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Abstract 20 

         The posttranslational modification (PTM) of innate immune sensor proteins by 21 

ubiquitin or ubiquitin-like proteins is crucial for regulating antiviral host responses. The 22 

cytoplasmic dsRNA receptor melanoma differentiation-associated protein 5 (MDA5) 23 

undergoes several PTMs including ISGylation within its first caspase activation and 24 

recruitment domain (CARD), which promotes MDA5 signaling. However, the relevance 25 

of MDA5 ISGylation for antiviral immunity in an infected organism has been elusive. 26 

Here, we generated knock-in mice (MDA5K23R/K43R) in which the two major ISGylation 27 

sites, K23 and K43, in MDA5 were mutated. Primary cells derived from MDA5K23R/K43R 
28 

mice exhibited abrogated endogenous MDA5 ISGylation and an impaired ability of 29 

MDA5 to form oligomeric assemblies leading to blunted cytokine responses to MDA5 30 

RNA-agonist stimulation or infection with encephalomyocarditis virus (EMCV) or West 31 

Nile virus. Phenocopying MDA5−/− mice, the MDA5K23R/K43R mice infected with EMCV 32 

displayed increased mortality, elevated viral titers, and an ablated induction of cytokines 33 

and chemokines compared to WT mice. Molecular studies identified human HERC5 34 

(and its functional murine homolog HERC6) as the primary E3 ligases responsible for 35 

MDA5 ISGylation and activation. Taken together, these findings establish the 36 

importance of CARD ISGylation for MDA5-mediated RNA virus restriction, promoting 37 

potential avenues for immunomodulatory drug design for antiviral or anti-inflammatory 38 

applications. 39 

 40 

 41 

 42 
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 43 

Significance Statement 44 

          The work by many groups demonstrated the important role of ubiquitination in 45 

modulating the activity of innate immune sensors. In contrast, little is still known about 46 

the significance of ISGylation in immune receptor regulation. In this study, we generated 47 

knock-in mice in which the two major ISGylation sites of the RNA sensor MDA5 were 48 

mutated. Cells from these MDA5-ISGylation-defective mice showed impaired MDA5 49 

oligomerization and antiviral signaling as compared to WT mice. Virus-infected MDA5 50 

knock-in mice displayed ablated antiviral responses, uncontrolled viral replication, and 51 

higher mortality. Our study identified HERC5 as the E3 ligase responsible for MDA5 52 

ISGylation and activation. These data may offer opportunities for immune-based 53 

antiviral design or ways to alleviate inflammatory diseases associated with overzealous 54 

MDA5 activation. 55 

 56 

Introduction 57 

          Innate immune surveillance serves as the body’s first line of defense mechanism 58 

against a plethora of intruding pathogens whereby pathogen-associated molecular 59 

patterns (PAMPs) such as viral RNA and DNA are recognized (1-3). Upon sensing 60 

pathogenic ‘non-self’ nucleic acids, germline-encoded pattern-recognition receptors 61 

(PRRs) expressed in innate immune (e.g., macrophages) and non-immune (e.g., 62 

epithelial or fibroblast) cells confer an amplitude of host antiviral responses. These 63 

include 1) type I or III interferon (IFN)-mediated immunity, 2) the induction of 64 

proinflammatory cytokines, and 3) upregulation of IFN-stimulated genes (ISGs) in 65 
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response to type I or III IFN receptor activation and JAK-STAT1/2 signaling. Ultimately, 66 

this complex innate immune program initiated by PRRs leads to the activation of 67 

adaptive immunity (typically mediated by T and B cells) (4).  68 

Innate immunity in response to viral RNA sensing in the cytoplasm is 69 

orchestrated by several receptor proteins, primarily the RIG-I-like receptors (RLRs) 70 

retinoic acid-inducible gene-I (RIG-I) and MDA5 (5). These RNA helicases detect 71 

specific RNA species, such as 5'-triphosphate-containing RNA (RIG-I) or longer and 72 

more complex dsRNA structures (MDA5), after RNA virus infections. Besides RNA 73 

viruses, herpesviruses and adenoviruses also activate RLRs where either viral RNAs or 74 

certain mislocalized or modified host RNAs harboring signature immunostimulatory 75 

features (i.e., 5'-triphosphate moiety and dsRNA portions) are recognized (6, 7). This 76 

RNA sensing event then triggers a signaling cascade that is mediated by mitochondrial 77 

antiviral-signaling protein (MAVS) and the TBK1-IRF3/7 axis, promoting a transcriptional 78 

program comprising IFNs, antiviral effectors (typically the gene products of IFN-79 

stimulated genes (ISGs)), and proinflammatory cytokine or chemokine molecules (5, 8). 80 

The antiviral program induced by RLRs ultimately suppresses the replication of diverse 81 

RNA viruses (such as flaviviruses, influenza viruses, and coronaviruses) and can also 82 

prompt tissue inflammation (9). 83 

         Protein posttranslational modifications (PTMs) modulate the physiological 84 

functions of cells by altering protein conformation, activity, stability, and/or localization 85 

(10, 11). In particular, innate immune sensors are intricately regulated by a ‘PTM-code’ 86 

which determines the timing and/or magnitude of PRR activation (5, 12). On the other 87 

hand, PTMs can also negatively regulate sensor activation, curbing excessive cytokine 88 
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responses that can lead to deleterious outcomes such as autoimmune conditions. 89 

Serine/Threonine phosphorylation and lysine ubiquitination are the most well-90 

characterized PTMs regulating RLR activity (5). In unstimulated or uninfected cells, 91 

MDA5 and RIG-I are phosphorylated in their N-terminal caspase activating and 92 

recruitment domains (CARDs) and C-terminal domain (CTD) (13-16). CARD 93 

dephosphorylation by a phosphatase complex comprised of protein phosphatase 1 94 

alpha or gamma (PP1α/γ) and the RIG-I/MDA5-targeting subunit PPP1R12C, allows for 95 

transition from their signaling-restrained states to signal-transducing ‘active’ forms (14, 96 

17). Specifically, RNA virus infection releases PPP1R12C tethered to actin filaments, 97 

allowing its recruitment to RIG-I and MDA5 as part of a catalytically active PP1 complex 98 

to dephosphorylate the RLR CARDs. Similarly, the CTD of RLRs is dephosphorylated 99 

after RNA virus infection (17). Dephosphorylated RIG-I then undergoes TRIM25- and 100 

Riplet-mediated K63-linked polyubiquitination in its CARDs and CTD, respectively (18). 101 

These polyubiquitination modifications promote and stabilize RIG-I oligomer formation 102 

and thereby its activation to initiate signaling via MAVS (5). MDA5 was shown to 103 

undergo K63-linked ubiquitination in its helicase domain catalyzed by the E3 ubiquitin 104 

ligase TRIM65, which facilitates MDA5 activation and downstream signaling (19). 105 

Whether the MDA5 CARDs undergo K63-linked ubiquitination in cells (vs. cell-free 106 

systems) has been controversial (5), prompting research investigations into activating 107 

PTMs in the MDA5 CARDs triggered by MDA5 dephosphorylation. Our recent study 108 

revealed that MDA5 dephosphorylation induces MDA5 CARD ISGylation (i.e., 109 

conjugation with the ubiquitin-like protein ISG15) at two major sites, K23 and K43 (20). 110 

MDA5 ISGylation drives antiviral IFN responses restricting a range of RNA viruses 111 
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including encephalomyocarditis virus (EMCV), Zika virus, and severe acute respiratory 112 

syndrome coronavirus 2 (SARS-CoV-2) in human cells (20). Conversely, as a viral tactic 113 

evolved to escape ISGylation-dependent MDA5 signaling, the SARS-CoV-2 papain-like 114 

protease (PLpro) actively removes ISG15 from the MDA5 CARDs (20, 21). The 115 

physiological function of MDA5 ISGylation at the endogenous protein level and its in 116 

vivo relevance for controlling virus infection, however, have not yet been elucidated. 117 

