
sensors

Article

An Efficient Dynamic-Decision Based Task Scheduler for Task
Offloading Optimization and Energy Management in Mobile
Cloud Computing

Abid Ali 1 , Muhammad Munawar Iqbal 1 , Harun Jamil 2, Faiza Qayyum 3, Sohail Jabbar 4 ,
Omar Cheikhrouhou 5 , Mohammed Baz 6 and Faisal Jamil 3,*

����������
�������

Citation: Ali, A.; Iqbal, M.M.; Jamil,

H.; Qayyum, F.; Jabbar, S.;

Cheikhrouhou, O.; Baz, M.; Jamil, F.

An Efficient Dynamic-Decision Based

Task Scheduler for Task Offloading

Optimization and Energy

Management in Mobile Cloud

Computing. Sensors 2021, 21, 4527.

https://doi.org/10.3390/s21134527

Academic Editor: Raffaele Bruno

Received: 27 May 2021

Accepted: 25 June 2021

Published: 1 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, University of Engineering and Technology, Taxila 47080, Pakistan;
abidali.hzr@gmail.com (A.A.); munwariq@gmail.com (M.M.I.)

2 Department of Electronic Engineering, Jeju National University, Jeju 63243, Korea; harunjamil@hotmail.com
3 Department of Computer Engineering, Jeju National University, Jeju 63243, Korea; faizaqayyum@jejunu.ac.kr
4 Department of Computational Sciences, The University of Faisalabad, Faisalabad 38000, Pakistan;

sjabbar.research@gmail.com
5 CES Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia;

omar.cheikhrouhou@isetsf.rnu.tn
6 Department of Computer Engineering, College of Computer and Information Technology, Taif University,

P.O. Box 11099, Taif 21994, Saudi Arabia; mo.baz@tu.edu.sa
* Correspondence: faisal@jejunu.ac.kr

Abstract: Restricted abilities of mobile devices in terms of storage, computation, time, energy supply,
and transmission causes issues related to energy optimization and time management while processing
tasks on mobile phones. This issue pertains to multifarious mobile device-related dimensions,
including mobile cloud computing, fog computing, and edge computing. On the contrary, mobile
devices’ dearth of storage and processing power originates several issues for optimal energy and time
management. These problems intensify the process of task retaining and offloading on mobile devices.
This paper presents a novel task scheduling algorithm that addresses energy consumption and time
execution by proposing an energy-efficient dynamic decision-based method. The proposed model
quickly adapts to the cloud computing tasks and energy and time computation of mobile devices.
Furthermore, we present a novel task scheduling server that performs the offloading computation
process on the cloud, enhancing the mobile device’s decision-making ability and computational
performance during task offloading. The process of task scheduling harnesses the proposed empirical
algorithm. The outcomes of this study enable effective task scheduling wherein energy consumption
and task scheduling reduces significantly.

Keywords: mobile cloud computing; fault tolerance; task scheduling; offloading; cloud virtual machines

1. Introduction

Advancements in the Information and Communication Technologies sector and related
Internet of Things (IoT) technologies have an impact on humans’ lives all over the world.
IoT is, in simple words, intelligent things equipped with sensors that gather data without
the interactions of humans. These devices are smart enough to collect/capture, handle,
transmit and display the resulted data without any manual automation. The IoT concept
provides the capability to connect almost everything around us that can communicate using
the internet. The objective is to connect mobile devices to promote their task processing
capabilities. Mobile cloud computing is a combination of IoT devices such as smartphones
that use IoT-based technology to enhance the task processing capabilities of mobile devices.

In recent years, computing and information technology resources have been increased
and deployed in many fields such as cloud, mobile cloud, fog computing, distributed, and
parallel computing. In all these technological advancements, there is a rapid increase in the

Sensors 2021, 21, 4527. https://doi.org/10.3390/s21134527 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2917-6598
https://orcid.org/0000-0001-7212-1408
https://orcid.org/0000-0002-2127-1235
https://orcid.org/0000-0002-9898-3898
https://orcid.org/0000-0003-1994-6907
https://doi.org/10.3390/s21134527
https://doi.org/10.3390/s21134527
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134527
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134527?type=check_update&version=2

Sensors 2021, 21, 4527 2 of 20

development and use of cloud computing. Ultimately, different resources are needed to
manage and handle mobile devices to cloud plate-forms [1,2]. Mobile cloud computing
(MCC) is the systematical use of the cloud plate-form for smaller mobile devices and other
smaller machines to provide connectivity in terms of the network for sharing data, different
mobile operating systems, processing capacity, apps, storage, etc. [3]. The cloud itself is a
massive data center available 24/7 to provide different homogeneous and heterogeneous
resources to millions of connected mobile users for fast and efficient access to resources
at their locations worldwide [4]. Before we proceed with the MCC’s actual challenging
area problems, the problem is understanding MCC’s study with a few definitions from
different literature reviews. MCC uses applications that are running on a remote server with
immense processing capabilities. The enormous storage and mobile devices need different
formats to serve mobile users [5]. MCC comprises different resource-rich servers, mobile
devices, network devices, a cloud operating system, and local and remote applications.
These are connected and maintained in a decidedly organized manner. The resources must
be handled, maintained, and efficiently shared across the cloud devices [6].

Today, due to the multiple benefits of the cloud, the world is shifting towards MCC.
MCC’s main research areas include processing power, battery lifetime, encrypted copying,
and transferring the different mobile applications from the cloud to MCC users [7]. Efficient
task submission and processing for fault tolerance, resource sharing, reuse of computing
resources over multiple devices, or even the same computing device to allow internet-based
applications like games, online simulation techniques, etc. MCC can leverage the existing
challenges of mobile devices and shift them to MCC [8].

However, it is notable that Cloud Computing (CC) and MCC are not new technologies
that provide services to mobile users. MCC is a form of CC. CC provides the data man-
agement operations on cloud virtual machine Virtual Machines (VM). Simultaneously, the
MCC integrates CC expertise with mobile devices to make the mobile devices resourceful
in expressions of energy, computational power, storage, memory, and context awareness.
Virtualization and utility-based pricing use different cloud services in a more refined man-
ner [9–11]. At the MCC Foundation, several devices connect with the cloud to access or
offer various cloud services to the users and other third-party cloud platforms [12].

