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Abstract

Introduction: We aimed to design a real-time reverse-transcriptase-PCR (rRT-PCR), high-resolution melting (HRM) assay to
detect the H275Y mutation that confers oseltamivir resistance in influenza A/H1N1 2009 viruses.

Findings: A novel strategy of amplifying a single base pair, the relevant SNP at position 823 of the neuraminidase gene, was
chosen to maintain specificity of the assay. Wildtype and mutant virus were differentiated when using known reference
samples of cell-cultured virus. However, when dilutions of these reference samples were assayed, amplification of non-
specific primer-dimer was evident and affected the overall melting temperature (Tm) of the amplified products. Due to
primer-dimer appearance at .30 cycles we found that if the cycle threshold (CT) for a dilution was .30, the HRM assay did
not consistently discriminate mutant from wildtype. Where the CT was ,30 we noted an inverse relationship between CT

and Tm and fitted quadratic curves allowed the discrimination of wildtype, mutant and 30:70 mutant:wildtype virus
mixtures. We compared the CT values for a TaqMan H1N1 09 detection assay with those for the HRM assay using 59 clinical
samples and demonstrated that samples with a TaqMan detection assay CT.32.98 would have an H275Y assay CT.30.
Analysis of the TaqMan CT values for 609 consecutive clinical samples predicted that 207 (34%) of the samples would result
in an HRM assay CT.30 and therefore not be amenable to the HRM assay.

Conclusions: The use of single base pair PCR and HRM can be useful for specifically interrogating SNPs. When applied to
H1N1 09, the constraints this placed on primer design resulted in amplification of primer-dimer products. The impact
primer-dimer had on HRM curves was adjusted for by plotting Tm against CT. Although less sensitive than TaqMan assays,
the HRM assay can rapidly, and at low cost, screen samples with moderate viral concentrations.
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Introduction

During the influenza A/H1N1 2009 pandemic the widespread

use of oseltamivir has been a key component of efforts to treat

individual patients and provide prophylaxis for those at risk. Of

concern there are now not only isolated reports of detection of

oseltamivir resistant virus [1,2,3] but also evidence of emergence

of oseltamivir-resistance during prophylaxis [4] and community

clusters of cases [5]. To date, documented oseltamivir resistant

influenza A/H1N1 2009 viruses carry a single nucleotide

polymorphism (SNP) at position 823 (cytosine to thymine) of the

neuraminidase gene which results in a histidine to tyrosine

substitution at position 275 [6]. Detection of resistant virus is

usually performed by phenotypic assays such as neuraminidase

inhibition assays, or by sequencing of viral nucleic acid [7]. These

assays are time consuming and often restricted to reference and

research laboratories. In addition, they can lack sensitivity when

there is insufficient viral concentration in clinical samples, or in the

case of the phenotypic assay require a cultured isolate.

High-resolution melting analysis is an emerging technology that

is based on monitoring the separation of double stranded DNA as

the temperature is increased in the presence of DNA intercalating

dyes. The advantages of HRM are that it is a single-step closed

tube process incorporating the steps of reverse transcriptase and

post-amplification analysis, and that it requires no reagents beyond

real-time PCR master-mix and unlabelled oligonucleotide primers,

so it is inherently simple and cost effective. HRM analysis of the

neuraminidase gene has been used for typing of influenza [8] but

not for the determination of oseltamivir resistance monitoring.

The challenges for detecting the H275Y mutation are that the

assay needs to be specific for the C to T SNP at position 823 and

needs to take into account the potential impact upon melting
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curves of variation in starting RNA template quality and quantity

in clinical samples. This report describes a SYBR green based real-

time reverse transcription PCR (rRT-PCR) followed by HRM

analysis to detect the H275Y mutation and the methodologies to

address the challenges observed.

Methods

Ethics statement
The conduct of this study was approved by the Human

Research Ethics Committee (HREC) of the Northern Territory

Department of Health & Families and Menzies School of Health

Research (HREC reference number 09/79). The HREC deemed

that individual consent was not required from patients as there was

no collection of identifying information in association with the

samples used.

