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Abstract

Recent transcriptome annotation using deep sequencing approaches have annotated a
large number of long non-coding RNAs in zebrafish, a popular model organism for human
diseases. These studies characterized INcRNAs in critical developmental stages as well as
adult tissues. Each of the studies has uncovered a distinct set of IncRNAs, with minor over-
laps. The availability of the raw RNA-Seq datasets in public domain encompassing critical
developmental time-points and adult tissues provides us with a unique opportunity to under-
stand the spatiotemporal expression patterns of IncRNAs. In the present report, we created
a catalog of IncRNAs in zebrafish, derived largely from the three annotation sets, as well as
manual curation of literature to compile a total of 2,267 IncRNA transcripts in zebrafish. The
IncRNAs were further classified based on the genomic context and relationship with protein
coding gene neighbors into 4 categories. Analysis revealed a total of 86 intronic, 309 pro-
moter associated, 485 overlapping and 1,386 lincRNAs. We created a comprehensive re-
source which houses the annotation of IncRNAs as well as associated information including
expression levels, promoter epigenetic marks, genomic variants and retroviral insertion mu-
tants. The resource also hosts a genome browser where the datasets could be browsed in
the genome context. To the best of our knowledge, this is the first comprehensive resource
providing a unified catalog of IncRNAs in zebrafish. The resource is freely available at URL:
http://genome.igib.res.in/zflncRNApedia

Introduction

Long non-coding RNAs (IncRNAs) are a recently discovered class of non protein coding tran-
scripts encoded by many metazoan genomes [1]. Members of this class have been largely anno-
tated in the recent years following the transcriptome annotation of metazoans using deep
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sequencing approaches [2-5]. By definition, IncRNAs are transcripts with a length of more
than 200 nucleotides and with no obvious potential to translate to a functional protein [6]. In
contrast to their shorter and well studied counterparts like microRNAs, a majority of the
IncRNAs have not been functionally characterized. Nevertheless a handful of IncRNAs which
have been characterized and extensively studied in the recent years provide us with a view of
their roles in regulating and modulating critical processes in the cell. IncRNAs are presently
known to function in a variety of ways, including recruitment of chromatin remodelers, anti-
sense regulation of messenger RNAs, serving as scaffolds for recruitment of regulatory proteins
and sequestration of small regulatory RNAs, apart from serving as substrates for biogenesis of
small non-coding RNAs [7-10]. In addition, recent evidence suggests their association and
mechanistic role in various human diseases including cancer, and has been suggested to serve
as potential therapeutic targets [11, 12].

Systematic efforts have been made to curate the IncRNAs encoded by many metazoan ge-
nomes including human and other model organisms. Although a popular model organism to
study human diseases, there has been a paucity of a unified catalog of IncRNAs in zebrafish. A
number of resources provide information on a subset of IncRNAs in zebrafish which include
ZFIN [13], IncRNAdb [14] and IncRNAtor [15] and Z-SEQ [16]. These databases catalog
unique and spatiotemporally distinct subsets of the IncRNAs in zebrafish. For example, ZFIN
stores data for genetic, genomic and developmental information related to zebrafish,
IncRNAdb and IncRNAtor report few well-validated class of IncRNAs, while Z-SEQ catalogs
lincRNAs from a single study [16]. The paucity of a unified catalog has limited a holistic under-
standing of IncRNAs and comparison of their spatiotemporal expression patterns.

The recent transcriptome analysis of zebrafish using deep sequencing approaches has un-
covered a hitherto unknown set of transcripts including a number of novel long non-coding
RNAs. The major proportions of the IncRNAs known to date in zebrafish have come from
three large studies, which have extensively used next-generation sequencing approaches to un-
cover the IncRNome of zebrafish [16-18]. A well curated and biologically oriented resource for
IncRNAss is required for a systematic study of these transcripts. In the present manuscript, we
report zflncRN Apedia, a comprehensive and unified resource for IncRNAs in zebrafish. The re-
source provides an insight into the genomic context, expression and regulation of each of the
IncRNAs identified in 5 different tissues and 10 developmental time points. To the best of our
knowledge, this is the first and only resource providing a unified view of the zebrafish
IncRNome and their spatiotemporal expression across developmental time-points and adult
tissues. The resource is available at URL: http://genome.igib.res.in/zflncRNApedia