Multiple mobile devices want to access cloud services at a remote location or cloud
servers. Initially, the request is directed to the local cloud, which is local to the mobile
network provider (MNP). With a database and central server working in coordination with
the local mobile cloud network (MCN), it prepares the request to deliver via the internet for
cloud services. If the requested resource is not found, it asks to be redirected to the remote
cloud where all the services are offered and available for processing [13]. Moreover, MCC
helps mobile devices to save energy and processing time by offloading certain resources
and computationally intensive tasks to the mobile cloud. The studies found that large
tasks can be broken down into smaller tasks and task precedence requirements. The fine
granularity of the task level offloading can achieve both time and energy saving [14].

Furthermore, task scheduling is optimized using MCC, offloading it from a mobile
device towards the MCC VM. One of the more suitable strategies for deploying MCC
is to offload all computations to the computational cloud for processing and deliver the
results back to the mobile cloud service. Different cloud service providers (CSP) provide
such services to their cloud users for better understanding and convenience [15]. Several
existing methodologies such as intelligent batteries, power scheduling, efficient operating
system, energy-aware communication protocols, and applications are introduced to reduce
mobile devices’ energy and time consumption. So, task offloading is introduced to reduce
the requirements of these mobile device tasks. Task Scheduling helps the mobile devices to
reduce the battery life and improve the handling of mobile device energy and time opti-
mizations. The task offloading helps overcome the communication time cost and energy of
these devices to overcome such challenges. Thus, the task that should be offloaded from
mobile devices to the MCC VM must be decided based on some significant factors like
memory, execution time, processing energy, network bandwidth, processor utilization, allo-

Sensors 2021, 21, 4527 3 of 20

cation time, upload time, results in processing time, and some local executions parameters.
Thus, task scheduling is one of the main fields to consider in MCC research objectives.
Besides all this, every mobile user can experience these services at any time without any
time limitations and interruptions [16]. However, user data, applications, confidential
information, and locations are insecure for cloud users due to compromised attacks in this
field [17,18].

Computation-intensive tasks (tasks sizes are larger than computational capabilities)
are rich in computations. Energy and time consumption are the two main factors to
manage in mobile cloud computing. Energy and time are the challenges faced during task
scheduling in mobile cloud computing. Limited capabilities of mobile devices in terms
of energy, storage, time, transmission bandwidth, and computations trigger problems
associated with energy optimization and time management while processing tasks on a
mobile phone. This problem needs to be addressed in this paper, focusing on efficient
dynamic decision-based task scheduling in MCC.

The main contribution of the proposed system is to save time and computational
energy using the mobile cloud computing approach as follows:

• The main objective of this system is dynamic decision-making for task scheduling
using the decision-based algorithm.

• The task offloading decision is straightforward, using a dynamic decision-based
scheduler to predict which task is offloaded to the mobile cloud and which task is
executed on the mobile device.

• The controller effectively decides to enhance the efficiency of the decision algorithm
by making choices in less time.

• The decision algorithm works collectively with the scheduler to enhance the probabil-
ity of task-processing decision-making.

• We effectively reduce the power consumed by mobile devices’ task execution through
task scheduling decision algorithms and task competition models.

• Finally, for evaluation of the system performance, we analyze the results using mobile
offloading through simulation. Our proposed technique indicates that the decision al-
gorithm effectively improves the system decision-making, and less power is consumed
through dynamic decision-making for task execution.

The rest of the paper is organized as follows. Section 2 presents the related work on
task scheduling and fault tolerance. Then, in Section 3, we outline our approach for the
research and proposed solutions to the relevant problems encountered in Section 1 of the
paper. Then, in Section 4, we present the proposed method with simulations using a hybrid
approach. In Section 5, we conclude our proposed system, highlighting that our technique
makes it straightforward for fault tolerance methodology.

2. Related Work

In MCC, several studies have recently been discussed in the literature. Zhuo et al. [19]
proposed a group-based fault tolerance technique called GFT-mCloud, which can classify
mobile devices into different groups based on reliability, processing capacity, and mobil-
ity. Based on the task offloading schemes, specific groups of jobs are scheduled based
on the criteria. Noraziah et al. [20] implemented a fault tolerance technique in which
cloud providers and cloud users/customers share their responsibilities in response to fault
tolerance techniques to efficiently utilize resources and energy efficiency. As in [21,22], dif-
ferent application faults can be repaired and detected at the user level, however, hardware
and virtual machine faults can be identified and repaired at the cloud level. The recov-
ery/restoration of the applications running on the refurbished VMs can be requested and
performed at the customer level. The checkpointing technique is used to create re-establish
points for the recovered VMs.

Chen et al. [23] proposed a new method for concentering fault tolerance in a cloud.
They used a k-out-of-n approach that mobile devices can successfully retrieve and process
different data in a very effective energy-efficient way as remote servers are accessible

Sensors 2021, 21, 4527 4 of 20

for processing. Park et al. [24] developed a new technique based on the Markov Chain
Model system, based on the analysis and prediction of the status of all resources available.
Li et al. [25] discovered that clouds are more resistant to the fault problems caused by
mobile devices’ mobility. Abd et al. [26] defined the cloud computing models that support
on-demand Internet access, convenient, ubiquitous access to different bundles of resources
for configurable computing. It has gained an enormous amount of popularity. The National
Institute of Standards and Technology (NIST) has defined that cloud computing has many
distinguishing characteristics for the cloud, such as measured services, on-demand self-
service, rapid elasticity, resource pooling, and broad network access. The high distribution
of resources and heterogeneity makes the system more convenient and suitable for cloud
resource distribution [27]. Fault tolerance is one of the significant issues in cloud computing
that needs to be addressed when designing the cloud system for efficiency. Guo et al. [28]
analyzed that hundred to millions of clients were affected whenever any cloud resources
failed for any reason, which leads to disastrous implications.

Data processing and retrieval, which demonstrates that a big file is split and encoded
and then distributed to the network for evaluation [29]. In Table 1, we have compared
the recent techniques for MCC task scheduling considering fault rate, makespan, energy
optimization, offloading, heterogeneity, control messages, storage, and percentage of tasks
executed on either mobile devices or MCC. The table significantly handles the compar-
ison based on different proposed techniques. The table clearly shows that the energy
optimization and makespan are not evaluated in MCC in combination.

