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Abstract After renal transplantation, recurrence of the origi-
nal disease is the second most common cause of graft loss,
after rejection. The most dramatic manifestation of this phe-
nomenon is in patients with nephrotic syndrome (NS). NS is a
descriptive term describing a clinical picture centred on pro-
teinuria arising from damage to the glomerular filtration bar-
rier (GFB). There are many different drivers of that damage,
ranging from immune dysregulation to genetic disorders and
chronic disease/infections. The main categories in childhood
are Bidiopathic^ (presumed immune mediated) and genetic
NS, with further stratification of the idiopathic group accord-
ing to steroid responses. A significant proportion of patients
with NS progress to established renal failure, requiring trans-
plantation, and one of the most difficult clinical scenarios
faced by nephrologists is the recurrence of the original disease
in up to 50% of patients, usually rapidly post-transplant. This
is thought to be the archetypal Bcirculating factor^ disease, in
which as yet unknown circulating plasma Bfactor(s)^ in the
recipient target the donor kidney. The ability to predict in
advance which patients will suffer recurrence would enhance
our ability to counsel patients and families, and potentially
identify those patients before transplant for tailored immuno-
suppressive preparation. Until very recently, stratification
based on clinical categorisations has been poor in being able
to predict those patients in whom disease will recur, and lab-
oratory biomarkers are yet to be adequately refined. However,

by mapping our growing understanding of disease mecha-
nisms to clinical phenotypes, and with greatly improved ge-
netic diagnostics, we have made progress in being able to
stratify patients more specifically, and allow better predictive
algorithms to be developed. Using our knowledge of podocyte
biology, circulating factor-induced specific biomarkers are al-
so being tested. This review is aimed at outlining those ad-
vances, and suggesting how we can move further forward in
both clinical and biological markers of disease type.
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Introduction

Idiopathic nephrotic syndrome (INS) is one of the most com-
mon glomerular diseases in children and adults, the central
event being podocyte injury. INS is a heterogeneous disease
and treatment is largely empirical and unsuccessful, with ste-
roids as the initial mainstay of therapy. Up to 90% of children
with INS have some response to steroids and are labelled as
steroid-Bsensitive^ (SSNS), and the rest as steroid-Bresistant^
(SRNS, most can also be described by histology as focal seg-
mental glomerulosclerosis, FSGS), with single gene muta-
tions underlying a large proportion of the latter group [1, 2].
The burden of morbidity is enormous, both to patients with
lifelong chronic disease, and to health services, particularly
managing dialysis and transplantation.

The current protocol for the management of INS is treat-
ment with high-dose steroids. Of resistant patients, only 30%
will respond over time to powerful second- and third-line im-
munosuppression; the rest suffer major long-term morbidity
and renal failure requiring dialysis/transplantation. Up to 50%
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develop rapid recurrence post-transplantation, with eventual
graft loss, despite highly intensive treatments.

Advances in genetics, both by identification of single gene
mutations and in our ability to rapidly screen patients, have
begun to allow practical steps towards the mechanistic strati-
fication of disease and therefore of predicting disease recur-
rence in those patients. A patient identified as having a mono-
genic cause of their NS is far less likely to suffer recurrence of
disease post-transplantation, although the absolute risk re-
mains undefined. The challenge now is to enhance our under-
standing of which patients suffer recurrence, using our
expanding knowledge of disease mechanisms based on
podocyte biology.

Predictions based on pre-transplant clinical
categorisation

To date, different studies have identified different clinical fea-
tures with relatively weak correlations with post-transplant
recurrence. Features such as age at onset, race, live related
donation, histological severity etc. have been weakly linked
in some studies with an enhanced risk [3–6]. Odorico et al.
retrospectively evaluated the effects of bilateral native ne-
phrectomy before transplant in patients with recurrent disease
post-transplant [7]. The incidence of recurrence was 40% in
the nephrectomised patients as opposed to 16.1% among non-
nephrectomised patients, although other small studies have
not found a significant difference [8]. As a potential explana-
tion, it was proposed that native kidneys act to absorb perme-
ability factors, although I speculate that it is a reflection of the
more aggressive circulating factor disease (CFD, see below).