           In this study, we generated MDA5K23R/K43R knock-in mice and showed that the 118 

combined mutation of K23 and K43 ablated endogenous MDA5 ISGylation and 119 

oligomerization and thereby MDA5-mediated antiviral cytokine responses, leading to 120 

uncontrolled RNA virus-induced pathogenesis. Furthermore, we identified human 121 

HERC5 (or HERC6, the functional murine homolog) as the E3 ligase enzyme 122 

responsible for catalyzing MDA5 ISGylation, enabling MDA5 activation and antiviral 123 

signaling. 124 

 125 

Results 126 

Ablated MDA5 ISGylation and oligomerization in cells from MDA5K23R/K43R mice. 127 

Our previous work indicated that human MDA5 (hMDA5) undergoes ISGylation at K23 128 

and K43 in the first CARD and that ISGylation promotes MDA5 signaling ability (20). As 129 

K23 and K43 are highly conserved in MDA5 across mammalian species including mice 130 

(SI Appendix, Fig. S1A), we sought to determine the physiological relevance of MDA5 131 

CARD ISGylation at the endogenous protein level and for host antiviral defense in vivo. 132 

To this end, we generated MDA5 knock-in mice (termed MDA5K23R/K43R) by introducing 133 

the K23R and K43R mutations into the native Mda5/Ifih1 locus using CRISPR-Cas9 134 

technology and a targeting repair vector containing the double mutant exon 1 to replace 135 
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the WT exon 1 (Fig. 1A−B, SI Appendix Fig. S1B and Methods). In parallel, MDA5−/− 136 

mice in which the exon 1 genomic region was deleted due to non-homologous end 137 

joining (NHEJ) were generated as a matched control. All mouse lines were screened 138 

and validated using a three-set PCR genotyping strategy and by genomic DNA 139 

sequencing (Fig. 1B, SI Appendix Fig. S1B and Methods).  140 

          We next assessed the protein abundance of endogenous MDA5 in primary 141 

mouse dermal fibroblasts (MDFs) isolated from the three mouse lines both in 142 

unstimulated (basal) conditions and after exogenous IFN-α stimulation (Fig. 1C). This 143 

showed comparable endogenous MDA5 protein expression in the cells from WT and 144 

MDA5K23R/K43R mice, and further, confirmed the absence of MDA5 expression in the cells 145 

from MDA5−/− mice. Notably, equal RIG-I and downstream ISG (i.e., IFIT2 and ISG15) 146 

protein expression was observed after IFN-α stimulation in the MDFs from all three 147 

mouse lines (Fig. 1C), demonstrating intact IFN-α/β receptor (IFNAR) signaling. Next, 148 

we tested the ISGylation of endogenous MDA5 after stimulation with EMCV RNA, a 149 

specific agonist of MDA5 (5, 22), in MDFs isolated from MDA5K23R/K43R mice and WT 150 

mice (Fig. 1D). Of note, experimental conditions were used where ISG15 protein 151 

expression was comparable in both WT and knock-in mouse cells, allowing us to 152 

unambiguously compare the ISGylation of WT and mutant MDA5. Cells from WT mice 153 

showed robust endogenous MDA5 ISGylation after EMCV RNA stimulation. In contrast, 154 

EMCV RNA-stimulated cells from MDA5K23R/K43R mice exhibited a near-abolished 155 

ISGylation of endogenous MDA5 (Fig. 1D). Importantly, the levels of K63-linked 156 

polyubiquitination and SUMOylation of endogenous MDA5 (19, 23) in cells from 157 

MDA5K23R/K43R and WT mice were comparable (Fig. 1E−F), strengthening our previous 158 
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data (20) that showed that the mutation of K23 and K43 specifically abrogates ISG15 159 

conjugation but does not affect —directly or indirectly— MDA5 ubiquitination or 160 

SUMOylation.  161 

Upon binding to dsRNA in the cytosol, hMDA5 is primed by CARD ISGylation 162 

facilitating its multimerization (20). Consistent with these previous findings on 163 

exogenous WT and K23R/K43R hMDA5, endogenous mMDA5 exhibited efficient 164 

oligomerization in EMCV RNA-stimulated MDFs from WT control mice; however, 165 

endogenous mMDA5 oligomerization was substantially impaired in cells derived from 166 

MDA5K23R/K43R mice (Fig. 1G−H, and SI Appendix, Fig. S1C−D). Collectively, these 167 

findings show that endogenous MDA5 undergoes ISGylation at K23 and K43, which is 168 

important for its ability to oligomerize in response to RNA agonist stimulation.  169 

 170 

MDA5 ISGylation is pivotal for eliciting IFN and ISG responses against 171 

picornavirus infection in fibroblasts. To elucidate the role of MDA5 ISGylation in 172 

downstream signal transduction, we assessed specific activating phosphorylation marks 173 

for STAT1 (downstream of IFNAR) as well as IRF3 and TBK1 (both downstream of 174 

MDA5 and other PRRs) in MDF cells derived from WT and MDA5K23R/K43R  mice upon 175 

infection with EMCV. Cells from MDA5−/− mice were included as a control. EMCV-176 

infected cells from WT mice, but not MDA5K23R/K43R and MDA5−/− mice, exhibited robust 177 

STAT1 phosphorylation (Fig. 2A). In accord, TBK1 and IRF3 phosphorylation was 178 

effectively elicited in cells from WT mice following EMCV infection. In contrast, cells 179 

derived from MDA5K23R/K43R and MDA5−/− mice showed impaired activating 180 

phosphorylations for TBK1 and IRF3 (SI Appendix, Fig. S2A). Importantly, MDFs from 181 
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WT, MDA5K23R/K43R, and MDA5−/− mice showed comparable TBK1, IRF3, and STAT1 182 

phosphorylations upon infection with Sendai virus (SeV, a virus that is sensed by RIG-I), 183 

demonstrating the integrity of the RIG-I signaling pathway in the cells derived from 184 

MDA5K23R/K43R and MDA5−/− mice. Consistent with these data, the transcript expression 185 

of type I IFN (i.e., Ifna1), ISGs (i.e., Mx1 and Oas1b), and proinflammatory cytokines 186 

and chemokines (i.e., Tnf, Ccl5, and Cxcl10) were efficiently elicited in MDFs from WT 187 

mice over a time course of EMCV RNA stimulation. In comparison, antiviral and 188 

proinflammatory gene induction was impaired in EMCV RNA-transfected cells from 189 

MDA5K23R/K43R and MDA5−/− mice. Notably, MDA5−/− mouse cells consistently showed a 190 

stronger diminishment of antiviral gene induction compared with the cells from 191 

MDA5K23R/K43R mice (Fig. 2B−D and SI Appendix, Fig. S2B−D). MDFs derived from 192 

WT, MDA5K23R/K43R, and MDA5−/− mice, however, responded equally well to rabies virus 193 

leader RNA (RABVLe; an RNA agonist activating RIG-I (24)) (Fig. 2B−D and SI 194 

Appendix, Fig. S2B−D). Consistent with these data using RLR RNA-ligands, authentic 195 

EMCV infection in cells from WT mice, but not in cells from MDA5K23R/K43R and MDA5−/− 196 

mice, effectively elicited antiviral gene responses, while SeV infection robustly 197 

stimulated an antiviral response in the cells from all three mouse lines (SI Appendix, 198 