Sensors 2021, 21, 4527 5 of 20

Table 1. Comparison of some proposed MCC-related solutions in the literature.

S.No Proposed Papers Algorithm Used Fault
Rate

Makespan
Time

Energy
Optimization Offloading Heterogeneity Control

Messages Storage % of Task
Executed

1 Lee et al. [30] Group based fault tolerance X X - X X X - -

2 Raju et al. [31] Disease Resistance Approach X X - - X - - X

3 Abd et al. [26] k-out-of-n framework (denoted by KNF) X X X - X - - X

4 Park et al. [24] MARKOV chain based monitoring Model X X X X - X X X

5 Al-Sayed et al. [32] Dynamic Grouping Technique X X - - - - - -

6 Kashanchi et al. [33] A genetic method for task scheduling X - - X - - X -

7 Peng et al. [34] Reliability-compliant and Energy-aware
Data Storage X - X - X - X -

8 Tang et al. [35] Energy-Efficient Task Scheduling X - X - - - - X

9 Lin et al. [36] Performance-Aware Task Scheduling - - X X - - - X

10 Guo et al. [37] EETS. Model for Task Scheduling - - X X - X - -

11 Wei et al. [38] MLMCM for Task Scheduling - X - - X - - -

12 Nawrocki et al. [39] M L through Adoptive service - X - - - X X -

13 Akki et al. [40] N.N. based optimization methods - - X X - - - X

14 Shakarami et. al. [41] stochastic-based offloading approaches - X X X - X - X

Sensors 2021, 21, 4527 6 of 20

3. Proposed Model

The following section provides a detailed overview of a system architecture proposed
and implemented to efficiently handle the mobile cloud fault tolerance using a hybrid
approach for access and the cloud services and other main scenarios. Consider the scenario
where the tasks are either offloaded to the MCC VM or to processes on a local mobile
device. Figure 1 shows the system architecture diagram of the three-layer architecture. The
mobile user layer consists of mobile devices with local mobile task processors. The mobile
devices are interconnected through high-speed wi-fi or other facilities. The second layer
is the task scheduling layer. The task scheduling layer provides task decision capabilities
with a highly intelligent scheduling algorithm. All the modules are discussed in the below-
mentioned sub-headings. The task scheduling layer’s final task should be processed either
on the local machine/mobile device or offloaded to the MCC VM. The decision is based
on the computational process and task information gathered through the mobile device.
Every task is handled individually. The cloud layer is where the final and updated tasks
are received and processed with high-speed processing capabilities. The MCC handler
manages and assigns a separate VM to an individual task. These tasks are passed to the
task scheduling layer. The main functions of the task scheduling layer are.

(a) Scheduling Handler: Handle multiple application services access and provide a dynamic
scheduling technique for managing and distributing numerous services over the cloud.

(b) Information Collection: Collect all information from the mobile devices accessing the
services, like power information, processing, storage, battery information, bandwidth,
processing capacity.

(c) Information Processing/Checking: This part of the processor checks the above infor-
mation to assess that the particular cloud service is suitable for handling the different
mobile devices or not.

(d) Scheduling Information Keeper: This Information Collaboration Site (ICS) module is
important because it keeps the information related to the cloud services and some
other information whilst the service is being used by a specific mobile device. After
completion, the ICS automatically deletes the information from its storage.

(e) Decision Support (DS): The DS module decides about the processing and other mobile
device capacities and decides whether to allocate the cloud services to the mobile or
not. The final allocation is based on the decision of this module.

(f) Data Query Organizer (DQO): The DQO is responsible for data inflow and outflow
from cloud services based on what type of request is received, and what kind of service
needs to be distributed to the mobile client. Besides, to handle the computational
costs and the results of the data query returned from the cloud processors.

Figures 2 and 3 depict the working of the task scheduling layer. All three layers are
processed according to their assigned tasks. Initially, the information collection module of
Layer 2 receives the mobile devices’ data for strategic decision-making. When the task is
not sufficient for the local mobile device computation, the data query organizer organizes
and supports this device to process these steps. The task passed from the data query
organizer is now well established and ready to decide the task offloading towards the
cloud layer. The scheduling handler manages and finalizes the offload to the mobile cloud
layer. The complete strategy is a layer-based collaborative offloading strategy to offload
the tasks to the mobile cloud layer.

In our proposed system, whole scheduling and fault tolerance methods are handled at
the middle layer. The decision is made at this layer before the request has reached the cloud
for processing and handling. Figure 2 shows the system model diagram, which consists of
the flow of tasks from one module of the prosed MCC system to another. Scheduling of the
jobs needs to be handled by the scheduler, whereas the jobs need to be submitted to the
MCC for processing.

Sensors 2021, 21, 4527 7 of 20

System Model

Our proposed model constructs two separate networks: task handling and VM net-
working to process task distribution and task handling. There are two basic networking
models, one for mobile devices. The mobile device can process basic applications and
enhance the capabilities for classifying the network system, consisting of a mobile device
local engine and mobile device off-loader for offloading the tasks/jobs to the cloud for
the relevant processing. The equation that describes the local engine to solve the task is
(1 − Poff)λ. The task offloading capability of the mobile devices is checked based on the
job’s time for every task. The time calculation probability on the mobile device is calculated
with Equation (1). The model represents the local mobile calculation and task submission
towards the mobile cloud. (1 − Poff)λ represents the time subtracted from the total mobile
calculated time.

∆Ttotal mobile = ∆Tm + ∆Te − ∆Tec − ∆Ton − (1 − ∆Toff) (1)

Figure 1. System architecture with task processing and scheduling strategies.

Sensors 2021, 21, 4527 8 of 20

Figure 2. Task Flow Diagram.