The most consistent features reported in the literature over
many years have been rapid progression to established renal
failure (ERF), a lower age at diagnosis, and greater degrees of
proteinuria in the recurrent groups [3, 6, 8, 9]. A summary of
key findings regarding risk factors predisposing to recurrence,
from the main studies in the literature, is provided in Table 1.

Initial steroid sensitivity

We have recently reported by far the strongest predictive clin-
ical feature of CFD to date, upon retrospective study of 150
grafts in FSGS children, from three large centres [16]. We
hypothesised that the circulating factor is highly likely to be
related to immune activation, and therefore if a patient re-
sponds to steroids early in the course of their disease (initial
steroid sensitivity), this is proxy evidence for the presence of a
circulating factor. Therefore, they are more likely to suffer
from recurrence post-transplantation. Our study confirmed
this hypothesis, showing that of 150 patients, 57 developed
recurrence, and 26 out of 28 with initial steroid sensitivity

suffered recurrence (p < 0.001, odds ratio 30). In contrast,
none of the patients in the genetic or family history group
suffered recurrence. This still leaves a clinically non-
predictable group, those with primary steroid resistance and
no genetic diagnosis according to the current screening. This
group has an approximately 50% risk of recurrence, as shown
by this study, and also according to our national screening
study, which was far more complete in the genetic screening
of the cohort [1].

Secondary FSGS

Similar to genetic FSGS, FSGS secondary to other causes
does not recur after kidney transplantation if the causes no
longer exist; some of the reported FSGS cases without recur-
rence may in fact have been secondary FSGS. FSGS is an
unspecific histological finding that is seen in many conditions
of different aetiologies. Apart from genetic causes, which are
considered to be primary, FSGS lesions can also be found as a
secondary consequence of glomerular hypertrophy or
hyperfiltration, toxins, obesity, HIV-associated nephropathy
or scarring caused by previous injury (e.g., vasculitis, lupus).

Rudnicki reported that patients who present with protein-
uria, but without oedema did not experience recurrence [17].
These patients would normally be categorised as having prima-
ry FSGS, as no underlying secondary cause was discovered.
Therefore, the histological diagnosis of FSGS itself does not
mean that the disease could recur after kidney transplantation.

The careful application of clinical criteria to separate dis-
ease categories is now beginning to clarify some of the risk
features. In a study of 94 transplanted FSGS patients with a
mean age of 37, Maas et al. separated patients into genetic (18
patients), secondary (10 patients) and idiopathic FSGS (66
patients). Only patients in the latter category developed recur-
rence, and the only independent predictor was serum albumin
at diagnosis [6].

Recurrence risk after re-transplantation

There is strong evidence that if a patient suffers a recurrence in
the first allograft, then the second and subsequent transplants
will have an even higher risk of recurrence compared with a
first graft. The rate of recurrence is up to 80%, particularly if
the first graft was lost early. Most studies have consistently
quoted rates as high as 80% in the second transplant and
>90% in the third and subsequent transplants [5, 18].

There is, however, some indication that if the recurrence in
the first graft was relatively mild (i.e., the kidney was not lost
rapidly), then subsequent grafts also follow the same pattern
of recurrence with relatively prolonged function (ranging be-
tween 4 and 10.5 years in one study) [19].
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Synthesis of results from literature series

Overall, by reviewing all case series published, a certain pat-
tern emerges. The first is from our own study, which shows by
far the strongest predictor to date of recurrence, which is initial
steroid sensitivity (alternatively termed secondary steroid re-
sistance) [16]. This is further confirmed in our follow-up pro-
file of a national cohort of SRNS patients, where 4 out of 5
secondary steroid-resistant patients (80%) developed recur-
rence, and 0 out of 25 patients with secondary resistance had
a mutation in any of the 53 SRNS genes tested [1].

The second interesting trend is that patients with recurrence
tend to have a lower serum albumin at presentation, greater
proteinuria, and faster time to dialysis from presentation. This
indicates more aggressive ongoing glomerular damage in
(progressive) CFD, and could be used as an additional clinical
clue early in the disease process. This would also explain the
finding of a higher rate of bilateral nephrectomies in those
who subsequently develop recurrence, as those with more
aggressive disease are likely to be put forward for nephrecto-
my pre-transplant, to recover serum albumin levels.