Fig. S2E−I). Consistent with our data on antiviral gene induction, we observed strongly 199 

diminished and ablated IFN-β protein secretion in MDFs derived from MDA5K23R/K43R 200 

and MDA5−/− mice, respectively (compared to cells from WT mice) after MDA5, but not 201 

RIG-I, stimulation (Fig. 2E−F). These results indicate that ISGylation of endogenous 202 

MDA5 is required for its functional ability to instigate an antiviral cellular defense 203 

program.  204 
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 205 

ISG15 conjugation of the MDA5 CARDs is required for innate signaling in immune 206 

cells. We next sought to determine the role of CARD ISGylation in MDA5 signaling in 207 

immune cells, in particular primary bone marrow-derived macrophages (BMDMs). 208 

Similar to our results obtained from MDFs, EMCV-infected BMDMs from MDA5K23R/K43R 
209 

and MDA5−/− mice exhibited strongly diminished phosphorylation of IRF3, TBK1, and 210 

STAT1 compared to BMDMs from WT mice (Fig. 3A and SI Appendix, Fig. S3A). In 211 

accord, cytokine and chemokine gene expression upon EMCV infection or EMCV-RNA 212 

transfection was impaired in MDA5K23R/K43R cells compared to WT control cells (Fig. 213 

3B−D and SI Appendix, Fig. S3B−C). In stark contrast, the signaling molecule 214 

activation and antiviral gene responses of SeV-infected or RABVLe-transfected 215 

MDA5K23R/K43R mouse-derived BMDMs were comparable to those in cells from WT mice 216 

(Fig. 3B−D and SI Appendix, Fig. S3B−C). These results show that immune cells 217 

derived from MDA5K23R/K43R mice exhibit abrogated MDA5 antiviral signaling. 218 

 219 

MDA5 ISGylation is important for eliciting an antiviral transcriptional program 220 

against coronaviruses and flaviviruses. In addition to detecting picornavirus 221 

infections, MDA5 is a major receptor for sensing coronaviruses and flaviviruses. As 222 

such, we investigated the requirement of MDA5 ISGylation at K23 and K43 for initiating 223 

an innate transcriptional program to stimulation with SARS-CoV-2 (coronavirus) RNA 224 

and to authentic West Nile virus (WNV, a flavivirus) infection. Transfection of SARS-225 

CoV-2 RNA (which activates primarily MDA5 (20)) into MDFs from MDA5K23R/K43R mice 226 

and MDA5−/− mice, respectively, severely impaired and abrogated, antiviral and 227 
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proinflammatory gene expression as compared to that induced in WT cells (Fig. 4A). 228 

Moreover, MDA5K23R/K43R or MDA5−/− mouse-derived MDFs exhibited blunted antiviral 229 

transcriptional responses following WNV infection as compared to control cells (Fig. 230 

4B). Of note, in these experiments, we measured antiviral gene induction specifically at 231 

a late time (i.e., 60 h) in WNV infection where MDA5 was shown to play a major role in 232 

flaviviral RNA detection, whereas RIG-I senses WNV early in infection (25). Together 233 

with our data on EMCV, these findings strengthen the importance of CARD ISGylation 234 

for MDA5’s ability to elicit an innate immune program against RNA viruses from diverse 235 

families.  236 

 237 

HERC5/HERC6 catalyzes MDA5 ISGylation, promoting MDA5 oligomerization and 238 

immune signal transduction. To identify the E3 ligase(s) responsible for MDA5 CARD 239 

ISGylation, we adopted a candidate approach in which we silenced specific enzymes 240 

known to have E3 ligase activity for ISG15 (i.e., HERC5 (26, 27), ARIH1 (Ariadne RBR 241 

E3 ubiquitin protein ligase 1 (28)), and TRIM25 (also named estrogen finger protein 242 

(EFP) (29)), and tested the effect of silencing on endogenous hMDA5 ISGylation. 243 

Knockdown of TRIM65, which mediates the K63-liked ubiquitination of MDA5’s helicase 244 

domain (19) and is not known to confer ISG15 E3 ligase activity, served as a control in 245 

this experiment. Depletion of endogenous HERC5 ablated MDA5 ISGylation in primary 246 

normal human lung fibroblasts (NHLF) as compared to transfection of non-targeting 247 

control siRNA (si.C), whereas knockdown of the other E3 ligases had no diminishing 248 

effect on MDA5 ISGylation (Fig. 5A). Depletion of endogenous HERC6 (the functional 249 

substitute of HERC5 in mice (30, 31)) in primary MDFs near-abolished MDA5 250 
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ISGylation induced by EMCV RNA stimulation, to a similar extent as did E1 or E2 251 

silencing (Fig. 5B). In contrast, depletion of endogenous TRIM65 in MDFs did not affect 252 

MDA5 ISGylation, ruling out that TRIM65 —either directly or indirectly (for example, via 253 

a possible crosstalk between MDA5 K63-linked ubiquitination and ISGylation)— 254 

influences MDA5 ISGylation (Fig. 5B). In line with these findings, HERC6 knockdown in 255 

EMCV RNA-stimulated WT MDFs noticeably diminished MDA5 oligomerization. By 256 

contrast, HERC6 silencing in cells from MDA5K23R/K43R mice, which showed impaired 257 

MDA5 oligomerization (as compared to cells from WT mice), did not further reduce 258 

MDA5 oligomerization (Fig. 5C and D).  259 

           Knockdown of HERC5, but not ARIH1, in primary NHLFs markedly reduced the 260 

transcript expression of ISGs, cytokines, and chemokines upon EMCV RNA stimulation 261 

(Fig. 5E and SI Appendix, Fig. S4A). Similarly, the knockdown of endogenous HERC6 262 

in WT MDFs abrogated EMCV RNA-induced antiviral gene expression as compared to 263 

si.C transfection (SI Appendix, Fig. S4B). Collectively, these results establish that 264 

HERC5 (human) and HERC6 (mouse) are the major E3 ligases that mediate MDA5 265 

ISGylation, ultimately promoting MDA5 oligomerization and antiviral signaling. 266 

 267 

MDA5K23R/K43R mice are impaired in restricting virus infection. To evaluate the in 268 

vivo relevance of ISGylation-dependent MDA5 activation in antiviral immunity, we 269 

infected WT and MDA5K23R/K43R mice intraperitoneally with EMCV and monitored 270 

morbidity and survival, innate immune responses, and viral titers (Fig. 6A). MDA5−/− 271 

mice were included in these experiments for comparison. MDA5K23R/K43R and MDA5−/− 272 

mice infected with EMCV exhibited greater body weight loss and accelerated lethality as 273 
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compared to infected WT mice (Fig. 6B and SI Appendix, Fig. S5A). Analysis of 274 

EMCV replication revealed that MDA5K23R/K43R and MDA5−/− mice had significantly 275 

higher viral titers in cardiac and brain tissues as compared to WT mice (Fig. 6C−D), 276 

indicating enhanced viral replication due to ablated MDA5 activity in the MDA5K23R/K43R 277 

and MDA5−/− mice. Furthermore, effective IFN-β production was triggered in the blood 278 

and heart of infected WT mice. In contrast, IFN-β protein amounts in these tissues were 279 

undetectable in infected MDA5K23R/K43R and MDA5−/− mice (Fig. 6E). In line with these 280 

results, RT-qPCR analysis detected higher viral RNA amounts and strongly reduced 281 

cytokine/chemokine transcript levels in the blood (Fig. 6F) and heart (Fig. 6G) of 282 

infected MDA5K23R/K43R mice compared with infected WT control mice. Of note, the 283 

impaired antiviral transcriptional program observed for MDA5K23R/K43R mice was 284 

comparable to that of infected MDA5−/− mice, which also showed blunted 285 

cytokine/chemokine induction as expected (Fig. 6F−G). Cumulatively, these results 286 

indicate that CARD ISGylation is a key activation mechanism for MDA5 to control RNA 287 

virus infection and viral pathogenesis in vivo. 288 

 289 

Discussion 290 

 Fine-tuning the signaling activity of the innate RNA sensor MDA5 has been 291 

shown to require several PTMs including phosphorylation, ubiquitination, SUMOylation, 292 

and lately, ISGylation (5). While the molecular discoveries on PTM-mediated MDA5 293 

regulation have greatly advanced our understanding of MDA5 activation, the 294 

physiological relevance of several of these PTM marks, particularly in an organism, has 295 

been elusive. In the present study, we generated MDA5K23R/K43R mice with mutation of 296 

the two key ISGylation sites in MDA5 and investigated the direct contribution of 297 
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ISGylation for MDA5-dependent antiviral innate immunity. We showed that, like human 298 