In Equation (1), ∆Ttotal mobile calculates the total time of the local mobile for calculation
and submission for processing. In this equation, the λ represents the system’s job request
rate that required the mobile to get jobs/tasks from the devices. The ∆Ttotal mobile total time
indicates the total time for calculations on mobile devices. Similarly, if it requires a job to
be scheduled on the cloud for the dispatcher/scheduler, its time is calculated using

ΣToffλ = ∆Ton + ∆Te + ∆Tm + ∆Toff (2)

where ΣToffλ is the precise time for task submission until dispatch for scheduling. Fur-
thermore, the scheduler can reject any task based on the task’s information with proper
execution and extension. The total time from process load to return after execution on the
cloud is calculated with Equation (3). In Equation (3), ΣTtotalλ represents the total time
from when the process starts to create and finalize the computed values.

ΣTtotalλ = Poff(∆Toff + ∆Tec) + (1 + ∆Ton + ∆Tm) (3)

Sensors 2021, 21, 4527 9 of 20

We have used offloading based on the FCFS (First Come First Served) and the priority-
based hybrid model of the offloading queue for dispatching to the cloud for execution in
this model.

Figure 3. Network Distribution Model for Mobile Cloud System.

Job J is the set of all independent tasks executed on Central Processing Unit (CPU)
cores based on Nt

(j). The numbers of tasks collectively form the whole job for execution,
and if the mobile contains a single core, then the tasks are done one after another in a
sequential manner or if the mobile has multiple CPU cores, Nc, all tasks are executed in a
parallel manner. While on the other hand, on the cloud, all jobs/tasks will be executed in
parallel on different cloud virtual machines. To speed up the execution of a job/task, we
take the ratio of execution of the tasks and jobs for which it is executed. So,

F = α Nt
(j)/Nc (4)

where α is the clock frequency ratio for mobile CPU cores and VM processors. The fault
rate of any mobile device is estimated using the following information from the mobile
device before dispatching it to the cloud. Power is a significant concern for handling the
fault rate. To manage power resources, we needed to adapt to the data rate of the mobile
device that needed to be handled. For task offloading, we checked the task probability first
to determine if the task should be offloaded to the cloud because, for some tasks/jobs, the
mobile device can handle them using Equation (5).

Poff(task) =

{
∪
i
λ(Nt

(j) + C)

}
< A(Nc) (5)

where U is the union of all tasks that group together a job for offloading, λ is the request rate
of a mobile needing to execute on the cloud, Nt

(j) is the total number of tasks performed on
the cloud, C is the job size (mainly in instructions), A is the clock frequency ratio of the
mobile core processor, Nc. In this model, first, the task is checked to determine whether the
mobile CPU core(s) can handle the job. If they can, then the task will be executed on the
mobile. Otherwise, it will be offloaded to cloud VM, which is modeled in the next step.
Amoretti et al. [19] developed a model for offloading based on the energy consumed to
execute by the mobile is higher than the energy consumed by the cloud VM. Still, in our
approach, the power will also be wasted due to the massive network consumption power.

Sensors 2021, 21, 4527 10 of 20

We checked for fault tolerance based on mobile battery information, location information,
and mobile storage information by using the following model.

Equation (6) describes the battery information through the specified threshold.

Mb ≥ M(b)threshold (6)

Equation (7) represents the mobile location, with no changes to the new low band-
width network.

Mloc (B) ≥Mnew-loc(B) (7)

In Equation (8), the mobile storage is less than that of the output results produced
from the cloud VM to the mobile.

Mstorage < B + Cloudoutput (8)

In our research case, we needed to handle the fault tolerance before the task is dis-
tributed to the cloud. This helps the dispatcher check all the mobile device’s required
details to dispatch to the cloud plate form. Figure 3 shows the execution sequence of task
processing from the local mobile device towards the MCC. The estimated Time ∆Tec is
reflected from the scheduler.

The task scheduling process based on Algorithm 1 (below), which estimates the job,
needs to be executed on mobile and the job performed on the cloud VM. Initially, the
algorithm gathers the mobile device information through mob_info(T, B, L, S, App), the
number of jobs through jobs_num(m), the number of mobile nodes with nodes_num(n),
and gets the mobile information with fetch_info(T). Based on the information gained
through steps 1, 2, 3, and 4, new mobile cloud nodes, a job schedular, and cloud VMs
are created. The mobile device sends the information to the schedular with arguments.
If the execution time is less than the justified threshold value, then the task should be
processed on the mobile cloud, and if the task is heavyweight, then the task is uploaded
towards the cloud VM. The equation below in step 7 of the cloud estimation plan based on
this approach allows the system to continuously check the job execution time computed
through Equations (1)–(3). The system then schedules the task for either the cloud VM or
local mobile devices. Finally, the algorithm returns the job state.

Algorithm 1. Task Scheduling Decision

Input: Input from Table 1 (LEGENDS Table)
Output: Returns the state of the job submitted to the cloud or processed on mobile device/decision about
mobile or cloud execution

1: mob_info(T, B, L, S, App)
2: jobs_num(m)
3: nodes_num(n)
4: fetch_info(T)
5: create_nodes(N, CloudVM, Schedular)
6: send(T, D, C) scheduler()
7: for (T ≥ 0) do

calculateexe_time()
F← ∆Tm

∆Texc

end for

8: while (job_size ≤ threshold) do

C(B, F, Mb, Mloc, Mstorage)
if (C ≤M) then

job_exeM()
else

activeCloud(V.M.)
submitC(J)()
exejob()

end if
end while

9: Job_stateStore()

Sensors 2021, 21, 4527 11 of 20

4. Simulation Environment

To evaluate the effectiveness of the proposed model for MCC, we implemented
a simulation based on a mobile cloud simulator called CloudSIM and a mobile cloud
simulator called Cloud Analyst (which is based on CloudSIM with an improved GUI
interface). To the best of our knowledge, the CloudSIM is the best simulator for the
simulation of Cloud and MCC environments, just like real-world environments. Cloud
Analyst, built on top of CloudSIM, is a very active and user-friendly environment for a
specific mobile cloud simulation setup. CloudSIM simulator is for mobile simulation on
local machines with limited battery, processing (number of CPUs and cores), RAM, Internet
and bandwidth, processing time (in milliseconds), etc. First, we simulated the results based
on task availability on local machine simulations. If the cloud affected local machines, then
the simulator was working fine on the availability of tasks on the local mobile. Based on
the task information and mobile capacity information, the simulator would choose the
probability and perform all of the local mobile simulations. At first mobile, we evaluated
the information that we obtained in the following fashion.