Whole exome sequencing was performed on a UK national
cohort of children with SRNS, and patients stratified accord-
ing to the pattern of steroid response, followed by genetic
diagnosis. Recurrence risk was highest in those with second-
ary steroid resistance, and lowest in those with a gene muta-
tion underlying their SRNS.

With regard to the Kidney Disease Improving Global
Outcomes (KDIGO) guidelines, the mean age at onset of NS
and mean age at onset of end-stage renal failure (ESRF) were
compared and the only significant difference (#) was noted for
mean time to ESRF between primary + presumed monogenic
and primary + presumed non-monogenic/unknown and sec-
ondary SRNS, with p value 0.0311 (two-tailed unpaired t test).

Advances in biological understanding

The target cell of NS is the glomerular podocyte, and
podocyte biology research has exploded in recent years.
Landmark genetic and biological studies over the last
15 years have advanced glomerular biology at a remark-
able pace, pointing compellingly to the podocyte as a
uniquely functioning cell within the body, let alone the
glomerulus, with pathways centring on the actin cytoskel-
eton and integrin signalling as tightly regulated nodes con-
trolling the healthy function of the filtration barrier [20].
Idiopathic NS (INS) is an exemplar of primary glomerular
disease. It is a rare disease, heterogeneous in cause, and
therefore an accurate prediction of response post-transplant
depends on stratification of disease at a mechanistic, rather
than at an observational level.

1. Monogenic disease. Currently, there are single gene de-
fects causing NS reported for 55 different genes [1, 21,
22]. Given the growing evidence that a monogenic cause
for SRNS does not predispose to post-transplant recur-
rence, it is a crucial part of the management pathway to
screen for known genetic mutations. Current availability
of gene panels allows for this to be achieved at speed and
relatively low cost compared with previous Sanger tech-
nologies (e.g., Bristol clinical SRNS gene panel, www.
nbt.nhs.uk/severn-pathology/pathology-services/bristol-
genetics-laboratory-bgl) [23].

2. BCirculating factor disease^. Recurrent disease post-
transplant is the archetypal CFD, and is almost certainly
linked to immune activation, and possibly a circulating
factor(s) released by immune cells themselves. We cur-
rently have no reliable biomarkers to detect CFD, either
pre- or post-transplant, although many have suggested
potential circulating factors that would fit the biological
scenario. These include suPAR [24], hemopexin, TNF-α
[25], galactose [26], etc. To date, none has consistently
been shown to be active in post-transplant disease.

3. Unknown. There is currently limited evidence either way
to support whether there is a cohort of patients with INS
with a different disease mechanism to 1 or 2 above. The
discovery of biomarkers for CFD (see below), alongside
complete genetic testing significantly clarify if such a
unique phenotypic cohort exists, or what proportion of
patients can be classified into the first two groups.

Recurrence in NS caused by a monogenic disorder

To date, there has been little definitive evidence that patients
with a genetic mutation causing SRNS will develop post-
transplant recurrence of nephrotic range proteinuria. There
are a few reports, predominantly with NPHS2 variants, that
suggest that this might occur. The risk of post-transplant re-
currence in patients with podocin mutations may be rather
confusing as single heterozygous mutations were included in
some studies [27].

True homozygous or compound heterozygous mutations in
podocin have been found in a few patients with post-
transplant NS recurrence ranging from as soon as 7 days to
10 years post-transplant [27–34].

Similarly, post-transplant nephrotic-range proteinuria was
noted in a patient with Frasier syndrome and a mutation in
WT1 [35]. FSGS recurrence has also been suggested in a pa-
tient with ACTN4, although the biopsy findings were non-
specific [36].

As no anti-podocin antibodies have been detected in the
tested NPHS2 patients, even those with truncating mutations
[27, 29, 30], the pathomechanism resulting in the disease
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recurrence is yet to be found. The pattern of proteinuria clearly
needs to be carefully taken into account, as there are different
potential causes in any transplant, and secondary morbidities
should be considered.

