.

The cooperative localization algorithm is shown in Algorithm 1. By making use of the known
information, such as the distance d12(t) between target node and auxiliary node, weight information
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α, position information β, threshold value λ, displacement increment ∆L(t), and azimuth increment
∆ϕ(t) of target node, we can get the localization information p̃1(t) and initial azimuth ϕi

1,k(0) of the

target node. In Table 1, p̂i
1,k(t) =

[
xi

1,k(t), yi
1,k(t)

]
denotes the predicted state of particle k with initial

azimuth i at time (t).

Algorithm 1 Cooperative Localization Algorithm of Single Auxiliary Node

1: Input: Number of initial particles N, Number of initial azimuth M, Euclidean distance d12(t), Displacement
increment ∆L(t), Azimuth increment ∆ϕ(t)
2: Output: Estimation trajectory p̃1(t), azimuth ϕi

k(t)
3: Generated N ×M initial particles pm

N(0)
4: While localization do
5: for 0 < k < N do
6: for 0 < i < M do
7: xi

k(t)← xi
k(t− 1) + ∆L(t) cos

[
ϕk(t− 1) + ∆ϕ(t)

]
8: yi

k(t)← yi
k(t− 1) + ∆L(t) sin

[
ϕk(t− 1) + ∆ϕ(t)

]
9: end
10: end

11: d̂i
k(t)←

n∑
j=1
‖p̂i

k(t) − p j(t)‖

12: Particles weight wi
k ← sort(

exp (
n∑

j=1
(d̂i

k(t)−d1 j(t))
2

)∑
exp (−d̂i

k(t)−d1 j(t))
2 ))

13: Moving distance ηi j
k (t)←

1
norm(pi

k−p j
k)

14: Transition probability pi j =
wα

i j(t)η
β
i j(t)∑

wα
i j(t)η

β
i j(t)

15: If pmax
i j > λ

pi
k = p j

k
16: end
17: Estimation trajectory p̃1(t)← mean(

∑3
i=1 wi

kp̂i
1(t))

18: Localization error e1(t)← ‖p̃1(t) − p∗1(t)‖

19: Azimuth ϕi
k(t)←

[
ϕi

k(t− 1) + ∆ϕ(t)
]

20: end

5. Experiment and Results

5.1. Car-to-Trolley Cooperative Localization

5.1.1. Experimental Sets

In this section, firstly, we introduce the platform of the experiment and then analyze the feasibility
of the algorithm. The platform consists of a car equipped with an odometer, IMU, GPS, and UWB
transmitter, and a trolley with UWB receiver and GPS. The objective of the mission is to efficiently
verify the dual-platform localization algorithm based on DR and AACOPF, then, analyze the tracking
error of the car. The experimental setup and picture is shown in Figure 7.

The experimental sets are as following:

1. The distance between the car and the trolley is measured by UWB ranging module
(DW1000FOLLOWER). The measurement accuracy of DW1000 chip is about 10 cm, and the
bidirectional ranging accuracy is 20–30 cm.

2. The car equipped with IMU, odometer, GPS, and UWB ranging module functions as the target
node (node 1). The trolley functions as auxiliary node (node 2), which is equipped with GPS that
can provide accurate position information as well as UWB ranging module. The positioning
accuracy of GPS is 5 cm, and the Gyro bias less than 0.05◦/h.
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3. The displacement increment ∆L(t) and azimuth increment ∆ϕ(t) of the car is obtained by
odometer and INS. On the car, the double antenna GPS is not used in the localization process but
regarded as reference criterion to verify the accuracy of cooperative localization algorithm.

4. The position of the trolley is measured by GPS.
5. The GPS localization information of the car is assumed to be the benchmark, and the localization

information calculated by cooperative localization is the estimated information.
6. The experimental site covers an area of approximately 100 × 100 m2. The car moves in a closed

loop around the site.
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5.1.2. Results

(1) Tracking Verification When the Trolley is in Static and Moving State

The estimated trajectory and the actual trajectory of the car is drawn in Figures 8 and 9. The
trolley remains stationary in Figure 8. In Figure 9, the motion of the trolley satisfies the observable
motion of the system. The feasibility of the algorithm is verified by comparing the estimated trajectory
with the actual trajectory.

In the experiment, the true initial azimuth of car is ϕ = 71.0548◦. In Figure 8, it can be seen that
when the trolley is stationary, the estimation trajectory of car cannot track the true trajectory, and the
estimation of initial azimuth ϕi

1 = 11.9977◦ is very different from the true initial azimuth ϕ = 71.0548◦,
the cooperative localization algorithm could neither track the trajectory of the car, nor can it estimate
the azimuth when the trolley is stationary. However, in Figure 9, when the trolley is moving, the
estimated trajectory and azimuth of the car is convergent, and the convergence process of particles
at different times is represented by different colors. In Figure 10, it can be seen that the cooperative
localization algorithm can track the trajectory of the car with high accuracy of up to 0.3 m. the initial
azimuth ϕi

1 = 71.0009◦ calculated by the algorithm and the estimated the azimuth error converges and
the accuracy of azimuth estimation reaches 0.0539◦.
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(2) Select the Appropriate Localization Parameters on the Estimation of States

It can be seen from Table 2 that the accuracy of the positioning error and azimuth error keep stable
after N = 400 and M = 400. In general, the larger the value of M and N are, the smaller the positioning
error and the azimuth error are. However, there are some special cases, such as when N = 100 and
M = 100, the system has high accuracy, which are caused by the formation of N ×M particles (random
generation in this paper) and UWB ranging error. Ultimately, considering the positioning accuracy
and the azimuth estimation accuracy, N = 400 and M = 400 can be selected as the relatively appropriate
trajectory parameters in the 3D circumstance.