MDA5, endogenous mouse MDA5 undergoes robust ISGylation, and further, that this 299 

modification is crucial for MDA5’s ability to form higher-order oligomeric assemblies and 300 

to induce antiviral IFN responses. Notably, this important role of MDA5 CARD 301 

ISGylation was observed for various MDA5 stimuli including MDA5-specific RNA ligands 302 

(i.e., EMCV-RNA and SARS-CoV-2 RNA) and viruses from different families (i.e., 303 

Picornaviridae (EMCV) and Flaviviridae (WNV), both known to be detected by MDA5). 304 

Furthermore, similar to MDA5−/− mice, MDA5K23R/K43R mice were highly susceptible to 305 

EMCV infection and displayed heightened pathology and lethality owing to diminished 306 

antiviral IFN and cytokine/chemokine responses. Our data thus establish ISGylation as 307 

a physiologically important PTM governing MDA5 activation and its downstream 308 

antiviral signaling. 309 

Our work also identified the E3 ligases catalyzing the CARD ISGylation marks of 310 

MDA5. Through a targeted siRNA-based mini-screen, we found that HERC5 and its 311 

functional murine homolog, HERC6, represent the key E3 ligases responsible for MDA5 312 

ISGylation, prompting MDA5 downstream antiviral signaling. Interestingly, ISGylation 313 

has recently been shown to play important roles in the activation of the cGAS-mediated 314 

innate DNA sensing pathway (32-35). HERC5 and mouse HERC6 were also identified 315 

to be the critical E3 enzymes involved in the ISGylation of the DNA sensor cGAS and its 316 

signaling adaptor STING, promoting HSV-1 restriction (34, 35). These findings highlight 317 

HERC5/HERC6-mediated ISGylation as an essential regulatory arm of PRR-induced 318 

antiviral innate immunity against both RNA viruses and DNA viruses. While we have not 319 

tested directly the in vivo role of HERC6 in antiviral defense against MDA5-sensed 320 
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viruses, a previous study showed that compared to WT mice, HERC6−/− mice, despite 321 

exhibiting ablated global ISGylation, mounted comparable IFN and proinflammatory 322 

cytokine responses to infections with SeV and vesicular stomatitis virus, both are known 323 

to be primarily sensed by RIG-I. This is consistent with our and others’ observation that 324 

ISGylation positively regulates MDA5 signaling but has minimal or even opposing 325 

effects on RIG-I activation (20, 36, 37). Future studies are necessary to 326 

comprehensively assess the antiviral responses to MDA5- or RIG-I-sensed viruses in 327 

HERC6−/− mice. 328 

Our data strengthened the concept that HERC5/HERC6-mediated ISGylation of 329 

the N-terminal CARDs is important for efficient MDA5 oligomerization. Our observation 330 

that MDA5K23R/K43R cells showed some residual MDA5 oligomerization and antiviral 331 

cytokine/ISG responses however indicates the involvement of other mechanisms in 332 

regulating MDA5 activation. In particular, the K63-linked polyubiquitination of MDA5 in 333 

the helicase domain by TRIM65 has been shown to facilitate MDA5 oligomerization and 334 

its downstream antiviral signaling (19). Indeed, silencing of endogenous TRIM65 in WT 335 

cells led to a reduction in MDA5 oligomerization to the levels of oligomerization 336 

observed for MDA5K23R/K43R knock-in cells, whereas TRIM65 depletion in the 337 

MDA5K23R/K43R knock-in background near-abolished MDA5 oligomerization (SI 338 

Appendix, Fig. S5B). These data suggest that MDA5 CARD ISGylation and helicase 339 

K63-linked ubiquitination play synergistic roles in facilitating MDA5 oligomerization, 340 

leading to optimal MDA5 activation. Given the role of the helicase domain in the initial 341 

binding to dsRNA ligands, it is tempting to speculate that the TRIM65-mediated 342 

ubiquitination of MDA5 occurs first and primes oligomerization, while CARD ISGylation 343 
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amplifies the magnitude of MDA5 oligomeric assembly and downstream signal 344 

transduction. However, additional studies are needed to define the temporal aspects 345 

and respective roles of the CARD and helicase PTM-events in the MDA5 346 

oligomerization process, and their relationships to other cofactors needed for MDA5 347 

higher-order assembly formation.  348 

A previous study reported that MDA5 undergoes SUMOylation in the CARDs at 349 

K43 (23). However, we observed similar levels of MDA5 SUMOylation (and also K63-350 

linked polyubiquitination) in MDA5K23R/K43R and WT cells. These results indicate that the 351 

two lysine residues are specific for ISGylation, although it is possible that a temporal 352 

switch of these two PTMs at K43 can occur for fine-tuning the activation state of MDA5. 353 

Future studies are warranted to illustrate the dynamics and relative contributions of 354 

MDA5 PTMs in physiological (cell-based or in vivo) conditions using similar approaches 355 

as described herein for MDA5 CARD ISGylation. 356 

Our identification of ISGylation as a physiologically important PTM governing 357 

MDA5-mediated immunity highlights its potential for translational applications. Recent 358 

studies have demonstrated that MDA5 plays a determining role in the immunogenicity of 359 

COVID-19 vaccines, particularly in stimulating humoral and cell-mediated adaptive 360 

immune responses (38, 39). Although the involvement of specific PTMs in MDA5 361 

activation by COVID-19 vaccines remains unknown, we postulate that ISGylation plays 362 

a role, and modulating MDA5 ISGylation may provide a strategy to enhance vaccine 363 

efficacy. Given that ISG15 conjugation to viral proteins typically inhibits their function, 364 

and further, since viruses such as SARS-CoV-2 have evolved tactics to actively remove 365 

ISGylation from both host and viral proteins (40-44), boosting ISGylation could offer 366 
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dual benefits via 1) fortifying MDA5 (and perhaps other sensor such as cGAS) signaling, 367 

and 2) counteracting viral evasion through de-ISGylation. Along these lines, as sensing 368 

of endogenous host RNA ligands by MDA5 and Mda5/Ifih1 gain-of-function mutations 369 

underlie certain autoimmune conditions (45-47), exploring the modulation of MDA5 370 

ISGylation as an immunomodulatory approach to mitigate autoinflammation represents 371 

an intriguing area for future research. Overall, our findings unveiling a pivotal role of 372 

MDA5 CARD ISGylation in effective innate immunity may hold promise for translational 373 

application in antiviral design, vaccinology, and autoimmunity. 374 

 375 

 376 

 377 

 378 

Materials and Methods 379 

Generation of MDA5K23R/K43R mice 380 

         The Mda5/Ifih1 transgenic mice were generated by introducing the K23R and 381 

K43R mutations into the native Mda5/Ifih1 genomic DNA (Ifih1) locus by replacing the 382 

