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Abstract: In the current study, new benzimidazole-based 1,3,4-oxadiazole derivatives have been
synthesized and characterized by NMR, IR, MS, and elemental analysis. The final compounds were
screened for cytotoxicity against MDA-MB-231, SKOV3, and A549 cell lines and EGFR for inhibitory
activities. Compounds 10 and 13 were found to be the most active against all the tested cell lines,
comparable to doxorubicin, and exhibited significant inhibition on EGFR kinase, with IC50 0.33 and
0.38 µM, respectively, comparable to erlotinib (IC50 0.39 µM). Furthermore, these two compounds
effectively suppressed cell cycle progression and induced cell apoptosis in MDA-MB-231, SKOV3,
and A549 cell lines. The docking studies revealed that these compounds showed interactions similar
to erlotinib at the EGFR site. It can be concluded that the synthesized molecules effectively inhibit
EGFR, can arrest the cell cycle, and may trigger apoptosis and therefore, could be used as lead
molecules in the development of new anticancer agents targeting EGFR kinase.

Keywords: 1,3,4-oxadiazole; benzimidazole; cell cycle arrest; apoptosis; docking

1. Introduction

Epidermal growth factor receptor (EGFR) is a glycoprotein and belongs to the ErBb
family of receptor tyrosine kinases that are involved in signal transduction pathways in
normal cells via cell proliferation regulation, progression, and survival [1,2]. The ErBb
family consists of four members (EGFR/HER-1/ErbB-1), (HER-2/ErbB-2), (HER-3/ErbB-3),
and (HER-4/ErbB-4) [3] and three functional domains namely, the extracellular ligand-
binding domain, an intracellular cytoplasmic tyrosine kinase domain, and a transmembrane
domain [4]. Ligands, on binding with the extracellular domain of receptors, cause the dimer-
ization of inactive EGFR protein, followed by autophosphorylation, leading to the initiation
of chain of intracellular events [5,6]. However upregulation of theses tyrosine kinases
causes rapid growth of human tumors in the breast, colon, prostate and lung [7,8]. Thus
EGFR tyrosine kinase inhibitors that can inhibit dimerization and autophosphorylation,
causing alleviation in EGFR concentration, are considered as a hot topic in oncology.

Different substituted quinazoline derivatives (erlotinib, afatinib, lapatinib) are re-
ported as promising EGFR inhibitors [9,10]. Their poor in vivo activity and drug resistance
limits the chemotherapeutic effect of these drugs [11,12]; therefore, development of new
EGFR inhibitors incorporating a new bioisosteric heterocyclic scaffold could provide new
anticancer drugs. Various heterocyclic compounds, such as pyrimidine [13,14], pyrazo-
line [15], 1,2,3- triazole [16,17], quinoline [18], benzothiazole [19], and benzimidazole [20,21],
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have provided an alternative to the quinazoline core in improving the activity and drug
resistance of these inhibitors [22].

In this context benzimidazole, a benzo derivative of imidazole, is an attractive pharma-
cophore and a master key in medicinal chemistry due to its promising biological activities,
including antimicrobial, anti-inflammatory, antitubercular, anticancer, and antidiabetic
properties [23,24]. It has been reported that this nitrogen-containing heterocycle has the
potential to significantly inhibit EGFR [25] and is present in nazartinib, a third-generation
EGFR inhibitor [26]. Therefore, it is an indispensable scaffold for the development of
novel chemotherapeutic agents targeting EGFR. On the other hand, 1,3,4-oxadiazole is
another important five-membered nitrogen- and oxygen-containing heterocycle due to its
significant biological activities [27]. This heterocycle is an effective surrogate in biologically
active molecules, and it interacts with biological targets with high affinity, increasing its
importance in area of medicinal chemistry [28]. Moreover, this pharmacophore has been
reported to inhibit cell proliferation by inhibiting EGFR [29–31] (Figure 1). In light of the
above evidence, we combined these two moieties together to identify new benzimidazole
based 1,3,4-oxadiazole derivatives as cytotoxic agents. The EGFR inhibitory activity and
mechanistic investigation on cell cycle distribution and apoptosis studies of the promising
molecules were also explored. The docking studies against EGFR protein have been carried
out to understand the possible molecular interactions.
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2. Results and Discussion
2.1. Chemistry