Materials and Methods

Towards providing a comprehensive resource of IncRNA annotation a number of independent
datasets have been integrated. This include the histone modification marks towards under-
standing the promoter architecture and regulation, expression levels recomputed from the raw
datasets, open reading frame predictions and ribosome profiling data sets towards understand-
ing the coding potential of transcripts and genomic variations towards understanding the vari-
ability and mutant information to prioritize potential mutants for in-depth studies. The entire
workflow for data curation is summarized in Fig 1. Descriptions of the datasets and methods
are detailed below.

Compendium of zebrafish IncRNAs

The IncRNA annotations were independently derived from manual curation of data from pub-
lished literature and supplementary resources [16-18]. The IncRNA annotations and their
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Fig 1. Workflow detailing data curation and methodologies involved in building the resource.

doi:10.1371/journal.pone.0129997.g001

genomic loci were collated. The bulk of annotations came from the three recent RNA-Seq data-
sets, which characterized IncRNAs in developmental stages as well as adult tissues in zebrafish.
The similarities and differences within the three RNA-seq datasets with respect to the sample
used, analysis protocols and IncRNAs identified have been discussed in a recent review on the
field [19]. A merged annotation of these IncRNAs was made and this served as the template for
the analysis of their expression levels in various datasets.

Analysis of publicly available RNA-Seq data

Raw RNA-Seq data for each study was downloaded from Sequence Read Archive (SRA) and
the samples were analysed using the standard pipeline as detailed. The list of datasets used and
descriptions are available as Table A in S1 File, Fig 2. TopHat was used for the alignment of
reads to the reference genome (Zv9 genome assembly), which performs ultra fast short read
mapping using bowtie based on exon-exon splice junctions [20]. Transcript assembly for dif-
ferent runs of each sample was done with cufflinks and the different assemblies were then
merged for each sample using cuffmerge. Further downstream analysis for differential expres-
sion (DE) was carried out using cuffdiff. The IncRNAs were further classified and named on
the basis of transcript type and their corresponding expression pattern.
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Fig 2. Matrix reporting sample count of various datasets used across different developmental time-
points.

doi:10.1371/journal.pone.0129997.g002

Mapping ChIP-Seq data on the IncRNome

Genome-wide ChIP-Seq datasets from five studies were retrieved from SRA and aligned to the
reference genome of zebrafish using—Mapping and Assembly with Quality (MAQ) [21]. A
complete list of the datasets used and descriptions is available in Supplementary Data I. The
peaks were called using—Model-based Analysis of ChIP-Seq (MACS) [22] as described previ-
ously [23]. Histone modification marks included developmental time-points dome, shield,
epiboly, 24hpf, 48hpf and adult stages of the zebrafish [18, 24-27].
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Integrating Ribo-Seq information

Zebrafish ribosomal profiles, as predicted by Chew et. al. [28], were also integrated in the data-
base. Sequencing reads for ribosome-protected fragments for different developmental time-
points spanning 2—4 cell, 256 cell, 1k cell, dome, shield, bud, 28 hpf and 5 dpf stages were re-
trieved from SRA. The dataset was preprocessed by removing the adapter sequences and dis-
carding the reads that mapped to rRNA using Bowtie2 [29]. The remaining reads were then
aligned to the zebrafish transcriptome and Zv9 genome assembly with TopHat2 [30] as de-
scribed by Chew et. al. Coverage of Ribo-Seq reads across the zebrafish developmental time
course can be analysed over the genome browser to check if the transcript can have any possi-
ble coding potential. In addition, the Open Reading Frames (ORFs) were predicted for each of
the transcripts using getORF, which is available as part of the EMBOSS suite[31].