We took ten chosen tasks randomly from the system in the initial simulations and
considered the first iteration for simulation for the results extraction. Table 2 shows the
information that is extracted from the tasks using a mobile phone. ∆Ttotal mobile is the
time calculated using Equation (1) from the above simulations. When using the total
time for mobile execution, the system must represent the following calculation as an
example. The information is collected after simulation steps and it provides the complete
details of the tasks and their processing capabilities. Based on the data captured from the
mobile devices, the CM and the local mobile devices are ready to process the data after the
scheduler’s decision.

∆Ttotal mobile = 0.5 + 0.7 − 0 − 0 − (1 − 0)
= 1.2 ms

Related to these calculations, we cleared that the first task was evaluated in line with
the above calculations. Next in the list, we calculated all the jobs requiring calculation
using Table 3.

ΣToffλ is the tasks offloading time. For MCC, it is the total time for the task being
shifted from the local mobile to the cloud. This time is evaluated by Equation (2) from the
model and for the evaluation of offloading time using Equation (2) for task 1 we have

ΣToffλ = ∆Ton + (∆Ttotal mobile − ∆Tm) + ∆Tm + ∆Toff
ΣToffλ = 0.012 + (1.2 − 0.5) + 0.5 + 2.31

= 3.342 ms

After calculating all ΣToffλ times for the calculations, we simulate and extract the
results based on the simulation scenarios. Figure 4 depicts the actual results to get the tasks
processed on MCC or local mobile devices.

ΣTtotalλ time is the total time from task creation from the mobile device to the cloud.
This time includes the time in which the mobile device decides the offloading or local
device calculations. The decision taken by the mobile is that the device is ready to offload.
Figure 5 shows the time calculation completed with offloading time and the time required
by the cloud VM for execution. From Equation (3), we calculated the total time for a task
from the mobile device to the cloud for processing with the formulae below.

ΣTtotalλ = (∆Toff + ∆Tec) + (1 + ∆Ton + ∆Tm)
ΣTtotalλ = (3.342 + 1.2) + (1 + 0.3 + 0.5)

ΣTtotalλ = (4.542) + (1.8)
ΣTtotalλ = (6.342) ms

The total time for a task is used for decision purposes to calculate the task for offload,
calculations for the cloud, and calculations for the mobile. Figure 6 shows the percentage

Sensors 2021, 21, 4527 12 of 20

of power consumed by the tasks. Some tasks show that higher power consumption means
these tasks should be offloaded for MCC, and other tasks should be executed on local
mobile devices.

Time consumption ΣTtotalλ with power P was used for the tasks at different time
intervals during the simulations. Figure 7 shows the comparison of task total time and
power used by the task for processing on the mobile and cloud in the proposed system. It is
observed that if tasks are increased in batch (number of jobs become batch), the calculations
are less, so the power required for the task is less than other techniques. The probability is
computed through Equation (8). After the computation of the probability, Figure 8 shows
the highest and lowest offloading probability for task processing energy optimization.
There are two approaches, P and T. P shows our proposed algorithm, and T shows the
existing approach [22]. We analyze the energy of the tasks from 2000 to 20,000 energy
efficiency costs for all tasks. Based on the graphs, we conclude that the proposed technique
efficiently reduces energy consumption while offloading the tasks. On every single node,
all the results effectively handle the tasks offloading and processing energy consumption
for mobile and VM processing.

Table 2. List of parameters and variables used in the system.

S.No Lagend Description

1 K Number of cloud virtual machines that are representing the cloud {kmax, kmin}
2 J Job from anywhere on android phone, task request rate (customarily considered as per mobile device)
3 Poff Mobile task offloading probability
4 Nt

(j) Number of tasks that forms a job (j)
5 Nc The average number of cores of the CPU for the mobile
6 A Clock frequency ratio
7 B The bandwidth available to the mobile
8 C Job size in terms of instructions
9 Sc Cloud machine speedup

10 C(B,C,Sc) Mobile device energy balance
11 M Instructions/second (job/task execution speed)
12 D Data transfer amount (in bytes)
13 R RAM required on memory (in bytes)
14 Wm Average power used by mobile device
15 Wi Power used by mobile when idle
16 Woff Power used by mobile when it is offloading a job to the cloud VM
17 Won Power used when network enabled on the mobile device
18 Eon Energy to turn the network interface
19 ∆Ton Average time for turning on the network interface
20 ∆Te Average time for task/job execution
21 ∆Tm Average mobile job execution time
22 ∆Toff Average time required for the offloading process
23 ∆Tec Average execution time on the cloud
24 ∆Tret Average job return time from cloud VM
25 Øtc The ratio between waiting and execution time on the mobile or cloud
26 S Setpoint for Øtc
27 D Parameter for the adaptive cloud controller
28 ƒct Tasks completed on the cloud
29 Q Probability of tasks at low-parallelism
30 F Cloud speed-up is estimated using the formula.
31 Mb Mobile battery information
32 ML Mobile location information
33 Mstore Mobile storage information
34 M(b)threshold Estimated battery required for backup for the offload of a task
35 Mloc Mobile current location
36 Mnew-loc New location of the mobile

Sensors 2021, 21, 4527 13 of 20

Table 3. Task Data Collected through CloudSIM Simulator.

S.No. Tasks ∆Tm
(ms)

Battery
Information

(mAh)
Location

More
(Storage,

Mb)

∆Ttotal Mobile
(ms)

B (Band-
width,
Kb/s)

CPU
Cores

RAM
(Gb)

Kmin,
Kmax

1 J1 0.5 0.2 33.9944073
72.9335021 5 1.2 131 1 2 5, 20

2 J2 0.8 0.4 31.25440053
70.5335021 8 1.4 131 1 2 5, 20

3 J3 1.8 0.7 32.2356291
69.7629013 12 3.2 131 1 2 5, 20

4 J4 199 1.47 33.9944073
72.9335021 82 310.21 131 1 2 5, 20

5 J5 2000.2 15.2 33.9944073
72.9335021 503 2821.4 131 3 2 5, 20

6 J6 5.77 12.6 33.9944073
72.9335021 9 10.42 131 1 2 5, 20

7 J7 789.45 14.6 33.9944073
72.9335021 392 834.91 131 2 2 5, 20

8 J8 43.2 6.8 33.9944073
72.9335021 34 65.23 131 1 2 5, 20

9 J9 122 11.5 33.9944073
72.9335021 61 210.41 131 1 2 5, 20

10 J10 450.81 28.6 33.9944073
72.9335021 242 602.31 131 2 2 5, 20

Figure 4. Job execution sequence in MCC.