WT exon1 with a double mutant exon1 directly in mice using CRISPR-Cas9 and a 383 

targeting vector. sgRNA sequences that directed Cas9 nuclease cutting on either side of 384 

a Mda5/Ifih1 exon1 genomic DNA target fragment were identified by the CRISPR 385 

algorithm (http://crispor.tefor.net/) and screened with a sgRNA in vitro screening system 386 

(Clontech). The cut sites for the 5' sgRNA Mda5/Ifih1 1162/rev 387 

(CATCGTGAGGTCTCAGGAAA) and the 3' sgRNA Mda5/Ifih1 1652/fw 388 

(CGGGTAGGTGTCAATGTAGT) were then used to design a targeting vector containing 389 

a 1 kb 5' arm of homology, a unique AscI site at the cut site of 1162/rev, a double mutant 390 
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Mda5/Ifih1 exon1 sequence, a unique PmeI site at the cut site of 1652/fw, and a 1 kb 3' 391 

arm of homology. The insertion of the unique sites prevents cutting the targeting vector 392 

by Cas9 nuclease. Mixtures of Cas9 nuclease, both sgRNAs and supercoiled targeting 393 

vector were microinjected into the pronucleus of C57BL/6J fertilized oocytes by the 394 

Case Transgenic and Targeting Facility (Cleveland, OH). Injected fertilized oocytes were 395 

transferred to the oviducts of CD1 pseudo-pregnant recipients and the resulting pups 396 

were transferred to our laboratory. In genome editing, because of the two sgRNAs in the 397 

mixtures, the DNA repair machinery can also resolve the cuts by consecutive 398 

nonhomologous end joining, leading to the deletion of the intertwining WT Mda5/Ifih1 399 

exon1 sequence and resulting in a putative null allele. Animals were therefore screened 400 

for both knock-in (KI) and knock-out (KO) genotypes, with the latter serving as the 401 

matched control. The MDA5K23R/K43R and MDA5–/– founder mice that harbored the 402 

transgenic gene expression were then backcrossed to C57BL6/J WT mice (directly 403 

bought from the Jackson Laboratory) to generate homozygous MDA5K23R/K43R and 404 

MDA5–/– mice in the C57BL6/J background. 405 

MDA5K23R/K43R and MDA5–/– transgenic mice (founder and up to F7 progeny) 406 

were screened and validated by genotyping using a three-set PCR scheme amplifying 407 

an exon1-containing fragment. The primer pair A (primers 1 and 2) anneals to the WT 408 

exon1 junctions, while the primer pair B (primer 3 and 4) is positioned to anneal at the 409 

primer 3' end to the unique AscI and PmeI sites flanking the double mutant exon1. The 410 

primer pair C (primers 5 and 6) is located in the distal intronic region flanking both WT 411 

and double mutant exon1 (see Table 1 for specific primers). Mice were bred and 412 

maintained at the Animal Resources Center of the Cleveland Clinic Florida Research 413 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.20.614144doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.20.614144
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

and Innovation Center. No growth or behavioral defects were observed for the 414 

MDA5K23R/K43R and MDA5−/− mice. All mice were housed in a pathogen-free barrier 415 

facility with a 12 h dark and light cycle and ad libitum access to a standard chow diet 416 

and water. All mice used in this study were not involved in any other experimental 417 

procedure study and were in good health status.  418 

 419 

Mouse infection studies 420 

           For EMCV infection, sex-matched, 6-8 week-old WT, MDA5K23R/K43R, and MDA5–
421 

/–  C57BL/6J mice were infected with the indicated plaque forming unit (PFU) of EMCV 422 

in 100 µL of sterile PBS via the intraperitoneal route (22, 48-53). Both female and male 423 

mice were used in the studies. For survival studies, mice were monitored daily for 424 

disease progression, daily signs and symptoms (hind limb paralysis, partial body 425 

paralysis, ruffled fur, hunchback, listlessness, trembling, and impaired movement) and 426 

euthanized at the indicated times post-infection following humane endpoint criteria 427 

defined by Institutional Animal Care and Use Committee guidelines. Retro-orbital blood 428 

collection was performed as described previously (54). The blood was centrifuged at 429 

9000 ×g for 5 min and stored at -80°C. Whole mouse heart and brain tissues were 430 

harvested, longitudinally bisected into two halves, and one half was placed into sterile 1 431 

× PBS, and the other half into TRIzol reagent for RNA isolation and kept on ice. Tissues 432 

were homogenized using Qiagen TissueRuptor (22573; Qiagen) at maximum speed for 433 

15 s/sample. Homogenates were clarified by centrifugation at 13,000 ×g for 10 min at 4 434 

°C, and supernatants were collected into new sterile tubes and stored at -80 °C (53, 55). 435 

EMCV replication in blood, heart, and brain tissues was determined by standard plaque 436 
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assay (17, 56) or by RT-qPCR analysis of EMCV RNA-dependent RNA polymerase 437 

(RdRp; 3Dpol) transcripts using forward primer sequence 5�-438 

GTCATACTATCGTCCAGGGACTCTAT-3� and reverse primer sequence 5�-439 

CATCTGTACTCCACACTCTCGAATG-3� (57). All experiments were performed under 440 

protocols approved by the Institutional Animal Care and Use Committee of the 441 

Cleveland Clinic Florida Research and Innovation Center. 442 

 443 

Cell culture 444 

         HEK293T (human embryonic kidney), primary normal human lung fibroblasts 445 

(NHLF), Vero (African green monkey kidney epithelial), and BHK-21 (baby hamster 446 

kidney) were purchased from American Type Culture Collection (ATCC) and cultured in 447 

Dulbecco’s modified Eagle media (DMEM, Gibco) supplemented with 10% (v:v) fetal 448 

bovine serum (FBS, Gibco), 100 U/mL penicillin-streptomycin (Pen-Strep, Gibco), 1 mM 449 

sodium pyruvate (Gibco), and 2 mM L-glutamine (Gibco). Vero E6-TMPRSS2 cells were 450 

cultured in DMEM supplemented with 10% (v/v) FBS, 1 mM sodium pyruvate, 100 U/mL 451 

of penicillin-streptomycin, and 40 µg/mL blasticidin (ant-bl-05; Invivogen). Adult mouse 452 

dermal fibroblasts (MDFs) derived from ear/tail tissue of WT, MDA5K23R/K43R, and MDA5–
453 

/–  mice (C57BL/6J mice, 6-8 week-old) were isolated after mincing and then treatment 454 

with digestion media containing Collagenase D (20 mg/mL) and Pronase (20 mg/mL) 455 

(58, 59). Cells were cultured in DMEM supplemented with 10% (v:v) FBS, 2 mM L-456 

glutamine, 1% (v:v) (NEAA), 1 mM sodium pyruvate, 50 µM 2-mercaptoethanol, and 457 

100 U/ml antibiotic-antimycotic (Gibco). Bone marrow-derived macrophages (BMDMs) 458 

were generated from the femur and tibia of WT, MDA5K23R/K43R, and MDA5–/–  mice 459 
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(C57BL/6J background, 6-8 week old) and maintained in Roswell Park Memorial 460 

Institute (RPMI) media supplemented with 10% (v:v) FBS, 100 U/mL antibiotic-461 

antimycotic (Gibco), 1% (v:v) non-essential amino acids (NEAA), 1 mM sodium 462 

pyruvate, and 25 µg/mL macrophage colony-stimulating factor (M-CSF) as previously 463 

described (17, 60). All cell cultures were maintained at 37°C in a humidified 5% CO2 464 

atmosphere.  465 

          Commercially obtained cell lines were authenticated by the respective vendors 466 

and were not validated further in the Gack laboratory. Primary WT, MDA5K23R/K43R, and 467 

MDA5–/– cells were validated by genotyping. Additionally, the presence or absence of 468 