Re-analysis of SRNS causal variants

It is important that certain additional caveats are considered
here, in particular, whether the variants reported as
Bcausative^ are truly so. A consistent issue in any gene test
for mutation reporting is whether or not any rare variant is
pathogenic, and there is no single definitive test. The proof
lies predominantly in the frequency of that variant in the pop-
ulation (which also varies according to ethnicity), in addition
to its frequency in the disease population, added to in silico
corroborations such as conservation across species and dele-
terious functional predictions, and ultimately biological test-
ing. Our ability to define variant frequencies in populations
has expanded exponentially in recent years, in particular, with
the development of large-scale reference datasets, such as the
Exome Aggregation Consortium (ExAC). Interestingly, anal-
ysis of over 60,000 human exomes revealed that 72% of genes
with predicted protein-truncating variants had no known hu-
man disease phenotype [37]. In addition, the average individ-
ual has 54 variants previously classified as causing a rare
disorder, suggesting that these might have been incorrectly
classified. When analysed, only 9 out of 192 variants previ-
ously classified as causing a Mendelian disease were support-
ed as genuine by this new evidence of population variant
frequency.

Overall, for SRNS, this suggests that almost all historical
reports of causal variants need to be reassessed against current
reference datasets, to filter out those that are no longer deemed
causative. Equally, this means that historical reports of recur-
rence in Bgenetic^ SRNS should be constantly reanalysed
against this new information.

A particular misdiagnosis in the past is of pathogenicity of
the R229Q variant in podocin, which is present in 4–5% of the
general population, is associated with microalbuminuria [38],
and is shown in biological models to have deleterious func-
tional consequences [39]. More recently, however, it was ele-
gantly shown that this variant only causes human SRNSwhen
in combination with a pathogenic/rare variant on exon 8 of the
secondNPHS2 allele [40]. Therefore, any recurrence seen in a
patient with R229Q and a differentNPHS2 rare variant should
be considered non-genetic unless an alternative pathogenic
variant is identified.

A true genetic cause of recurrent CFDwould likely involve
a mutation in a gene related to the immune system, or a cog-
nate receptor on the podocyte. It is interesting to note that we
are not aware of any reports to date of familial recurrence
(more than one member) of SRNS post-transplant, and advise

caution in interpreting recurrence in cases with a structural
podocyte defect.

Which patients with SRNS should be offered
living-related donation?

It has previously been shown in some studies that living-related
donation (LD) is a risk factor for recurrence compared with
cadaveric donation (CD). This is not consistent, and data from
three large registries (NAPRTCS [41], USRDS [42] and
RADR [43]) suggest no difference in recurrence rates between
LD and CD recipients. However, the Australian and New
Zealand Dialysis and Transplant Registry study did find that
LD transplantation is an independent risk factor for recurrence
(p = 0.02) [44]. We can speculate that in the studies showing a
higher risk of LD, this is likely to represent a selection bias. The
LD cohort historically will have screened out a proportion of
genetic/familial donors, and is therefore enriched for recipients
with CFD. Another factor may be the more rapid onset of renal
failure in genetic vs non-genetic patients, meaning that genetic
patients are more likely to be younger at transplantation, and
therefore less suitable for an offer of an LD (adult) kidney.

To update advice on LD versus CD donation, we have divid-
ed the patients into those with an identified mutation, and those
without. Individuals with identified autosomal dominant causal-
ity (heterozygous mutations) may present with variable pheno-
type/penetrance, including adult onset of NS; thus, living-related
donors in this case may increase the risk of NS both in the
recipient of the kidney and the donor, and should not be used.

In general, if a mutation is found in an autosomal recessive
gene, a heterozygous carrier (parent) would be accepted to do-
nate a kidney, with a negligible risk of recurrence. This excludes
cases of Afro-Caribbean donors carrying the APOL1 risk vari-
ant, where the risk of long-term renal decline is greater.

In cases in which a mutation has not been identified, our
current practice is to strongly advise against living donation,
unless the family is willing to proceed knowing the (high)
risks. According to our recent national study [1], and support-
ed by our retrospective review [16], the rate of recurrence in
patients testing negative by a genetic screening panel [23] or
exome screening is around 50%.