Reference samples
Five oseltamivir sensitive influenza A/H1N1 2009 viral samples

(A/Victoria/2048/2009, A/Victoria/2116/2009, A/Denmark/

524/2009, A/Perth/184/2009, A/Brisbane/108/2009) and five

samples that contained oseltamivir resistant (H275Y) virus (A/

Osaka/180/2009, A/Perth/268/2009, A/Victoria/3132/2009,

A/Denmark/528/2009, A/Perth/262/2009) were used as refer-

ence samples. Pyrosequencing and neuraminidase inhibition

assays were used to detect the presence and relative mix of

H275Y mutant strains [9]. To determine the specificity of the

HRM assay for influenza A/H1N1 2009 we used five influenza A/

H1N1 seasonal (non 2009) and three influenza A/H3N2 as

negative control strains. RNA was extracted by the Roche

MagNaPure LC protocol (Roche Diagnostics Australia, Castle

Hill, NSW, Australia). The HRM assay was tested against 10-fold

serial dilutions of extracted RNA from wildtype and mutant

influenza A/H1N1 2009 samples and mixtures of mutant:wildtype

virus at 10:90 and 30:70 ratios. Starting concentrations of RNA

were quantified by using absorption of light at 260 and 280 nm

(A260/280) with a Biowave DNA spectrophotometer (Biochrom

WPA, Blackburn, Victoria, Australia).

Clinical specimens
We validated the HRM assay on 69 influenza positive clinical

samples from the Royal Darwin Hospital. Samples were obtained

from patients with an influenza-like illness between June 1 to

August 30 2009 by nose and throat swabs. Swabs were placed in

viral transport medium and RNA extracted by the Roche

MagNaPure LC protocol. All samples were tested with TaqMan

assays targeting the influenza A matrix gene and, if positive,

subsequently targeting the haemaglutinin gene of influenza A/

H1N1 2009 [10]. Of the 69 samples, 59 were influenza A/H1N1

2009, 3 were influenza A/H1N1 seasonal, and 7 were influenza

A/H3N2.

HRM assay design and protocol
We designed primers specific for influenza A/H1N1 2009 based

on sequences of the NA gene downloaded from the National

Center of Biotechnology Information from September 2009. A

novel strategy of only amplifying a single base pair, the SNP at

position 823, was chosen to maintain the specificity of the HRM

assay. We were concerned that if the amplified region was

extended, other sequence variations in the region of position 823

would non-specifically alter the melting temperature and melting

curve. The primers were: H275Y F: 59 GTCAAATCAGTC-

GAAATGAATGCCCCTAATTAT and H275Y R: 59 GGA-

TAACAGGAGCATTCCTCATAGT. The resulting product was

predicted to have a lower melting temperature (Tm) in the

presence of a thymine (mutant) compared to a cytosine (wildtype)

at position 823. These primers were predicted to form cross-

dimers with a free energy (DG) of 210.09 (http://www.

premierbiosoft.com/netprimer/index.html) and shortening or

lengthening the primers did not appreciably reduce the likelihood

of cross-dimer formation. We decided that the need for specificity

of the HRM assay, and thus constraints upon primer positioning,

would likely outweigh problems caused by potential primer-dimer

formation.

We used a step-down PCR amplification method to improve

specificity. Each reaction contained 5 mL QuantiFast SYBR

Green RT-PCR Kit master mix (Qiagen, Doncaster, Victoria,

Australia), 0.5 mM of each primer, 1 mL RT-mix and 1 mL RNA

template in a final volume of 10 mL. The real-time PCR

thermocycling parameters were: 50uC for 10 min, 95uC for

5 min; 4 sets of 2 cycles each of 95uC for 2 s and decreasing

annealing temperatures from 68uC to 62uC in 2uC decrements for

6 s; 27 cycles of 95uC for 2 s, 60uC for 6 s; and 50uC for 20 s;

followed by HRM ramping from 69uC to 79uC with fluorescence

data acquisition at 0.2uC increments. The total reaction time was

62 minutes. Reactions were performed on a Rotor-Gene 6000

(Corbett Life Science, Concorde, NSW, Australia) instrument.

These can no longer be purchased, but the QIAGEN Rotor-Gene

Q devices are essentially identical.

Statistical analysis
Raw data were exported from the Corbett Rotor-Gene 6000

software v.1.7 into Microsoft Excel 2007 (Microsoft, Redmond,

Washington, USA) and Stata 10.1 (StataCorp LP, Texas, USA) for

graphical and statistical analysis.

Results

Assay design and proof of principle using dilutions of
reference samples

We initially tested the assay using dilutions of reference samples

with wildtype (A/Victoria/2048/2009) and mutant (A/Osaka/

180/2009) viruses. The cycle thresholds (CT) for the serial 10-fold

dilutions were as predicted for such a series (Fig. 1A). It was also

evident that non-specific primer-dimer amplification occurred as

demonstrated by the presence of amplification products after cycle

30 in no-template controls and non influenza A/H1N1 2009

controls. Although the undiluted samples could be clearly

differentiated based on the Tm and normalized fluorescence

curves, there was overlap in the normalized fluorescence curves

when comparing a 1024 dilution of wildtype and the undiluted

mutant containing sample (Fig. 1B). The presence of primer-

dimer explains the downward Tm shift with reducing concentra-

tions of template RNA (Fig. 1B). The primer-dimer product has a

lower Tm compared to the desired amplification product. As the

concentration of template RNA decreases, the proportional

representation of end product due to primer-dimer increases,

and therefore the overall Tm of the end product is decreased.