MDA5 protein expression was confirmed by IB. All cell lines have been regularly tested 469 

for the absence of mycoplasma contamination by PCR assay and/or using the 470 

MycoAlert Kit (LT37-701; Lonza). 471 

 472 

 473 

 474 

Viruses 475 

         EMCV (EMC strain, VR-129B) was purchased from ATCC and propagated in 476 

HEK293T cells (14). WNV (strain New York 99, NR-158) was purchased from BEI 477 

Resources and propagated in Vero cells (56). SeV (strain Cantell) was purchased from 478 

Charles River Laboratories. All viral infections were performed by inoculating cells with 479 

the virus inoculum diluted in DMEM containing 2% FBS. After 1–2 h, the virus inoculum 480 

was removed and replaced with the complete growth medium (DMEM containing 10% 481 

FBS) and cells were further incubated for the indicated times. Viral titers in mouse heart 482 
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and brain homogenates were determined by plaque assay on BHK-21 cells as 483 

described previously (53). The plaques were counted, evaluated as PFU/mL 484 

[(plaques/well) x (dilution factor)/ (infection volume)], and finally plotted as PFU per 485 

gram of tissue (17, 53). Recombinant SARS-CoV-2 (strain K49), propagated in Vero E6-486 

TMPRSS2 cells, was used to isolate RNA for in vitro transfections to stimulate MDA5 487 

activation. The SARS-CoV-2 K49 strain was rescued from a bacterial artificial 488 

chromosome encoding hCoV-19/Germany/BY-pBSCoV2-K49/2020 (GISAID 489 

EPI_ISL_2732373) (61), which was a kind gift from Armin Ensser (Friedrich-Alexander 490 

University Erlangen-Nürnberg, Germany). All work with viruses was conducted under 491 

approved protocols in the BSL-2/ABSL-2 or BSL-3 facility at the Cleveland Clinic Florida 492 

Research and Innovation Center in accordance with institutional biosafety committee 493 

regulations and National Institutes of Health (NIH) guidelines.  494 

 495 

 496 

 497 

Antibodies and other reagents 498 

         Primary antibodies used in the present study include anti-MDA5 (1:1,000, D74E4; 499 

CST), anti-RIG-I (1:1,000, D14G6; CST), anti-ISG15 (1:500, F-9; Santa Cruz), anti-500 

IFIT2 (1:500, F-12; Santa Cruz), anti-SUMO-1 (1:500, C9H1; CST), anti-K63-Ub (1:500, 501 

D7A11; CST), anti-Phospho-IRF3 (Ser396) (1:1,000, D6O1M; CST), anti-IRF3 (1:1,000, 502 

D6I4C; CST), anti-Phospho-STAT1 (Tyr701) (1:1,000, 58D6; CST), anti-STAT1 503 

(1:1,000, 9172; CST), anti-Phospho-TBK1 (pSer172) (1:1,000, D52C2; CST), anti-TBK1 504 

(1:1,000, D1B4; CST), anti-HERC5 (1:1,000, 8H23L10; Invitrogen), anti-TRIM65 505 
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(1:1,000, HPA021578; Sigma-Aldrich), anti-TRIM25/EFP (1:1,000, 2/EFP; BD 506 

Biosciences), anti-ARIH1 (1:2,000, 14949-1-AP; Proteintech), anti-HERC6 (1:1,000, bs-507 

15463R-HRP; Biossusa), anti-UBE1L (1:1,000, JE50-55; Invitrogen), anti-UB2E2 508 

(1:1,000, NBP1-92556; Novus biologicals), anti-Rabbit IgG (1:500, DA1E; CST), and 509 

anti-β-actin (1:1,000, C4; Santa Cruz). Anti-mouse and anti-rabbit horseradish 510 

peroxidase-conjugated secondary antibodies (1:2,000) were purchased from CST [Anti-511 

mouse IgG, HRP-linked antibody Cell Signaling Technology (#7076), and Anti-rabbit 512 

IgG, HRP-linked antibody (#7074)]. Protein G Dynabeads (10003D; Invitrogen) were 513 

used for protein IP. Protease (P2714; Sigma Aldrich) and phosphatase inhibitors 514 

(P5726; Sigma Aldrich) were obtained from MilliporeSigma. Universal Type I IFN (IFN-515 

α) (11200, PBL Science) was used to stimulate WT, MDA5K23R/K43R, and MDA5–/– MDF 516 

cells. 517 

 518 

Enzyme-linked immunosorbent assay (ELISA) 519 

        For in vitro studies, mouse IFN-β protein in the culture supernatants of MDFs from 520 

WT, MDA5K23R/K43R, and MDA5–/– mice was determined by ELISA using the VeriKine 521 

Mouse Interferon Beta ELISA Kit (42400-1; PBL Assay Science) as previously 522 

described (14, 17). For in vivo studies, mouse IFN-β protein amounts in plasma 523 

samples were determined by VeriKine-HSTM Mouse Interferon Beta ELISA Kit (42410-1; 524 

PBL Assay Science) following the manufacturer’s instructions (53). 525 

        526 

Viral RNA purification and transfection 527 
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          EMCV RNA was produced as previously described (20). Briefly, Vero cells were 528 

infected with EMCV (MOI 2) for 10 h, and total RNA was isolated using TRIzol Reagent 529 

(15596018, Thermo Fisher Scientific) per the manufacturer’s instructions (62, 63). Mock 530 

RNA and SARS-CoV-2 RNA were generated by isolating total RNA from Vero E6-531 

TMPRSS2 cells that remained uninfected or that were infected for 24 h with 532 

recombinant SARS-CoV-2 (strain K49) (MOI 1) as detailed in previous publications (20, 533 

64). EMCV RNA and SARS-CoV-2 RNA transfections were performed at the indicated 534 

concentrations using the Lipofectamine 2000 transfection reagent (11668019; Thermo 535 

Fisher Scientific). RABVLe was generated by in vitro transcription using the 536 

MEGAshortscript T7 Transcription Kit (Invitrogen) according to a previously described 537 

protocol (24), and for its transfection into cells, Lipofectamine RNAiMAX Transfection 538 

Reagent (13778150; Invitrogen) was used (see Figure legends for details on RABVLe 539 

concentrations used). 540 

 541 

Immunoprecipitation assay and Immunoblot analysis  542 

         Immunoprecipitation of endogenous proteins (i.e., MDA5, SUMO1) was performed 543 

using previously described protocols with minor modifications (14, 20, 65). For assaying 544 

endogenous MDA5 ISGylation in MDFs from WT and MDA5K23R/K43R mice or in primary 545 

NHLFs, cells were stimulated as indicated and then lysed using Nonidet P-40 (NP-40) 546 

buffer (50 mM HEPES [pH 7.2-7.5], 200 mM NaCl, 1% (v:v) NP-40, 5 mM EDTA, 1× 547 

protease inhibitor), followed by centrifugation at 16,000 ×g and 4°C for 20 min. 548 

Centrifuged cell lysates were then pre-cleared at 4°C for 1-2 h using Protein G 549 

Dynabeads pre-conjugated with rabbit IgG (DA1E; CST). Next, cell lysates were 550 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.20.614144doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.20.614144
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

incubated with Protein G Dynabeads pre-conjugated with anti-MDA5 antibody (D74E4; 551 

CST), or IgG isotype control, at 4°C for 16 h. The beads were extensively washed five 552 

times with NP-40 buffer. The proteins were eluted by heating in 1× Laemmli SDS 553 

sample buffer at 95°C for 5 min. Protein samples were resolved on Bis-Tris SDS-554 

polyacrylamide gel electrophoresis (PAGE) gels and transferred onto polyvinylidene 555 

difluoride (PVDF) membranes (1620177; Bio-Rad). Protein signals were visualized 556 

using the SuperSignal West Pico PLUS or Femto chemiluminescence reagents (both 557 