Table 2. Effects of the number of initial positions and azimuth on the positioning error and azimuth error.

M N Initial Azimuth Error/◦ Localization Error/m

50 50 6.9477 4.5267
100 100 0.1134 0.2583
200 200 1.3426 1.2635
400 400 0.0539 0.0687
600 600 0.0684 0.0681
800 800 0.0539 0.0187
1000 1000 0.0539 0.0245
1500 1500 0.0539 0.0197

(3) Comparison of Positioning Accuracy of EKF, PF, and AACOPF with Gaussian Ranging Noise

The localization errors and azimuth estimation errors of the pedestrian in Figure 11 show that
the convergence and localization accuracy of cooperative positioning are EKF < PF < AACOPF. The
reason for this phenomenon is that our co-localization model is a nonlinear system. The EKF principle
is to linearize the nonlinear system, which often suffers large errors and deviations in its estimates
of states and variances. Owing to the arbitrariness of particle distribution, the PF is more suitable
for arbitrary non-linear systems. The standard PF algorithm uses the resampling method to prevent
particle starvation. One of the advantages of this method is simple operation, but after many iterations
it will suffer from lack of particle diversity. Just as we can see from the azimuth estimation error in
Figure 11, although PF has fast convergence rate and high positioning accuracy, its curve experiences
some protruding outliers. Therefore, we use AACOPF to make the particles have better distribution
and keep the diversity of particles.
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Figure 11. The positioning (a) and azimuth (b) estimation error of the car (target node 1) for one of the
running programs, when N = 400, M = 400.

5.2. Car-to-Pedestrian Cooperative Localization

5.2.1. Experimental Sets

As Figure 12 has shown, the MTi-G710 inertial measurement unit of Xsens of the Netherlands is
selected as the experimental equipment. The IMU is 57 mm × 42 mm × 24 mm in size and only 21 g
in weight, so it has the characteristics of small and light, which is very suitable for foot installation and
will not affect the normal action of pedestrians. MTi-G710 mainly integrates MEMS gyroscope, MEMS
accelerometer and a three-axis magnetometer. The gyroscope bias of less than 5◦/h and acceleration
bias is 12 ug. In the field of 30 m × 15 m, pedestrians wear the shoes of a fixed IMU and hold the laptop
connected with IMU and UWB. The inertial data measured by IMU is processed by the strapdown
inertial navigation solution based on zero-velocity updating. The GPS on backpack is regarded as
reference criterion to verify the accuracy of cooperative localization algorithm. The car and trolley
function as auxiliary nodes (node 2 and node 3), which are equipped with GPS that can provide
accurate position information as well as UWB ranging module. In the course of the experiment, the
auxiliary node 2 is added with the peak shift error, the auxiliary node 3 is added with non-Gaussian
noise or the noise that exceeds the measurement error threshold.

5.2.2. Results

Comparison of positioning accuracy of PF and AACOPF with non-Gaussian ranging noise.
When auxiliary node 2 is added with the peak shift error, auxiliary node 3 is added with

non-Gaussian noise or the noise that exceeds the measurement error threshold, the localization errors
and azimuth estimation errors of the pedestrian in Figure 13 show that AACOPF convergences faster
than PF, and the localization accuracy is higher than PF. Due to non-Gaussian ranging noise and particle
starvation of PF, we can see from the curve of azimuth estimation error and trajectory estimation errors
in Figure 12 that PF experiences some protruding outliers, while the AACOPF not. Therefore, we use
AACOPF to make the particles have better distribution and keep the diversity of particles, through
AACOPF the accuracy of localization and azimuth of this system is 0.66372 m and 0.22658◦.
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(target node 1) for one of the running programs, when N = 400, M = 400.

6. Conclusions

In this paper, a multi-platform cooperative localization method based on IMU and UWB is
proposed. Firstly, the particle propagation model is constructed based on a DR model. Then the weight
updating algorithm is designed using ranging information between target node and auxiliary node
measured by UWB as observations. The position and azimuth of the target node are estimated by
AACOPF. The convergence property of the algorithm is proved and analyzed to verify the feasibility
and effectiveness of the single to single cooperative localization algorithm. This method contributes to
solving the problem of localization in harsh and complex environments. Only one moving auxiliary
node is needed to estimate the position and initial azimuth of the target node, with no prior information
of position and azimuth of the target node. When there are multiple auxiliary nodes (new sensors are
added), the particle filter algorithm can perform rapid cooperative positioning without remodelling or
re-linearization of the system, only by self-adaptive adjustment of particle weights. It has the capacity
for plug and play operation since a new sensor is only added as a guide of weight updating. Similarly,
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if the sensor cannot be used due to signal loss or sensor failure, the system only needs to avoid adding
relevant factors, without special procedures.
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