Sensors 2021, 21, 4527 14 of 20

Figure 5. Time calculations on the mobile device.

Figure 6. Total offloading time from MCC to the cloud virtual machine (VM).

Sensors 2021, 21, 4527 15 of 20

Figure 7. ΣTtotalλ with power P used for the jobs.

Task offloading time ΣToffλ from Equation (2), is the total time we need to offload
the responsibility from the mobile to another if it uses the battery power of the mobile
machine. So for passing the results of the remaining time, Equation (5) is used with the
constraints from Equations (6)–(8). From this, it is observed that only the tasks that have
a computation time higher than the required calculations are shifted to the cloud VM for
calculations. Figure 9 shows the time and task offloading decisions based on calculations.

Figure 8. Energy optimization results for the proposed technique in comparison with
Mukherjee et al. [22].

Sensors 2021, 21, 4527 16 of 20

Figure 9. The decision of task offloading probability.

The major decision is based on the task execution time. The load on the cloud is
decreased because we do not offload jobs to the cloud VM until it possesses the required
probability value, which is set to offload the jobs for processing on the cloud VM. Figure 10
shows the probability of tasks transferred to the cloud VM and demonstrates that the
proposed system requires fewer results than the existing system in [22].

Figure 10. Request submitted to the cloud of Mukherjee et al. [22] and proposed system.

For the probability of task offloading and scheduling tasks for transfer to the cloud VM for
high processing, Equation (5) is used with the conditions checked through Equations (6)–(8),
respectively, after the simulation takes place. The simulation setup based on the results
calculates the task scheduling based on the algorithm proposed in the system. The proba-
bility and statistics results for the tasks of the mobile device configurations are shown in
Figure 11. The graph clearly indicates that task processing energy is optimized from T to P.
As its shows that T consumes higher power than P on every job from ∑10

j=1 Ji, the proposed

Sensors 2021, 21, 4527 17 of 20

approach effectively saves the processing energy from the mobile device for MCC, the
consequences of the final task offloading decision are based on the following indicators:

• Battery information
• Bandwidth
• Storage
• Offloading time
• Job completion rate

Table 4 shows the mobile device’s indicators to offload the task based on the statistics
of the mobile device to execute tasks, which are related to the various job scenarios. Certain
task times are significantly above the specified threshold value. The scheduler will schedule
the offload based on these results.

Table 4. Mobile Task Decision based on the Time from Mobile Device to Cloud.

Tasks ∆Ttotalλ (ns) Decision Decision Value (Flag 0/1)

J1 6.342 Mobile 0
J2 8.422 Mobile 0
J3 12.362 Mobile 0
J4 838.482 Cloud 1
J5 7796.932 Cloud 1
J6 29.494 Mobile 0
J7 2498.302 Cloud 1
J8 182.702 Mobile 0
J9 356.802 Mobile 0

Figure 11. Energy optimization request submitted to the cloud of Mukherjee et al. [22] and pro-
posed system.

5. Conclusions

This paper presents a proposal and simulation relative to MCC and the Cloud VM
with a task scheduling technique based on the task time parameter. We explored task
scheduling and task enhancement effects on MCC to improve the performance of mobile

Sensors 2021, 21, 4527 18 of 20

devices. Based on the proposed model in this paper, we submit a new task scheduling
policy that incorporates and provides offloading mobile device calculation and offloading
probability based on the time calculation of different scenarios of task scheduling from
the mobile device to the cloud. MCC is an essential factor in offloading the tasks, which
significantly affects the task handling and task scheduling policies from mobile devices to
cloud resources. The technique enables mobile users to effectively balance the time bounds
for efficient time handling capabilities. We considered two scenarios; the first involved
tasks being executed on mobile devices. The second involved tasks being completed on the
cloud VM. Time and energy constraints were used to assess when time efficiency had been
achieved, and energy automatically managed. Our proposal scheduled shorter execution
time and energy-optimized tasks to mobile devices, with larger and energy-intensive tasks
being offloaded to the cloud. Our strategy effectively achieves time efficiency, energy
efficiency, better performance, higher resource utilization, and task execution success
without diminishing performance quality. Moreover, the results showed that the jobs
which go beyond the time thresholds will be shifted to the cloud VM for processing to save
the mobile device’s limited battery power.

6. Future Work

We will consider a privacy-aware and authentic approach to handle task schedul-
ing. We will determine better task modeling and decision-making capabilities by using
blockchain-based privacy-aware task scheduling through MCC as a better and essential
research direction. In this regard, the currently applied model will provide better support
for this work.

Author Contributions: Data curation, F.J.; formal analysis, A.A.; funding acquisition, M.M.I., O.C.,
M.B. and F.J.; methodology, M.M.I. and F.J.; project administration, M.M.I. and F.J.; supervision, S.J.,
O.C. and M.B.; visualization, H.J., F.Q. and S.J.; writing – original draft, A.A.; writing – review &
editing, H.J., F.Q. and S.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Taif University Researcher Supporting Project number (TURSP-
2020/239), Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Taif University Researcher Supporting Project number
(TURSP-2020/239), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, Y.; Tian, L.; Liu, L.; Qi, Y. Fog computing enabled future mobile communication networks: A convergence of communication

and computing. IEEE Commun. Mag. 2019, 57, 20–27. [CrossRef]
2. Yeniyurt, S.; Wu, F.; Kim, D.; Cavusgil, S.T. Information technology resources, innovativeness, and supply chain capabilities as

drivers of business performance: A retrospective and future research directions. Ind. Mark. Manag. 2019, 79, 46–52. [CrossRef]
3. Wu, S.; Niu, C.; Rao, J.; Jin, H.; Dai, X. Container-based cloud platform for mobile computation offloading. In Proceedings of the

2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Orlando, FL, USA, 29 May–2 June 2017.
4. Allam, H.; Nassiri, N.; Rajan, A.; Ahmad, J. A critical overview of latest challenges and solutions of Mobile Cloud Computing. In

Proceedings of the 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), Valencia, Spain, 8–11
May 2017.