The synthetic method for benzimidazole-based 1,3,4-oxadiazole derivatives is shown
in Scheme 1. O-phenylenediamine (1) was used as a starting material and reacted with
2,4-dichlorobenzaldehyde (2) in the presence of sodium metabisulfite (Na2S2O5); using
DMF as a solvent in the process resulted in the formation of intermediate (3), which upon
alkylation with ethyl bromoacetate, followed by treatment with hydrazine hydrate in
methanol, yielded compound (5). Then, compound (5) was reacted with carbon disulfide
in alcoholic potassium hydroxide solution, stirred, and refluxed, followed by acidification,
which afforded the main intermediate (6), which was used for the preparation of the final
compounds. The reaction of compound (6) with propargyl bromide in DMF and anhydrous
potassium carbonate yielded N-propargylated benzimidazole derivative (7), which, by
using the Click chemistry approach using aromatic azide, copper sulphate, and sodium
ascorbate in the presence of tertiary butanol and water, yielded new benzimidazole-based
1,3,4-oxadiazole linked 1,2,3-triazole derivatives (8–12). Additionally, the main intermediate
(6) was reacted with different chloroacetamides in DMF and potassium carbonate to yield
new benzimidazole-based 1,3,4-oxadiazole linked thioacetamide derivatives (13–17). The
formation of all the new compounds was confirmed by different analytical techniques,
including NMR, FT-IR, elemental analysis, and mass spectrometry.
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All the newly synthesized benzimidazole-based 1,3,4-oxadiazole linked 1,2,3-triazole
derivatives (8–12) were confirmed by FTIR spectrum by the disappearance of signals
at 3200 cm−1 for terminal alkyne C-H stretching. Moreover, in 1H NMR spectra, the
appearance of two peaks in the aliphatic region at δ 4.56–4.70 ppm and δ 5.41–5.44 ppm
were assigned to S-CH2- and -N-CH2- protons, respectively. The appearance of a downfield
signal as a singlet at δ 8.07–8.20 ppm for one proton was assigned to the triazole proton.
The 13C spectra of these compounds also supported their formation by the presence of
two signals in the range δ 26.74–26.92 ppm and δ 38.78–38.96 ppm, corresponding to
S-CH2- and N-CH2- carbons; finally, the formation of these compounds was confirmed
by the appearance of a molecular ion peak in their mass spectra. Similarly, all the newly
synthesized benzimidazole-based 1,3,4-oxadiazole linked thio aryl acetamide derivatives
(13–17) were confirmed by the presence of signals at 3129–3189 cm−1 and 1700–1603 cm−1

in FT-IR spectra for NH and C=O of thio aryl acetamide group. In 1H NMR spectra,
the presence of two signals at δ 4.05–4.13 ppm and δ 4.72–5.40 ppm were ascribed to S-
CH2- and N-CH2- protons, while in 13C MMR, the respective carbons were observed at δ
33.18–33.53 ppm and 39.17–44.80 ppm, while a downfield signal at δ 168.33–169.49 ppm
provided evidence for the presence of C=O group in the structure of these compounds.
Finally, the formations of the compounds was confirmed by the presence of molecular ion
peaks in their mass spectra.

2.2. Biological Activity
2.2.1. Cytotoxicity

The antiproliferative activity of the final newly synthesized compounds (8–17) was
performed using MTT protocol against three cell lines, viz A549 (lung), SKOV3 (ovarian),
and MDA-MB-231 (breast) [32]. Doxorubicin was used as a standard anticancer drug. The
results regarding anticancer activity are presented as IC50 in Table 1. Towards the A549 cells,
compounds 10 and 13 were the most promising candidates, exhibiting better cytotoxicity
than doxorubicin (IC50 5.85 µM). Compounds 10 (IC50 3.31 µM) and 13 (IC50 5.30 µM)
were 1.76- and 1.1- times more active than doxorubicin, while the remaining compounds
exhibited moderate cytotoxicity on this cell line, with IC50 in the range 11.64–43.80 µM.
Against the MDA-MB-231 cancer cell line, the same compounds, 10 and 13, were found
to be most potent in exerting cytotoxicity, with IC50 1.18 (4.0-fold increase) and 2.90 µM
(1.64-fold increase), respectively, whereas doxorubicin showed IC50 4.76 µM. Furthermore,
compounds 10 and 13 were also the most sensitive towards the ovarian SKOV3 cell line,
displaying IC50 6.98 µM and 4.35 µM, 1.23- and 1.98-fold better activity, respectively,
than doxorubicin (IC50 8.65 µM) while compound 16 (IC50 8.13 µM) was equipotent to
doxorubicin. Other compounds showed moderate cytotoxicity, with IC50 in the range 10.49–
36.74 µM and 12.18–33.60 µM on MDA-MB-231 and SKOV3 cell lines, respectively. From
these results, it was observed that compound 10, bearing 2-hydroxy (from 1,3,4-oxadiazole
linked 1, 2, 3-triazole series) and compound, 13 bearing 4F (from 1,3,4-oxadiazole linked
thioacetamide series), were found to be the most active against all the tested cell lines.

2.2.2. In Vitro EGFR Activity

Compounds 9, 10, 13, 14, 16, and 17, showing significant cytotoxicity on the tested
cancerous cell lines, were selected for testing regarding EGFR inhibitory activity to deter-
mine the mechanisms of action of these compounds. The results are shown in Table 2 and
compared with the standard drug erlotinib. Compounds 10 and 13 significantly inhibited
EGFR kinase, with IC50 0.33 µM and 0.38 µM, respectively, while erlotinib caused inhibition
with IC50 0.39 µM. Compounds 9, 14, 16, and 17 also caused moderate EGFR inhibition,
with IC50 in the range 0.95–1.54 µM. These data suggest that the synthesized compounds
exhibited antiproliferative activity via alleviating EGFR kinase.
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Table 1. In vitro antiproliferative activity of final compounds (8–17) against A549, SKOV3, and
MDA-MB231 cells.