Addition of Q solution (Qiagen Australia, Doncaster, Victoria,

Australia) eliminated the detectable amplification of primer-dimers

but significantly reduced the sensitivity of the amplification and

resulted in less reproducible determination of the Tm values (data

not shown). We concluded that the assay is more robust in the

absence of Q solution and that the constraints upon primer

placement made primer-dimer formation inevitable.

We therefore made allowance for the appearance of primer-

dimer at .30 cycles by two means. We deemed that if the CT for a

sample was .30, the HRM assay was no longer able to consistently
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discriminate mutant from wildtype. Therefore the lower limit of

detection of the assay was a 1024 dilution of a starting RNA

concentration of virus of 6.1 ng/mL that is the equivalent of 105

gene copies/mL (Fig. 1A). We also noted the consistent inverse

relationship between Tm and CT; samples with lower concentra-

tions of RNA and a higher CT also had a lower Tm (Fig. 1A). We

adjusted for this by plotting Tm against CT. The fitted quadratic

curves with 95% confidence intervals for wildtype and mutant

containing samples, and also 30:70 mutant virus mixtures, could

now easily be discriminated (Fig. 2). The quadratic curve for the

Figure 1. Relationship between cycle threshold and melting temperature. The relationship between cycle threshold (CT) and melting
temperature (Tm) demonstrated by ten-fold serial dilutions of wildtype (H) (A/Victoria/2048/2009) and mutant (Y) (A/Osaka/180/2009) virus samples.
A. The CT increases as the RNA template concentration decreases. The no template control (NTC) demonstrates late amplification after cycle 30,
indicating the presence of primer-dimer. B. The Tm on the high-resolution melting normalized fluorescence graph decreases as the RNA template
concentration decreases. The NTC melts at the lowest temperature. As the amplified product contains increasing proportions of the primer-dimer, the
overall Tm is pulled towards that of the primer-dimer.
doi:10.1371/journal.pone.0021446.g001
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30:70 mix serves as a useful cut-off; points lying above this line will

contain a minority of mutant virus, and points below this line will

contain a significant proportion of mutant virus.

Validation with additional defined reference samples
Using these methods, eight blinded reference samples were

correctly called; three were wildtype and five mutant containing

samples. This included one sample that plotted above the mutant

curve but below the 30:70 mixture curve. Pyrosequencing of this

sample revealed a 34:66 mutant:wildtype mixture. The raw data of

CT and Tm of these reference samples is provided (Results S1).

Validation with clinical sample material
We excluded clinical samples from the Royal Darwin Hospital

that had an influenza A/H1N1 2009 Taqman detection assay [10]

CT.35 as we considered that there would unlikely be enough

RNA present in these samples for the H275Y assay. Subsequently

we randomly selected 59 clinical samples that had been

determined to have an influenza A/H1N1 2009 TaqMan

detection assay CT ranging from 22.52 to 32.95. The correspond-

ing range of H275Y assay CT was 19.8 to 30.77. Fifty-six clinical

samples were predicted to be wildtype (Fig. 2), of which 28 were

pyrosequenced and confirmed as such. Three samples (with

TaqMan detection assay CT of 29.81, 31.01 and 31.15) had

H275Y assay CT.30 for which we considered the HRM assay

would not be robust due to the poor amplification. The Pearson

correlation coefficient for the CT of the two assays was 0.92

(P,0.0001). Linear regression analysis predicted that samples with

a TaqMan detection assay CT.32.98 would have an H275Y assay

CT.30. We reviewed the TaqMan assay CT for 609 consecutive

positive clinical samples at the Royal Darwin Hospital and found

that the HRM assay would be predicted to have a CT.30 in 34%

(207 of 609) of clinical samples. All ten non influenza A/H1N1

2009 controls had a CT of .30 cycles.

Discussion

We have developed and evaluated a rRT-PCR HRM diagnostic

assay to detect oseltamivir resistance due to the H275Y mutation

in H1N1 2009 influenza viruses. Other RT-PCR assays to detect

H275Y in influenza make use of various techniques including RT-

PCR followed by restriction fragment length polymorphism [11],

discrimination based on amplification curves with fluorescent

TaqMan probes [12,13,14,15,16,17,18], a SYBR-green based

rRT-PCR [19], rolling circle amplification [20] and a mismatch

amplification mutation assay [21]. Advantages of the currently

described HRM assay are its single-step, closed tube nature with

post-amplification SNP interrogation, and the low cost of reagents.