5. Chen, M.; Guo, S.; Liu, K.; Liao, X.; Xiao, B. Robust Computation Offloading and Resource Scheduling in Cloudlet-based Mobile
Cloud Computing. IEEE Trans. Mob. Comput. 2020, 20, 2025–2040. [CrossRef]

6. Tawalbeh, L.A.A.; Ababneh, F.; Jararweh, Y.; AlDosari, F. Trust delegation-based secure mobile cloud computing framework. Int.
J. Inf. Comput. Secur. 2017, 9, 36–48. [CrossRef]

7. You, C.; Huang, K.; Chae, H. Energy efficient mobile cloud computing powered by wireless energy transfer. IEEE J. Sel. Areas
Commun. 2016, 34, 1757–1771. [CrossRef]

http://doi.org/10.1109/MCOM.2019.1800235
http://doi.org/10.1016/j.indmarman.2019.03.008
http://doi.org/10.1109/TMC.2020.2973993
http://doi.org/10.1504/IJICS.2017.10003598
http://doi.org/10.1109/JSAC.2016.2545382

Sensors 2021, 21, 4527 19 of 20

8. Sisodiya, N.; Dube, N.; Thakkar, P. Next-Generation Artificial Intelligence Techniques for Satellite Data Processing. In Artificial
Intelligence Techniques for Satellite Image Analysis; Springer: Berlin, Germany, 2020; pp. 235–254.

9. Huang, Q.; Zhang, Z.; Yang, Y. Privacy-Preserving Media Sharing with Scalable Access Control and Secure Deduplication in
Mobile Cloud Computing. IEEE Trans. Mob. Comput. 2021, 20, 1951–1964. [CrossRef]

10. Goyal, M.; Sharma, A. A Mobile-Cloud Framework with Active Monitoring on Cluster of Cloud Service Providers. In International
Conference on Innovative Computing and Communications; Springer: Berlin, Germany, 2020.

11. Abolfazli, S.; Sanaei, Z.; Sanaei, M.H.; Shojafar, M.; Gani, A. Mobile Cloud Computing; Wiley Online Library: Hoboken, NJ, USA,
2016; p. 29.

12. Alkhalaileh, M.; Calheiros, R.N.; Nguyen, Q.V.; Javadi, B. Dynamic resource allocation in hybrid mobile cloud computing
for data-intensive applications. In Proceedings of the International Conference on Green, Pervasive, and Cloud Computing,
Uberlândia, Brazil, 26–28 May 2019.

13. Stiles, J. Working at Home and Elsewhere in the City: Mobile Cloud Computing, Telework, and Urban Travel. Ph.D. Thesis,
Rutgers University-School of Graduate Studies, New Brunswick, NJ, USA, 2019.

14. Aslam, B.; Abid, R.; Rizwan, M.; Ahmad, F.; Sattar, M.U. Heterogeneity Model for Wireless Mobile Cloud Computing & its Future
Challenges. In Proceedings of the 2019 International Conference on Electrical, Communication, and Computer Engineering
(ICECCE), Swat, Pakistan, 24–25 July 2019.

15. Singh, S.; Sidhu, J. Compliance-based multi-dimensional trust evaluation system for determining trustworthiness of cloud service
providers. Future Gener. Comput. Syst. 2017, 67, 109–132. [CrossRef]

16. Milind, B.; Tiwari, A.K. An Assessment of Cloud Computing and Mobile Cloud Computing in E-Learning. In Computing
Algorithms with Applications in Engineering; Springer: Berlin, Germany, 2020; pp. 21–36.

17. Prasad, R.; Rohokale, V. Cloud Computing. In Cyber Security: The Lifeline of Information and Communication Technology; Springer:
Berlin, Germany, 2020; pp. 111–124.

18. Thakkar, S.; Basak, D.; Maskalik, S.; Wu, W.; Bhagwat, A.V.; VMware Inc. Cloud Virtual Machine Defragmentation for Hybrid
Cloud Infrastructure. Patent US10282222B2, 7 May 2019.

19. Lakhan, A.; Li, X. Transient fault aware application partitioning computational offloading algorithm in microservices based
mobile cloudlet networks. Computing 2020, 102, 105–139. [CrossRef]

20. Noraziah, A.; Herawan, T.; Rahman, M.T.A.; Abdullah, Z.; Mustafa, B.A.; Fakharaldien, M.A.I. Fault Tolerance Impact on Near
Field Communication for Data Storage of Mobile Commerce Technology in Cloud Computing. In Proceedings of the International
Conference on Data Engineering 2015 (DaEng-2015), Bali, Indonesia, 25–26 April 2019.

21. Sudha, M.; Usha, J. A Novel Fault Tolerant Approach using Patterns for Private Cloud Environment. Int. J. Comput. Sci. Inf.
Secur. IJCSIS 2019, 17. Available online: https://www.researchgate.net/profile/M-Sudha/publication/338005610_A_Novel_
Fault_Tolerant_Approach_using_Patterns_for_Private_Cloud_Environment/links/5df9d79ea6fdcc283728f2f7/A-Novel-Fault-
Tolerant-Approach-using-Patterns-for-Private-Cloud-Environment.pdf (accessed on 15 April 2021).

22. Annane, B.; Ghazali, O.; Alti, A. A new secure proxy-based distributed virtual machines management in mobile cloud computing.
Int. J. Adv. Comput. Res. 2019, 9, 222–231. [CrossRef]

23. Chen, C.-A.; Stoleru, R.; Xie, G.G. Energy-efficient and fault-tolerant mobile cloud storage. In Proceedings of the 2016 5th IEEE
International Conference on Cloud Networking (Cloudnet), Pisa, Italy, 3–5 October 2016.