Compounds IC50 (µM)

A549 SKOV3 MDA-MB231

8 26.65 ± 1.26 17.68 ± 0.68 15.49 ± 1.64
9 17.41 ± 0.54 13.60 ± 0.71 10.88 ± 0.58
10 3.31 ± 0.14 6.98 ± 0.28 1.18 ± 0.68
11 43.80 ± 0.87 25.69 ± 1.16 36.74 ± 0.75
12 37.15 ± 0.67 33.60 ± 0.91 25.18 ± 1.82
13 5.30 ± 0.44 4.35 ± 0.38 2.90 ± 0.53
14 11.64 ± 0.29 12.84 ± 0.53 20.85 ± 0.24
15 20.59 ± 1.41 13.71 ± 0.45 16.38 ± 0.44
16 7.83 ± 0.35 8.13 ± 0.28 10.49 ± 0.88
17 17.97 ± 0.87 12.18 ± 0.35 11.87 ± 0.91

doxorubicin 5.85 ± 0.61 8.65 ± 0.37 4.76 ± 0.44
IC50 values are the mean ± SD of three separate experiments.

Table 2. In vitro EGFR inhibitory activity of the active compounds.

Compounds IC50 (µM)

9 0.95 ± 0.023
10 0.33 ± 0.051
13 0.38 ± 0.022
14 1.21 ± 0.047
16 1.09 ± 0.011
17 1.54 ± 0.026

Erlotinib 0.39 ± 0.034
IC50 values are the mean ± SD of three separate experiments; erlotinib: positive control.

2.2.3. Cell Cycle Studies

The most promising compounds (10 and 13) were explored for cell cycle distribu-
tion to determine the intracellular mode of action of these compounds. The cells and
vehicle control were treated with each pre calculated IC50s for 48 h, were stained with
propidium iodide, and observed for cell cycle distribution by flow cytometry [33]. As
shown in Figure 2, compound 10-treated A549 cells increased the G1 and G2 phase from
32.88 ± 2.04% to 34.66 ± 2.80% and from 29.13 ± 2.31% to 33.01 ± 2.28%, respectively,
but decreased the cell distribution in the S phase from 38.48 ± 3.71% to 32.32 ± 1.51%,
compared to the control cells. Compound 13-treated cells showed an increase in the
G1 phase to 36.34 ± 2.19% and a decrease in G2 phase to 24.64 ± 2.52%; however, it
caused no appreciable change in cell distribution in the S phase (38.99 ± 1.67%), com-
pared to control cells (38.48 ± 3.71%). These results showed that compound 10 arrests
the cell cycle in the G1 and G2 phases, whereas compound 13 arrests the cell cycle in the
G1 phase in the A549 cells. In MDA-MB-231 breast cells, compound 13 significantly in-
creased cell distributions in the G1 phase from 28.51 ± 2.09% to 34.88 ± 3.09%, and in the S
phase from 35.51 ± 2.10% to 41.14 ± 1.34%, whereas it decreased the G2 cell population to
23.97 ± 2.93% from 35.96 ± 1.97% (Figure 2). Compound 10 caused a prominent increase
in cell distribution in the G2 phase to 44.58 ± 3.03%, and in the S phase to 37.82 ± 2.57%;
however, the G1 fraction decreased to 17.58 ± 1.45%. It was noted that compound 13 ar-
rested the cell cycle in the G1 and S phases, while compound 10 arrested the cell cycle in the
S and G2 phases. In the SKOV3 cells, the S phase increased significantly from 34.72 ± 1.80%
in the absence of the drug (vehicle control) to 45.93 ± 1.78% and 35.11 ± 1.21% in the
presence of compound 13 and 10, respectively; the G1 phase decreased to 25.38 ± 0.44%
and 16.15 ± 2.11% from 31.03 ± 1.86% in the presence of compounds 13 and 10, respectively,
whereas the G2 phase was also decreased by compound 13 to 28.65 ± 1.73%, but signifi-
cantly increased to 48.73± 1.89% from 34.23 ± 1.38% by compound 10. It is well known that
erlotinib is a small molecule EGFR inhibitor that inhibits the intracellular phosphorylation
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of the tyrosine kinase domain of the EGFR, blocking its activity and resulting in cell cycle
arrest. Previous studies have shown that erlotinib induces cell cycle arrests at the G0/G1
phase in non-small cell lung cancer (NSCLC) [34], at the G1/S checkpoint in hepatocellular
carcinoma [35], and at the G1/G0 phase in esophageal cancer [36], triggering apoptosis in
cancer cells. In the present study, compounds 10 and 13 arrest different cell cycle phases in
A549, MDA-MB 231, and SKOV3 cancer cells. Compound 13 induces G1/S arrest in both
A549 and MDA-MB 231 cells, but only the S phase in SKOV3 cells. However, compound
10 arrests the G2/S phase in both MDA-MB 231 and SKOV3, while it arrests the G1/G2
phases in lung A549 carcinoma. These results indicate that compounds 10 and 13 arrest
the cell cycle at the S, G1, and G2 phases, supporting the promising cytotoxicity in A549,
MDA-MB-231, and SKOV3 cells.
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2.2.4. Apoptosis Studies