Genomic variations and mutation information

A number of insertional mutagenesis approaches have been employed in zebrafish towards under-
standing gene functions by closely following up phenotypes using molecular methods. Retroviral
genomic insertions from publically available datasets have also been included in the resource for
each of the IncRNA [13, 32]. Apart from this, presence of important variations reported in dbSNP
within the exonic regions of the IncRNAs was also checked and catalogued [33].

Database design and architecture

The resource has been built in MySQL and the web interfaces have been coded in Perl-CGI.
For each putative IncRNA, information related to the corresponding stage specific expression,
open reading frames, the retroviral insertion maps and variant data has been compiled in dif-
ferent annotation tables and linked to provide a user-friendly interface. To explore the
IncRNAs across entire genome, taking into consideration various available annotation marks, a
genome browser has been embedded within the interface. Alignment maps of histone modifi-
cation marks, ribosome profiling, expression levels, transcription factors and variations have
been loaded into the browser. Tracks for RefSeq genes, ENSEMBL genes and the genes nearest
to IncRNA are also added to enable accurate annotation and functional analysis of the tran-
scripts taking into consideration the reports from all the associated studies.

Results
Database features and navigation

Information on a specific IncRNA is organized as a simple and browse-able interface, which
can be searched using either their gene names, aliases, genomic loci or by the nearest protein-
coding gene. To detail the salient features of the database, we describe the specific annotation
for a well characterized IncRNA in zebrafish- megamind. The screenshot of the resource

(Fig. A in S1 File) shows the annotation of the IncRNA. The expression profile of the IncRNA
across developmental stages and tissues support the earlier observation that the IncRNA is
highly expressed in brain among adult tissues, while provides additional information that it is
developmentally regulated. The genome browser provides an option where the user can visual-
ize the transcript in the context of various other integrated experimental datasets, including ri-
bosome profiling data and histone modifications across developmental time points. Analysis
suggests histone modification—H3K4me3 is closely associated with the IncRNA gene body,
while activator mark H3K27ac shows association with the IncRNA promoter. The resource
also provides a ready reference to genomic variations in the IncRNA loci and ready links to rel-
evant citations describing the IncRNA and the sources of relevant datasets integrated.
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An overview of the nearest gene and distance between the TSS of the corresponding IncRNA
is provided in the list displayed on querying the input. Selecting a transcript provides detailed
information on each transcript organized in the sections as detailed below:

Transcript information

The database provides basic annotation of the IncRNA transcripts along with the nomencla-
ture, aliases and genomic coordinates. The database content is largely derived from the three
major and recent publications which include 691 IncRNAs predicted in early embryogenesis,
1,133 in late developmental stages and 442 from adult tissues. Each of the IncRNAs was further
categorized into sense intronic, overlapping, intergenic and promoter associated depending on
their genomic context in relation to protein-coding genes. Analysis revealed a total of 86 intro-
nic, 485 overlapping, 309 promoter associated and 1,386 linc-RNAs. All the three studies
showed a preponderance of intergenic IncRNAs. This observation could arise because the tran-
script overlaps with Ref-Seq protein coding genes were filtered for the annotation of IncRNAs.

Genome Browser

The entire genome can be explored with an unparalleled speed through the genome browser
featuring localized annotations for each of the transcript [34]. It displays various feature tracks
that include exonic regions, nearest gene, variations, expression levels in different stages and
five epigenetic marks, transcription factors and ribosome profiles across different stages from
various samples simultaneously in a single panel.

Expression and regulation

The availability of a catalog of IncRNAs encompassing all the annotations and the expression
levels of the transcripts from RNA-Seq data offers a unique opportunity towards creating a spa-
tiotemporal map of gene expression in IncRNAs. In addition to the track displayed in genome
browser, expression levels across ten developmental time points and five adult tissues are repre-
sented graphically with log;o FPKM values plotted across different stages. This section details
the conditions in which the IncRNA is highly expressed.