Thermo Fisher Scientific) on an ImageQuant LAS 4000 Chemiluminescent Image 558 

Analyzer (General Electric) as previously described (20, 66). 559 

          For determining the K63-linked ubiquitination and SUMOylation of endogenous 560 

MDA5, cell lysates were prepared in a modified RIPA buffer (50 mM Tris-HCl [pH 7.5], 561 

150 mM NaCl, 1% (v:v), NP-40, 2% (w:v) SDS, 0.25% sodium deoxycholate, 1 mM 562 

EDTA) followed by boiling at 95°C for 10 min and sonication. The lysates were then 563 

diluted 10-fold with the modified RIPA buffer containing no SDS (final concentration of 564 

SDS at 0.2%) and cleared by centrifugation at 20,000 ×g for 20 min at 4°C. The lysates 565 

were pre-cleared as described above, and then subjected to anti-MDA5 (D74E4; CST) 566 

or anti-SUMO-1 antibody (C9H1; CST), or IgG (isotype control), following the same 567 

protocol as described above (19, 23, 56). 568 

 569 

Knockdown mediated by siRNA 570 

          Transient knockdown in primary MDFs or NHLFs was performed using ON-571 

TARGETplus small interfering (si)RNAs (Horizon Discovery) targeting the respective 572 

mouse or human genes. These are murine Herc6 (L-056204-01-0010), murine Ube2l6 573 
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(L-055578-01-0010), murine Uba7 (L-040733-01-0010), murine Trim65 (L-058092-01-574 

0010), human HERC5 (005174-00-0005), human TRIM65 (L-018490-00-0005), human 575 

TRIM25 (L-006585-00-0005), and human ARIH1 (L-019984-00-0005). ON-TARGETplus 576 

Non-targeting Control Pool (D-001810-10-20) was used as control. Transfection of 577 

siRNAs was performed using the Lipofectamine RNAiMAX Transfection Reagent 578 

(13778150; Invitrogen) as per the manufacturer’s instructions (17, 20). The knockdown 579 

efficiency of the specific genes was determined by RT-qPCR and/or at the protein level 580 

by IB using specific antibodies. 581 

 582 

RT-qPCR 583 

          Total RNA was purified from indicated cells using the E.Z.N.A. HP Total RNA Kit 584 

(Omega Bio-tek) per the manufacturer’s instructions. The quality and quantity of the 585 

extracted RNA were assessed using a NanoDrop Lite spectrophotometer. One-step RT-586 

qPCR was performed using the SuperScript III Platinum One-Step RT-qPCR Kit 587 

(Invitrogen) with ROX and predesigned PrimeTime qPCR Probe Assays (Integrated 588 

DNA Technologies) on a QuantStudio 6 Pro Real-Time PCR System (Applied 589 

Biosystems). The relative mRNA expression of the gene of interest was normalized to 590 

the levels of cellular GAPDH and expressed relative to the values for control cells using 591 

the ΔΔCt method. The RT-qPCR primers are listed in Table 1. 592 

 593 

Semi-denaturing detergent agarose gel electrophoresis 594 
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          Endogenous MDA5 oligomerization in EMCV RNA-stimulated MDFs isolated from 595 

WT and MDA5K23R/K43R mice were determined by semi-denaturing detergent agarose gel 596 

electrophoresis (SDD–AGE) as previously described (20). 597 

 598 

Sequence alignments 599 

         Primary sequence alignment of the amino acid region containing K23 and K43 in 600 

orthologous MDA5 proteins was performed using Clustal Omega (1. 2. 4).  601 

 602 

Quantification and Statistical Analysis 603 

         All data were analyzed using GraphPad Prism software (version 10). A two-tailed, 604 

unpaired Student’s t-test was used to compare differences between the two 605 

experimental groups in all cases. For statistical evaluation of mice survival, the Log-606 

Rank (Mantel-Cox) test was performed. For the body weight analysis curve, two-way 607 

ANOVA was used followed by Bonferroni’s post-test. Significant differences are denoted 608 

by *P < 0.05, **P < 0.01, ***P < 0.001, and ****P <0.0001. Pre-specified effect sizes 609 

were not assumed, and the number of independent biological replicates (n) is indicated 610 

for each dataset. 611 

 612 

 613 

 614 
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 762 

Figure legends 763 

Fig. 1. Impaired MDA5 ISGylation and oligomerization in MDA5K23R/K43R mouse 764 

cells. (A) Schematic of the CRISPR-Cas9 editing strategy for the generation of WT, 765 

MDA5K23R/K43R, and MDA5−/−
 mice. See methods and SI Appendix, Fig. S1B for details. 766 

The two conserved lysine residues (K23 and K43; codons AAA and AAA; black 767 

asterisks) were mutated to arginines (K23R/K43R; codons AGA and AGA; red 768 

asterisks). HDR, homology-directed repair. NHEJ, non-homologous end-joining. sgRNA, 769 

single-guide RNA. (B) Schematic diagram of the validation strategy of the transgenic 770 

mouse lines by PCR genotyping. Genomic DNA isolated from ear tissue was amplified 771 

to detect the presence of Mda5/Ifih1 mutant (K23R/K43R) exon1 locus using the 772 

indicated primers by agarose gel electrophoresis. The primer pair (1) and (2) generates 773 

a 523 bp-fragment in WT mice; the primer pair (3) and (4) generates a 537 bp-fragment 774 

in MDA5K23R/K43R mice; and the primer pair (5) and (6) generates a 1046 bp-fragment in 775 

WT mice, a 1062 bp-fragment in MDA5K23R/K43R mice, and a 565 bp-fragment in MDA5−/−
 776 

mice. (C) Analysis of the protein abundance of endogenous MDA5, RIG-I, and 777 

downstream ISGs (IFIT2 and ISG15) in the whole cell lysates (WCLs) of primary mouse 778 
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dermal fibroblasts (MDFs) isolated from 6-8-week-old WT, MDA5K23R/K43R, and MDA5−/−
 779 

mice that were stimulated ex vivo with IFN-α (500 U/mL) for 24 h or that remained 780 

untreated (−), determined by immunoblot (IB) analysis. (D) Endogenous MDA5 781 

ISGylation in MDFs from WT or MDA5K23R/K43R mice that were pre-stimulated for 8 h 782 

with IFN-α (1000 U/mL) and then transfected with EMCV RNA (0.4 µg/mL) for 16 h to 783 

stimulate MDA5 activation, determined by IP with anti-MDA5 (or an IgG isotype control) 784 

and IB with anti-ISG15. (E) Endogenous MDA5 SUMOylation in WT or MDA5K23R/K43R 785 

mouse-derived MDFs transfected with EMCV-RNA (0.4 µg/mL) for 16 h, determined by 786 

IP with anti-SUMO1 (or an IgG isotype control) and IB with anti-MDA5. (F) K63-linked 787 

ubiquitination of endogenous MDA5 in MDFs from WT or MDA5K23R/K43R mice that were 788 

transfected with EMCV RNA (0.4 µg/mL) for 16 h, determined by IP with anti-MDA5 and 789 

IB with K63-polyubiquitin-linkage-specific antibody (K63-Ub). (G) Endogenous MDA5 790 

oligomerization in WT and MDA5K23R/K43R mouse-derived MDFs that were transfected 791 

with EMCV RNA (0.4 μg/mL) for 8 h, assessed by SDD-AGE and IB with anti-MDA5. 792 