The apoptosis studies regarding compounds 10 and 13 using annexin V-FITC/PI
staining was also examined by flow cytometry [37]. Compounds 10 and 13 caused early
apoptosis by 55.1% and 66.4% in A549 cancer cells, with no late apoptosis or necrosis
(Figure 3). In MDA-MB-231 cells, compound 13 induced significant early-and late-apoptotic
cell populations, increasing them by 80.24% and 5.4%, whereas compound 10 increased
early apoptosis by 69.7% and late apoptosis by 3.2%, without any necrosis. Towards SKOV3
ovarian cancer cells, compound 13 caused significant apoptosis increase by 76.2%, for early
apoptosis and 21.7%, for late apoptosis. However, compound 10 had a low early apoptotic
effect, with an increase of 58.5% in SKOV3 cells. These results suggest that the promising
cytotoxicity exhibited by these compounds is due to the induction of apoptosis in the tested
cell lines.
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2.3. Molecular Docking Studies

In the present study, the Maestro module [38] was used to utilize the molecular
docking into the active site of EGFR (PDB 1M17) to determine the suitable mechanism
of anticancer activity for the compounds. For docking, the mGenTHERADER [39] was
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created and validated by re-docking the original inhibitor, erlotinib, to the EGFR crystal
structure. Erlotinib was refitted successfully into the EGFR binding site with 1.94Å RMSD
and found to be fitted into the key amino acids (Lys721, Phe699, Val702, Cys773, Leu820,
Asn818, Asp783, Asn784, Gln958, Gln962, Met96, Met964, and Leu977). In order to further
validate the inhibition mechanism, the bioactivity factors, such as the inhibition constant
(Ki), ligand efficiency (LE), and fit quality were also examined [40] (Table 3). The different
binding modes for the tested compounds against EGFR (1M17) are represented in Figure 4.
The molecular docking showed that all compounds interacted with the EGFR enzyme in
the analogous mode to that of erlotinib. The results revealed that the free binding energy
of four compounds 8, 9, 10, and 13 (−8.01, −8.16, −8.27, and −8.31 kcal/mol) was higher
than that of the cocrystal inhibitor, erlotinib (−7.90 kcal/mol). The reference inhibitor
occupied the binding pocket through interaction with Val70. Compounds 8, 9, 10, and 13
caused the inhibition of EGFR kinases by forming an interaction with Cys773 and Leu694;
Val702, Gly772, Glu738, and Cys773; Gly772 and Cys773; and Gly772, respectively. The
hydrogen bonding interactions in compound 10 and 13 with Val702 and Pro770; and Lys
721, Val702, and Asp831 explained the highest binding affinity and higher potency for
these compounds, which suggested that these compounds have a better interaction and
antitumor potency than the standard drug. The other tested compounds showed lower
interaction energy than the reference erlotinib. All compounds showed a normal range of
bioactivity parameters Ki, LE, and FQ [41].

Table 3. Binding energetic score for docking analysis for the final compounds against EGFR ki-
nase (1M17).

Compd ∆E RMSD Econf Eplace E-Int. LE Ki Fit Quality

8 −8.01 2.05 −7.45 −19.93 −9.63 −4.42 1.49 −1.80
9 −8.16 2.28 53.09 −29.59 −9.09 −4.67 1.54 −1.63

10 −8.27 1.30 19.01 −26.40 −9.21 −6.93 1.94 −3.91
11 −7.33 2.79 57.17 −24.50 −9.22 −8.65 2.16 −5.91
12 −7.83 1.61 34.88 −24.49 −10.29 −5.66 1.73 −2.82
13 −8.31 1.34 23.09 −16.95 −10.68 −6.14 1.81 −3.14
14 −7.23 1.99 39.33 −26.71 −9.58 −7.24 1.98 −4.59
15 −7.25 4.15 −3.82 −24.83 −10.81 −1.17 0.16 1.96
16 −6.06 3.36 −11.40 −30.67 −9.46 −4.77 1.56 −1.79
17 −7.87 1.16 41.09 −41.70 −2.56 −2.56 0.94 0.55

Erlotinib −7.90 1.94 −30.17 −15.64 −14.74 −8.39 2.47 0.11
∆E, Econf and Eplace are the free binding energy for the ligand from a given pose, conformer, and receptor; E-Int.: the
ligand’s affinity binding energy with the receptor; RMSD: root mean square deviation between the docking pose
and the co-crystal ligand.