In cases in which there is a family history suggestive of a
dominant mutation (with no responsible gene identified), it is
clear that living donation from that side of the family should
be avoided. Even if the potential donor does not have evident
disease, the potential for incomplete penetrance remains.

Circulating factor biomarkers

Circulating factor disease is a very significant subset of idio-
pathic nephrotic syndrome as a whole, and early post-
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transplant recurrence is an archetypal manifestation of CFD.
Therefore, finding specific biomarkers in peripheral blood that
identify CFD would be a major breakthrough in both early
diagnosis and therefore targeted management, in addition to
prediction of recurrence risk.

Savin et al. developed the original Bpermeability factor^
assay, based on the swelling of ex vivo rat glomeruli in re-
sponse to exposure to FSGS plasma [45]. Using this assay, a
subsequent study reported 11 out of 13 children who tested
positive for the permeability factor versus 4 out of 12 with
negative results had a recurrence of FSGS after renal trans-
plantation [9]. The odds ratio in the former group was 10.99
(with a 95% confidence interval of 1.6–75.5). However, using
a different measure of glomerular permeability, another group
failed to find any predictive value of pre-transplant measure-
ments on the risk of recurrence [46].

Other groups have reported various putative circulating
factors over many years, which have been reviewed elsewhere
[47, 48], with no definitive candidate yet established.

Our approach over several years has been to utilise human
podocytes in vitro and expose them to plasma exchange fluid
taken from patients with early recurrence. This would mimic
the disease situation of a circulating factor damaging
podocytes in vivo, and the key is to find a damage pathway

in the podocyte that is consistent in response to disease plas-
ma. To date, we have demonstrated changes in the localisation
of slit diaphragm proteins nephrin, podocin and CD2AP [49],
in addition to enhanced phosphorylation of the actin regulat-
ing protein VASP [50], and functionally we can show an in-
crease in podocyte motility. These responses are consistent
when using plasma exchange fluid, although our follow-up
testing of peripheral blood samples from patients at various
stages of disease suggests that VASP phosphorylation may be
less consistent as a biomarker (unpublished data). This could
suggest different factors in pre-transplant disease, with differ-
ing downstream effects, although a more prosaic difficulty is
obtaining fresh samples adequately stored. A key practical
message in this type of clinical research is that aliquoting
and early freezing of these valuable samples is as important
a step in the experimental procedure as any other.

With these issues in mind, in the UK, we have under-
taken a project termed the National Unified Renal
Translational Research Enterprise (NURTuRE), in which
samples will be collected according to strict protocols by
dedicated research nursing staff, and stored centrally.
This, and initiatives such as NEPTUNE in the USA
[51], will be important resources in the future for high-
quality biomarker studies in INS.

Fig. 1 A genetic and clinical
screening-based algorithm for
predicting recurrence risk in
steroid-resistant nephrotic syn-
drome (SRNS; from Bierzynska
et al. [1], used with permission),
NS nephrotic syndrome, ESRF
end stage renal failure
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What proportion of patients with SRNS have
circulating factor disease?

We estimate, based on children with a recurrence rate in INS
post-transplant of 40–60% (the archetypal CF disease), and a
separate 20–30% rate of monogenic/familial disease in this
cohort, there is a potential 10–40% Bunknown mechanism^
group remaining to be defined.

Can we speculate what proportion of children overall with
SRNS, and what proportion with primary SRNS in the
Bgenetic testing negative^ group have a CFD (and therefore
are at risk of recurrence)? In our national cohort, tested by
exome sequencing, the latter subset comprises 69% of all
SRNS patients, and 48% of those transplanted from this subset
suffered recurrence (Fig. 1) [1]. This implies that at least 48%
of that subset has CFD, and potentially more, although those
who did not suffer recurrence would have a different or milder
disease phenotype. For the whole cohort, if we add that num-
ber to the secondary SRNS subgroup, that yields 79 out of 181
patients with presumed CFD, i.e. 43.6% of the total cohort.
We know a separate 26.5% have a definite monogenic cause,
leaving 29.9% overall unknown. Some of those have an un-
discovered genetic mutation, and the rest could have CFD or
another as yet unknown mechanism.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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