It is also rapid, with a total run time of 62 minutes. However, the

key limitation to this HRM assay is that clinical samples with a low

amount of viral RNA template cannot be reliably interrogated.

We have demonstrated two novel methodological approaches.

First, we used PCR to amplify a single base pair with subsequent

HRM analysis to ensure specificity of the HRM curves. Second,

due to the constraints this placed on primer design, non-specific

primer-dimer formation occurred and we successfully adjusted for

the impact this had on the overall Tm of the reaction by plotting

Tm against CT. Wildtype and mutant containing samples were

therefore clearly discriminated up to a CT of 30. The curve

generated for 30:70 mixed samples can be used as a cut-off to

separate samples containing a significant proportion of resistant

mutant virus; or alternatively, those samples with a Tm versus CT

value falling outside the confidence limits of the sensitive control

curve could be targeted for further evaluation.

Figure 2. Plot of the melting temperature (Tm) against the cycle threshold (CT). The blue, red, and green lines are the quadratic fitted lines
with 95% confidence intervals for dilutions (blue, red and green circles) of the controls of wildtype (H@275) (A/Victoria/2048/2009), mutant (Y@275)
(A/Osaka/180/2009), and 30:70 mix of mutant:wildtype respectively. The 10:90 mutant:wildtype consistently plotted below the wildtype fitted curve,
but at the lower border of the 95% confidence interval. All 56 clinical samples that had a CT#30 correlated with the wildtype virus (28 confirmed by
pyrosequencing). Blinded WHO samples (four wildtype and four mutant containing) and dilutions of mutant virus (A/Denmark/528/2009 and A/Perth/
262/2009) fit within the expected curves. One blinded sample (A/Perth/268/2009) plotted just below the 30:70 curve and pyrosequencing
determined this to be a 34:66 mix of mutant:wildtype. Raw data is provided in Results S1.
doi:10.1371/journal.pone.0021446.g002
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Our results were reproducible with runs on different days and

with different operators (data not shown). Our experience and

understanding is that the Rotor-Gene 6000 devices are extremely

accurate with regards to relative temperature changes. However,

the absolute temperature calibration may differ by up to 0.5uC
between different machines. Therefore, we recommend initial

calibration using samples of known mixtures of mutant and

wildtype samples.

The key limitation of this assay is that clinical samples with a

low amount of viral RNA template cannot be reliably interrogat-

ed. However, similar problems can exist for pyrosequencing and

some rRT-PCR assays where up to 20% of clinical samples

provided indeterminate results due to low viral load [17,19]. Also,

neuraminidase inhibition assays require the virus to be isolated in

tissue culture or eggs before testing, something that is very

problematic when samples have CT values .30. Other molecular

diagnostic assays that make use of labeled probes appear to be

more sensitive with detection limits ranging from 2–500 gene

copies/ml [13,15,18]. However, these assays are associated with

the additional expense of labeled probes, and assays using

TaqMan probes require two reactions per sample. A mismatch

amplification mutation PCR assay that does not require probes

has been described but also involves two reactions per sample as

well as an additional gel electrophoresis step following the PCR

reaction [21].

Given the simplicity (single reaction, single-step, closed-tube),

low cost (single pair of unlabeled oligonucleotide primers) and

rapidity of this HRM assay, we foresee a number of possible

applications. It could be used to screen a large number of clinical

samples that are known to contain sufficient amounts of virus.

Similarly, culture stocks of virus where there is a large

concentration of virus could be rapidly screened. Immunocom-

promised patients with persistent H1N1 09 infections and at risk of

development of oseltamivir resistance have been reported to have

low CT values [22] and this HRM assay may be useful in detecting

the H275Y mutation in virus from such patients. If there is an

urgent clinical need to determine if resistance is present and the

CT value is too high, a repeat specimen using a more sensitive

sampling technique such as a nasopharyngeal aspirate could be

requested. As this assay can only confidently detect 30:70

mutant:wildtype mixtures, if a patient continues to shed virus

despite appropriate treatment, performing the assay on sequential

specimens should be considered to detect an increase in the

mutant population to above this threshold. Finally, although this

assay is specific for influenza A/H1N1 2009 alternative primer sets

could be easily designed for seasonal H1N1 and H3N2 viruses.

Supporting Information

Results S1 Results for each sample with values for high-
resolution melting (HRM) cycle threshold (CT), HRM
melting temperature (Tm), TaqMan H1N109 CT, pyro-
sequencing results with mutant %, and neuraminidase
enzyme inhibition assay oseltamivir concentrations
required to inhibit 50% of NA activity (IC50) (nm). Blank

cells indicate that an assay has not been performed.
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