2.4. In Silico Toxicity Studies

The in silico toxicity prediction of compounds 10 and 13 were carried out by pkCSM
software [42], and the results are shown in Table S1. It was observed that compounds 10 and
13 were less toxic compared to the standard drug erlotinib; the maximum tolerated dose
for humans for compounds 10 and 13 was 0.3 and 0.125 mg/kg/day, respectively, which
are much higher than the maximum dose for erlotinib (0.002 mg/kg/day). The predicted
LD50 for rats for compounds 10 and 13 was 2.43 mole/kg and 2.47 mol/kg respectively,
slightly higher than for erlotinib (2.368 mol/kg). Moreover, compounds 10 and 13 did not
showed hepatotoxicity or skin sensitization, but erlotinib was found to be hepatotoxic.
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(PDB1M17).

3. Experimental
3.1. Chemistry
3.1.1. General

The chemicals and solvents used were procured from Sigma Aldrich, (St. Louis,
MO, USA). The NMR analysis of the synthesized compounds was performed on a Bruker
spectrometer, either in DMSOd6 or CDCl3. FT-IR spectra were obtained using a Thermo
Scientific iS 50, and the melting point was obtained using a Stuart SMP40 machine. The mass
spectra were obtained using a Thermo Scientific LCQ Fleet- LCF10605 mass spectrometer,
and elemental analysis was performed on a LEECO Elementar Analyzer. The intermediates
3-7 were prepared by the reported methods [43].

3.1.2. Synthesis of Final Compounds 8–12

Compounds 8–12 were prepared according to our previously reported work [43]. Com-
pound 7 (2 millimole) was placed in a round-bottom flask to which tertiary butanol:water
(20 mL; 1:1) was added to make a clear solution. To this reaction mixture, copper sulphate
and sodium ascorbate were added, followed by the addition of freshly prepared aromatic
azides. The reaction mixture was stirred until completion of the reaction at 30–60 ◦C. When
the reaction was completed, 100 mL of water was added to the reaction mixture, and the
products were extracted with MDC, washed with water, and recrystallized by isopropyl
alcohol and ethyl acetate.

2-{[2-(2,4-Dichlorophenyl)-1H-benzo[d]imidazol-1-yl]methyl}-5-({[1-(4-Fluorophenyl)-
1H-1,2,3-triazol-4-yl]methyl}thio)-1,3,4-oxadiazole (8): Yield: 72%; M.p. 110–112 ◦C; FT IR:
3026, 2925, 1514, 1471, 1452, 1392, 1232, 1156, 1095, 1044, 834, 747 cm−1;1H NMR (CDCl3,
850 MHz): δ 4.70 (s, 2H, S-CH2-), 5.41 (s, 2H, N-CH2-), 7.21–7.23 (m, 3H, Ar-H), 7.28 (s,
1H, Ar-H), 7.40–7.71 (m, 5H, Ar-H), 7.84–7.89 (m, 2H, Ar-H), 8.07 (s, 1H, triazole H); 13C
NMR (CDCl3, 213 MHz): δ 26.92, 38.78, 110.11, 116.78, 116.89, 122.66, 122.70, 126.99, 127.99,
133.28, 137.64, 139.69, 139.99, 143.78, 143.89, 161.94, 163.11. ESI MS: 552.67 [M+H]+, 554.67
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[M+H+2]+; C25H16Cl2FN7OS (Calcd): C, 54.36; H, 2.92; N, 17.75; S, 5.80. Obsd: C, 54.29; H,
2.91; N, 17.71; S, 5.82.

2-({[1-(3-Bromophenyl)-1H-1,2,3-triazol-4-yl]methyl}thio)-5-{[2-(2,4-Dichlorophenyl)-1H-
benzo[d]imidazol-1-yl]methyl}-1,3,4-oxadiazole (9): Yield: 84%; M.p. 180–182 ◦C; FT IR:
2971, 1586, 1452, 1394, 1234, 1166, 1092, 1046, 875, 820, 781, 748, 679 cm−1;1H NMR (CDCl3,
850 MHz): δ 4.56 (s, 2H, S-CH2-), 5.44 (s, 2H, N-CH2-), 7.28–7.41 (m, 3H, Ar-H), 7.44–7.74
(m, 5H, Ar-H), 7.89–7.94 (m, 3H, Ar-H), 8.14 (s, 1H, triazole H); 13C NMR (CDCl3, 213 MHz):
δ 26.92, 38.78, 110.15, 116.15, 116.43, 119.15, 123.43, 123.73, 128.17, 131.19, 131.94, 132.02,
137.91, 146.17, 149.75, 150.73, 162.11, 165.43. ESI MS: 612.50 [M+H]+, 614.50 [M+H+2]+;
C25H16BrCl2N7OS (Calcd): C, 48.96; H, 2.63; N, 15.99; S, 5.23.Obsd: C, 48.84; H, 2.65; N,
15.95; S, 5.21.