A number of recent reports have characterized the promoter epigenetic marks of IncRNAs
and have suggested that the promoter epigenetic marks in IncRNAs are similar to that of pro-
tein coding genes [35]. Drawing parallels, it would be imperative to understand the epigenetic
marks associated with IncRNAs. Histone modification marks encompassing H3K27ac,
H3K36me3, H3K4mel, H3K4me3 and H3K27me3 reported in zebrafish across different devel-
opmental time points have been integrated and provided in the genome browser. For ease of
interpretation, activator marks are shown in green color while the repressor marks are depicted
in red color. In addition, ChIP-Seq datasets encompassing a number of critical transcription
factors have also been integrated in the genome browser. This includes transcription factors
such as Nanog-like, Mxtx-2, gata-1, Sox-2, Pou5f1, Cdx-4 and Sal-4 [36-39].

Mutant information

The resource provides an easy access to information regarding mutants thereby aiding re-
searchers to study them in detail towards understanding the biological mechanisms and phe-
notypes associated with the particular IncRNA. A systematic mapping of a total of 15,223
publicly available retroviral insertions from ZFIN [13] showed a total of 111 insertions mapped
to 126 IncRNA transcripts. A set of 156 insertions reported in ZETRAP have also been includ-
ed in the resource as a track in the browser [32].
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Apart from this, in context to the queried transcript the predicted open reading frames and
important variations falling within the exons and references pointing to relevant literature in-
formation are also provided. In addition, the experimental datasets for ribosome profiling dur-
ing developmental time-points are also provided as a brows-able track on the genome browser.

In summary, the resource thereby allows the study of zebrafish as a model organism with a
broad perspective taking into consideration the genomic, transcriptomic and epigenetic con-
text. A comparative analysis of the features of zflncRNApedia vis-a-vis other two major re-
sources—ZFIN and IncRNAdb, is reported in Fig. B in S1 File suggesting unique salient features
in the resource. The list of predicted transcripts, corresponding expression levels, variations
and retroviral insertion maps have been provided for download at the home page as tab-delim-
ited text files. In addition, the compendium of IncRNA annotations could be visualized on
UCSC genome browser as a track hub.

Conclusion and Discussion

Long non-coding RNAs are increasingly shown to play intricate roles in critical biological func-
tions, though a large majority of members of this class are poorly characterized and functional-
ly annotated. The annotation of IncRNA repertoire in zebrafish largely comes from recent deep
transcriptome sequencing approaches from three complementary studies. Each of these studies
identified a distinct IncRNome encompassing distinct developmental time-points and adult tis-
sues. It was thus imperative to have an integrated resource, putting together evidence from
multiple experiments as a starting point to understand and prioritize IncRNAs for biological
studies. In addition, the spatiotemporal map of gene expression of these IncRNAs would pro-
vide clues towards their potential functional characteristics and regulatory dependence. To this
end, we have compiled all relevant datasets on zebrafish IncRNAs to provide a user-friendly
online resource—zflIncRNApedia. Unlike any other available resource, zflIncRNApedia enables
easy analysis of spatio-temporal expression patterns of IncRNAs in context to various regulato-
ry marks that include histone modifications and transcription factors.

With the reducing cost, nucleotide sequencing is becoming a common approach to study
transcriptome dynamics. We anticipate discovery of newer IncRNAs from deep sequencing
studies and subsequent mapping of insertion and ENU mutants to these transcripts. zflncRNA-
pedia would be regularly updated with the flow of new information to explain a number of phe-
notypes and to enable molecular characterization of functions with the enriched data. As
evident from the diversity of nomenclature followed by individual studies, a centralized data-
base would enable a systematic and standard process of gene annotation for IncRNAs. We also
foresee significant enrichment in the molecular, functional and phenotypic information on
long non-coding RNAs as many of them get molecularly and functionally probed.

Supporting Information

S1 File. Table A. Description and source of datasets used in compiling the resource. Fig. A.
Screenshot of zflncRNApedia featuring the different sections of the database for a candidate
IncRNA-Megamind. Fig. B. Comparative analysis of zflncRNApedia with ZFIN and IncRNAdb
based on database features and content.
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