24. Park, J.; Yu, H.; Kim, H.; Lee, E. Dynamic group-based fault tolerance technique for reliable resource management in mobile
cloud computing. Concurr. Comput. Pract. Exp. 2016, 28, 2756–2769. [CrossRef]

25. Li, C.; Zhang, J.; Ma, T.; Tang, H.; Zhang, L.; Luo, Y. Data locality optimization based on data migration and hotspots prediction
in geo-distributed cloud environment. Knowl. Based Syst. 2019, 165, 321–334. [CrossRef]

26. Abd, S.K.; Al-Haddad, S.A.R.; Hashim, F.; Abdullah, A.B.H.J.; Yussof, S. Energy-aware fault tolerant task offloading of mobile
cloud computing. In Proceedings of the 2017 5th IEEE International Conference on Mobile Cloud Computing, Services, and
Engineering (MobileCloud), San Francisco, CA, USA, 6–8 April 2017.

27. Schmidt, R.W.; Moeller, J.; Sweet, M.R.; VMware Inc. Cloud Computing Nodes for Aggregating Cloud Computing Resources
from Multiple Sources. U.S. Patent 9,467,395, 11 October 2016.

28. Guo, Z.; Ren, X.; Ren, F. Better Realization of Mobile Cloud Computing Using Mobile Network Computers. Wirel. Pers. Commun.
2019, 111, 1805–1819. [CrossRef]

29. Siddavaatam, R.; Woungang, I.; Carvalho, G.H.S.; Anpalagan, A. Mobile cloud storage over 5G: A mechanism design approach.
IEEE Syst. J. 2019, 13, 4060–4071. [CrossRef]

30. Lee, J.; Gil, J. Adaptive fault-tolerant scheduling strategies for mobile cloud computing. J. Supercomput. 2019, 75, 4472–4488.
[CrossRef]

31. Raju, D.N.; Saritha, V. Architecture for fault tolerance in mobile cloud computing using disease resistance approach. Int. J.
Commun. Netw. Inf. Secur. 2016, 8, 112.

32. Al-Sayed, M.M.; Khattab, S.; Omara, F.A. Prediction mechanisms for monitoring state of cloud resources using Markov chain
model. J. Parallel Distrib. Comput. 2016, 96, 163–171. [CrossRef]

33. Keshanchi, B.; Souri, A.; Navimipour, N.J. An improved genetic algorithm for task scheduling in the cloud environments using
the priority queues: Formal verification, simulation, and statistical testing. J. Syst. Softw. 2017, 124, 1–21. [CrossRef]

http://doi.org/10.1109/TMC.2020.2970705
http://doi.org/10.1016/j.future.2016.07.013
http://doi.org/10.1007/s00607-019-00733-4
https://www.researchgate.net/profile/M-Sudha/publication/338005610_A_Novel_Fault_Tolerant_Approach_using_Patterns_for_Private_Cloud_Environment/links/5df9d79ea6fdcc283728f2f7/A-Novel-Fault-Tolerant-Approach-using-Patterns-for-Private-Cloud-Environment.pdf
https://www.researchgate.net/profile/M-Sudha/publication/338005610_A_Novel_Fault_Tolerant_Approach_using_Patterns_for_Private_Cloud_Environment/links/5df9d79ea6fdcc283728f2f7/A-Novel-Fault-Tolerant-Approach-using-Patterns-for-Private-Cloud-Environment.pdf
https://www.researchgate.net/profile/M-Sudha/publication/338005610_A_Novel_Fault_Tolerant_Approach_using_Patterns_for_Private_Cloud_Environment/links/5df9d79ea6fdcc283728f2f7/A-Novel-Fault-Tolerant-Approach-using-Patterns-for-Private-Cloud-Environment.pdf
http://doi.org/10.19101/IJACR.PID10
http://doi.org/10.1002/cpe.3205
http://doi.org/10.1016/j.knosys.2018.12.002
http://doi.org/10.1007/s11277-019-06958-y
http://doi.org/10.1109/JSYST.2019.2908391
http://doi.org/10.1007/s11227-019-02745-5
http://doi.org/10.1016/j.jpdc.2016.04.012
http://doi.org/10.1016/j.jss.2016.07.006

Sensors 2021, 21, 4527 20 of 20

34. Peng, H.; Wen, W.S.; Tseng, M.L.; Li, L.L. Joint optimization method for task scheduling time and energy consumption in mobile
cloud computing environment. Appl. Soft Comput. 2019, 80, 534–545. [CrossRef]

35. Tang, C.; Hao, M.; Wei, X.; Chen, W. Energy-aware task scheduling in mobile cloud computing. Distrib. Parallel Databases 2018, 36,
529–553. [CrossRef]

36. Lin, X.; Wang, Y.; Xie, Q.; Pedram, M. Energy and performance-aware task scheduling in a mobile cloud computing environment.
In Proceedings of the 2014 IEEE 7th International Conference on Cloud Computing, Anchorage, AK, USA, 27 June–2 July 2014.

37. Guo, S.; Xiao, B.; Yang, Y.; Yang, Y. Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In
Proceedings of the IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, San
Francisco, CA, USA, 10–14 April 2016.

38. Wei, X.; Fan, J.; Lu, Z.; Ding, K. Application scheduling in mobile cloud computing with load balancing. J. Appl. Math. 2013,
2013, 409539. [CrossRef]

39. Nawrocki, P.; Sniezynski, B. Adaptive service management in mobile cloud computing by means of supervised and reinforcement
learning. J. Netw. Syst. Manag. 2018, 26, 1–22. [CrossRef]

40. Akki, P.; Vijayarajan, V. Energy efficient resource scheduling using optimization based neural network in mobile cloud computing.
Wirel. Pers. Commun. 2020, 114, 1785–1804. [CrossRef]

41. Shakarami, A.; Ghobaei-Arani, M.; Masdari, M.; Hosseinzadeh, M. A Survey on the Computation Offloading Approaches in
Mobile Edge/Cloud Computing Environment: A Stochastic-based Perspective. J. Grid Comput. 2020, 18, 639–671. [CrossRef]

http://doi.org/10.1016/j.asoc.2019.04.027
http://doi.org/10.1007/s10619-018-7231-7
http://doi.org/10.1155/2013/409539
http://doi.org/10.1007/s10922-017-9405-4
http://doi.org/10.1007/s11277-020-07448-2
http://doi.org/10.1007/s10723-020-09530-2

	Introduction
	Related Work
	Proposed Model
	Simulation Environment
	Conclusions
	Future Work
	References