2-(4-{[(5-{[2-(2,4-Dichlorophenyl)-1H-benzo[d]imidazol-1-yl]methyl}-1,3,4-oxadiazol-2-
yl)thio]methyl}-1H-1,2,3-triazol-1-yl)phenol (10): Yield: 78%; M.p. 118-120 ◦C; FT IR: 2987,
1597, 1472, 1455, 1394, 1232, 1159, 1045, 746 cm−1; 1H NMR (CDCl3, 850 MHz): δ 4.57 (s,
2H, S-CH2), 5.41 (s, 2H, N-CH2-), 7.01 (d, J = 6.8 Hz, 1H, Ar-H), 7.19 (t, J = 8.5 Hz, 1H,
Ar-H), 7.31 (t, J = 7.65 Hz, 1H, Ar-H), 7.36–7.44 (m, 4H, Ar-H), 7.53–7.58 (m, 3H, Ar-H),
7.86 (s, 1H, Ar-H), 8.20 (s, 1H, Ar-H), 9.70 (s, 1H, Ar-OH); 13C NMR (CDCl3, 213 MHz):
δ: 26.92, 38.96, 110.05, 116.02, 118.38, 119.40, 119.99, 120.33, 120.51, 121.12, 123.68, 124.41,
125.35, 127.93, 129.98, 130.04, 133.37, 134.18, 134.99, 137.84, 149.17, 162.11, 165.57; ESI MS:
548.17 [M-H]+, 550.17 [M+H+2]+; C25H17Cl2N7OS (Calcd): C, 54.55; H, 3.11; N, 17.81; S,
5.83.Obsd: C, 54.61; H, 3.14; N, 17.76; S, 5.80.

2-{[2-(2,4-Dichlorophenyl)-1H-benzo[d]imidazol-1-yl]methyl}-5-({[1-(o-tolyl)-1H-1,2,3-
triazol-4-yl]methyl}thio)-1,3,4-oxadiazole (11): Yield 82%; M.p. 152–153 ◦C; FT IR: 3102,
2979, 1483, 1452, 1347, 1241 1152, 1065, 987, 810, 745 cm−1; 1H NMR (CDCl3, 850 MHz): δ
2.17 (s, 3H, Ar-CH3), 4.56 (s, 2H, S-CH2-), 5.42 (s, 2H, N-CH2-), 7.17–7.71 (m, 10H, Ar-H),
7.84 (brds, 1H, Ar-H), 8.11 (s, 1H, triazole H); 13C NMR (CDCl3, 213 MHz): δ 17.53, 26.76,
38.83, 111.25, 120.45, 122.67, 124.31, 125.23, 127.14, 127.69, 128.34, 128.37, 128.74, 128.94,
129.19, 130.42, 131.45, 133.74, 136.31, 138.03, 142.11, 162.94, 165.78; ESI MS: 548.75 [M+H]+,
550.75 [M+H+2]+; C26H19Cl2N7OS (Calcd): C, 56.94; H, 3.49; N, 17.88; S, 5.85. Obsd: C,
57.06; H, 3.51; N, 17.94; S, 5.87.

2-({[1-(2,4-Dichlorophenyl)-1H-1,2,3-triazol-4-yl]methyl}thio)-5-{[2-(2,4-Dichlorophenyl)-
1H-benzo[d]imidazol-1-yl]methyl}-1,3,4-oxadiazole (12): Yield 77%; M.p. 100-102 ◦C; FT IR:
2970, 1495, 1472, 1453, 1393, 1240, 1161, 1104, 1066, 1041, 986, 866, 813, 746 cm−1; 1H NMR
(CDCl3, 850 MHz): δ 4.57 (s, 2H, S-CH2-), 5.41 (s, 2H, N-CH2-), 7.29–7.63 (m, 9H, Ar-H),
7.84(brds, 1H, Ar-H), 8.12(s, 1H, triazole H); 13C NMR (CDCl3, 213 MHz): δ 26.74, 38.94,
110.04, 120.44, 123.54, 124.34, 125.74, 127.15, 128.08, 128.35, 128.37, 128.44, 128.47, 129.28,
130.43, 130.55, 133.36, 136.45, 137.71, 142.14, 162.11, 165.67; ESI MS: 602.42 [M+H]+, 604.42
[M+H+2]+; C25H15Cl4N7OS (Calcd): C, 49.77; H, 2.51; N, 16.25; S, 5.31.Obsd: C, 49.68; H,
2.56; N, 16.21; S, 5.28.

3.1.3. Synthesis of Final Compounds 13–17

Compounds 13–17 were also prepared according to our previously reported method [43].
Compound 6 (1mmol) was placed in a 100 mL round-bottom flask, and 25 mL DMF was
added to make a clear solution. To the reaction mixture, anhydrous potassium carbonate
(1.3 mmol) was added, followed by the addition of different chloroacetamide derivatives
(1.1 mmol). The reaction mixture was stirred at 50–70 ◦C until completion of the reaction.
After the completion of the reaction, the reaction mixture was filtered, cooled, and water
(100–150 mL) was added to the filtrate; the products were extracted with MDC. The organic
layer was concentrated and recrystallized using either isopropyl alcohol or ethanol.

2-[(5-{[2-(2,4-Dichlorophenyl)-1H-benzo[d]imidazol-1-yl]methyl}-1,3,4-oxadiazol-2-
yl)thio]-N-(4-Fluorophenyl)acetamide (13): Yield:71%; M.p. 178-180 ◦C; FT IR: 3186, 2987,
1683, 1597, 1507, 1455, 1374, 1225, 1155, 1096, 1046, 830, 744 cm−1; 1H NMR (CDCl3,
850 MHz): δ 4.06 (s, 2H, S-CH2), 4.72 (s, 2H, N-CH2-), 6.98–7.00 (m, 3H, Ar-H), 7.19–7.26
(m, 2H, Ar-H), 7.34–7.35 (m, 2H, Ar-H), 7.40–7.45 (m, 2H, Ar-H), 7.64 (s, 1H, Ar-H), 7.85
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(d, J = 7.65 Hz, 1H, Ar-H), 8.94 (s, N-H, 1H); 13C NMR(CDCl3, 213 MHz): δ 33.22, 44.71,
110.06, 115.66, 116.55, 119.95, 120.71, 121.62, 121.66, 123.62, 124.35, 127.91, 127.97, 130.04,
133.34, 133.84, 134.25, 135.03, 137.78, 142.78, 149.60, 162.45, 163.18, 164.73, 169.23; ESI MS:
528.67 [M+H]+, 530.67 [M+H+2]+; C24H16Cl2FN5O2S (Calcd): C, 54.55; H, 3.05; N, 13.25; S,
6.07.Obsd: C, 54.51; H, 2.94; N, 13.33; S, 6.02.

2-[(5-{[2-(2,4-Dichlorophenyl)-1H-benzo[d]imidazol-1-yl]methyl}-1,3,4-oxadiazol-2-
yl)thio]-N-(2,4-Difluorophenyl)acetamide (14): Yield:79%; M.p. 212–214 ◦C; FT IR: 3155,
2978, 1740, 1674, 1603, 1514, 1456, 1382, 1331, 1260, 1202, 1096, 1007, 744 cm−1; 1H NMR
(CDCl3, 850 MHz): δ 4.05 (s, 2H, S-CH2-), 4.76 (s, 2H, N-CH2-), 6.77–7.36 (m, 5H, Ar-H),
7.38–7.82 (m, 4H, Ar-H), 7.88 (brd, s, 1H, Ar-H), 8.59 (s, 1H, N-H); 13C NMR (CDCl3,
213 MHz): δ: 33.19, 44.65, 110.46, 116.65, 120.26, 120.76, 121.37, 123.62, 124.29, 127.57, 127.92,
129.58, 130.71, 133.77, 134.97, 135.40, 136.99, 142,75, 147.37, 148.27, 150.50, 161.26, 164.63,
168.63. ESI MS: 546.67 [M+H]+, 548.67 [M+H+2]+; C24H15Cl2F2N5O2S (Calcd): C, 52.76; H,
2.77; N, 12.82; S, 5.87. Obsd: C, 52.66; H, 2.85; N, 12.88; S, 5.89.

N-(4-Bromophenyl)-2-[(5-{[2-(2,4-Dichlorophenyl)-1H-benzo[d]imidazol-1-yl]methyl}-
1,3, 4-oxadiazol-2-yl)thio]acetamide (15): Yield: 82%; M.p. 220–222 ◦C; FT IR: 3186, 2987,
1674, 1603, 1540, 1508, 1488, 1454, 1380, 1257, 1097, 1067, 746 cm−1; 1H NMR (CDCl3,
850 MHz): δ 4.06 (s, 2H, S-CH2), 4.73 (s, 2H, N-CH2-), 6.79 (d, J = 8.5 Hz, 2H, Ar-H),
7.13 (d, J = 8.5 Hz, 2H, Ar-H), 7.35–7.84 (m, 6H, Ar-H), 7.89 (s, 1H, Ar-H), 9.14 (s, 1H,
-N-H); 13C NMR (CDCl3, 213 MHz): δ 33.24, 43.09, 109.82, 120.75, 121.37, 122.60, 123.52,
123.61, 124.34, 127.92, 129.09, 129.57, 130.04, 132.02, 132.08, 132.50, 132.74, 133.33, 133.70,
133.81, 151.08, 161.04, 168.33.ESI MS: 588.08 [M+H]+, 590.08 [M+H+2]+; C24H16BrCl2N5O2S
(Calcd): C, 48.92; H, 2.74; N, 11.88; S, 5.44.Obsd: C, 49.02; H, 2.70; N, 11.75; S, 5.49.

2-[(5-{[2-(2,4-Dichlorophenyl)-1H-benzo[d]imidazol-1-yl]methyl}-1,3,4-oxadiazol-2-
yl)thio]-N-(4-Methoxyphenyl)acetamide (16): Yield: 75%; M.p. 195–197 ◦C; FT IR: 3129,
2987, 1671, 1596, 1508, 1451, 1374, 1248, 1167, 1097, 1041, 826, 747 cm−1; 1H NMR (CDCl3,
850 MHz): δ 3.85 (s, 3H, Ar-O-CH3), 4.05 (s, 2H, S-CH2), 4.74 (s, 2H, N-CH2-), 6.95 (d,
J = 8.5 Hz, 2H, Ar-H), 7.18 (d, J = 8.5 Hz, 2H, Ar-H), 7.28 (d, J = 8.5 Hz, 1H, Ar-H), 7.34–7.36
(m, 3H, Ar-H), 7.55–7.58 (m, 2H, Ar-H), 7.87 (s, 1H, Ar-H), 8.18 (s, 1H, N-H); 13C NMR
(CDCl3, 213 MHz): δ 33.18, 44.80, 55.55, 110.11, 114.72, 114.82, 126.24, 127.64, 127.92, 128.43,
128.58, 128.72, 129.61, 133.91, 134.64, 149.13, 160.01, 169.49. ESI MS: 540.83 [M+H]+, 542.83
[M+H+2]+; C25H19Cl2N5O3S (Calcd): C, 55.56; H, 3.54; N, 12.96; S, 5.93. Obsd: C, 55.50; H,
3.61; N, 13.05; S, 5.89.

Methyl 2-{2-[(5-{[2-(2,4-Dichlorophenyl)-1H-benzo[d]imidazol-1-yl]methyl}-1,3,4-oxadia
zol -2-yl)thio]acetamido}benzoate (17): Yield:71%; M.p. 176–178 ◦C; FT IR: 3189, 2987, 1700,
1676, 1595, 1521, 1481, 1452, 1394, 1255, 1184, 1089, 1046, 745 cm−1; 1H NMR (CDCl3, 850
MHz): δ 3.83 (s, 3H, O-CH3), 4.13 (s, 2H, S-CH2-), 5.40 (s, 2H, N-CH2), 7.13 (t, J = 8.5 Hz,
1H, Ar-H), 7.32–7.59 (m, 7H, Ar-H), 7.85–7.89 (m, 1H, Ar-H), 8.03 (d, J = 7.65 Hz, 1H, Ar-H),
8.61 (d, J = 8.5 Hz, 1H, Ar-H), 11.5 (s, 1H, N-H); 13C NMR(CDCl3, 213 MHz): δ 33.53, 39.17,
52.45, 110.02, 115.51, 120.53, 120.56, 120.92, 123.40, 124.23, 127.29, 127.65, 127.87, 129.58,
130.90, 133.96, 134.92, 135.05, 137.64, 140.47, 142.73, 149.60, 162.11, 164.49, 168.50. ESI MS:
568.67 [M+H]+, 570.67 [M+H+2]+; C26H19Cl2N5O4S (Calcd): C, 54.94; H, 3.37; N, 12.32; S,
5.64. Obsd: C, 54.87; H, 3.42; N, 12.39; S, 5.60.

3.2. Biological Activity
3.2.1. Cytotoxicity

The cytotoxicity was assessed using the MTT method, according to our previously
reported work [32]. The cell lines were purchased from American Type Culture Collection
(ATCC). Details regarding the procedure are provided in the Supplementary Material.

3.2.2. In Vitro EGFR Activity

EGFR inhibitory activity was assayed according to the reported method [44]. Erlotinib
was used as a positive control.
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3.2.3. Cell Cycle Analysis

The analysis was performed according to our previously published work [33]. Details
regarding the procedure are provided in the Supplementary Material.

3.2.4. Apoptosis Analysis

The assessment of apoptosis was performed using the Annexin V-FITC/PI analysis
Kit, Cell Signaling Technology (CST), as instructed by the manufacturer [37].

3.2.5. Statistical Analysis

Data are presented as mean ± SD of three different experiments, unless otherwise
indicated. One-way ANOVA was used to test statistical significance (*p < 0.05, ** p < 0.01).

3.3. Molecular Docking Studies

Glide-tools was used to achieve the molecular docking. The 3D crystal-structure for
EGFR kinase was prepared using the Glide-tool, as described in [45]. All docking steps
were carried out by ordinary methods of Maestro.

4. Conclusions

The present study describes the benzimidazole-based 1,3,4-oxadiazole derivatives
linked to 1,2,3-triazole/thioacetamide moieties as promising new EGFR inhibitors. Among
all the tested compounds, two compounds, 10 and 13, were found to be the most potent
EGFR inhibitors, with IC50 0.33 and 0.38 µM, respectively, and caused suppression of the
cell cycle and induction of apoptosis at different phases in all the three tested cell lines,
and these results were further supported by docking studies. These compounds possess
potential as EGFR inhibitors in cancer treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27206899/s1, Figure S1–S30: NMR (1H & 13C) and mass
spectra of final compounds; Table S1: In silico toxicity prediction of compounds 10 and 13, detailed
procedure for anticancer activity.
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