Equal protein abundance of MDA5 in WT and MDA5K23R/K43R mouse cells was validated 793 

by SDS-PAGE and IB with anti-MDA5 (with Actin as loading control). (H) Densitometric 794 

analysis of the MDA5 oligomer signal, normalized to the respective MDA5 protein 795 

abundance, for the experiment in (G). Values represent relative signal intensity 796 

normalized to values for unstimulated WT control cells, set to 1. Data are representative 797 

of at least two independent experiments (mean ± s.d. of n = 3 biological replicates in 798 

[H]). ****P < 0.0001 (two-tailed, unpaired student’s t-test).  799 

 800 
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Fig. 2. Ablated MDA5 antiviral signaling in MDA5K23R/K43R mouse-derived dermal 801 

fibroblasts. (A) STAT1 phosphorylation in WT, MDA5K23R/K43R, and MDA5−/−
 mouse-802 

derived MDFs that were infected for 12 h with either EMCV (MOI 2) or SeV (250 803 

hemagglutination units [HAU]/mL) or that remained uninfected (−), assessed in the 804 

WCLs by IB with anti-pT701-STAT1 and anti-STAT1. (B−D) Ifna1, Cxcl10, and Oas1b 805 

transcript abundance in WT, MDA5K23R/K43R, and MDA5−/−
 mouse-derived MDFs that 806 

were transfected with EMCV RNA (0.4 μg/mL) or RABVLe (1 pmol/mL) for the indicated 807 

times, determined by RT-qPCR. (E−F) Secreted IFN-β protein in the supernatant of WT, 808 

MDA5K23R/K43R, and MDA5−/−
 mouse-derived MDFs that were either mock-treated  (−) (E 809 

and F), infected for 12 h with EMCV (MOI 1) or SeV (20 HAU/mL) (E), or transfected for 810 

12 h with EMCV RNA (0.4 µg/mL) or RABVLe (1 pmol/mL) (F), determined by ELISA. 811 

Data are representative of at least two independent experiments (mean ± s.d. of n = 3 812 

biological replicates in B−F). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 813 

(two-tailed, unpaired student’s t-test). Red and blue asterisks in (B−D) indicate the 814 

statistical significance (P-values) for WT vs. MDA5K23R/K43R and WT vs. MDA5−/−
 815 

samples, respectively. h.p.t., hours post-transfection. ND, not detected. NS, statistically 816 

not significant. 817 

 818 

Fig. 3. MDA5 signaling to EMCV, but not SeV, infection is impaired in 819 

MDA5K23R/K43R mouse-derived immune cells. (A) Phosphorylation of endogenous 820 

IRF3 and TBK1 in WT, MDA5K23R/K43R, and MDA5−/−
 mouse-derived BMDMs that were 821 

infected for 6 h with either EMCV (MOI 5) or SeV (200 HAU/mL), assessed in the WCLs 822 

by IB with anti-pS396-IRF3 and anti-pS172-TBK1. WCLs were further immunoblotted 823 
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with anti-IRF3, anti-TBK1, and anti-Actin (loading control). (B−D) Ifna1, Ifnb1, and Ccl5 824 

transcripts in WT, MDA5K23R/K43R, and MDA5−/−
 mouse-derived BMDMs that were 825 

infected with either EMCV (MOI 1) or SeV (20 HAU/mL) for the indicated times. Data 826 

are representative of at least two independent experiments (mean ± s.d. of n = 3 827 

biological replicates in B−D). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 828 

(two-tailed, unpaired student’s t-test). Red and blue asterisks in (B−D) indicate the 829 

statistical significance (P-values) for WT vs. MDA5K23R/K43R and WT vs. MDA5−/−
 830 

samples, respectively. h.p.i., hours post-infection. 831 

 832 

Fig. 4. MDA5K23R/K43R mouse-derived cells are deficient in mounting an innate 833 

immune response to coronavirus or flavivirus challenge. (A) RT-qPCR analysis of 834 

the indicated antiviral or proinflammatory gene transcripts in WT, MDA5K23R/K43R, and 835 

MDA5−/−
 mouse-derived MDFs at 16 h post-transfection with SARS-CoV-2 RNA (0.1 or 836 

0.4 µg/mL). Mock-treated cells served as control. (B) RT-qPCR analysis of the indicated 837 

genes in WT, MDA5K23R/K43R, and MDA5−/−
 mice-derived MDFs that were either mock-838 

treated or infected for 60 h with WNV (MOI 1 or 3). Data are representative of at least 839 

two independent experiments (mean ± s.d. of n = 3 biological replicates). **P < 0.01, 840 

***P < 0.001, and ****P < 0.0001 (two-tailed, unpaired student’s t-test). SCoV2, SARS-841 

CoV-2. 842 

 843 

Fig. 5. HERC5/HERC6 catalyzes MDA5 ISGylation promoting MDA5 844 

oligomerization and immune signaling. (A) ISGylation of endogenous MDA5 in 845 

primary NHLF cells that were transfected for 48 h with the indicated siRNAs and then 846 
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transfected with EMCV RNA (0.4 μg/mL) for 16 h, determined by IP with anti-MDA5 (or 847 

an IgG isotype control) and IB with anti-ISG15. Knockdown of the individual genes was 848 

confirmed in the WCLs by IB with the indicated antibodies. (B) Endogenous MDA5 849 

ISGylation in WT mouse-derived MDFs that were transfected for 48 h with the indicated 850 

siRNAs and then transfected with EMCV RNA (0.4 μg/mL) for 16 h, determined as in 851 

(A). Knockdown of the individual genes was confirmed in the WCLs by IB with the 852 

indicated antibodies. (C) Endogenous MDA5 oligomerization in WT and MDA5K23R/K43R 853 

mouse-derived MDFs that were transfected for 48 h with the indicated siRNAs and then 854 

transfected with EMCV RNA (0.4 μg/mL) for 16 h, assessed by SDD-AGE and IB with 855 

anti-MDA5. Input amounts for MDA5 as well as knockdown of endogenous HERC6 856 

were confirmed by SDS-PAGE and IB with anti-MDA5 or anti-HERC6. (D) Densitometric 857 

analysis of the MDA5 oligomer signal, normalized to the respective MDA5 protein 858 

abundance, from the experiment in (C). Values represent relative signal intensity 859 

normalized to values for si.C-transfected WT cells, set to 1. (E) IFNB1, IFNA1, CXCL10, 860 

and MX1 gene transcripts in primary NHLF cells that were transfected with the indicated 861 

siRNAs and then either Mock-treated or stimulated with EMCV RNA as in (A), 862 

determined by RT-qPCR. Data are representative of at least two (A, B, and E) or three 863 

(C and D) independent experiments (mean ± s.d. of n = 3 biological replicates in (D and 864 

E). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 (two-tailed, unpaired 865 

student’s t-test). si.C, non-targeting control siRNA. 866 

 867 

Fig. 6. ISGylation-defective MDA5K23R/K43R mice are impaired in controlling EMCV 868 

infection and EMCV-induced pathogenesis. (A) Overview of the mouse infection 869 
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studies with EMCV to measure morbidity and survival, viral replication, and cytokine 870 

responses. (B) WT, MDA5K23R/K43R, and MDA5−/−
 mice (6-8-week-old) were infected via 871 

intraperitoneal (i.p.) inoculation with EMCV (25 PFU). Kaplan-Meier survival curves of 872 

EMCV-infected WT, MDA5K23R/K43R, and MDA5−/− mice (n = 6 per genotype). (C−G) WT, 873 

MDA5K23R/K43R, and MDA5−/−
 mice (6-8-week-old) were infected via i.p. inoculation with 874 

EMCV (10^3 PFU). Viral titers in the heart (C) and brain (D) were determined by plaque 875 

assay at 48 h p.i., and (E) IFN-β protein in the blood was analyzed by ELISA at 24 and 876 

48 h.p.i. Furthermore, EMCV 3D-pol as well as host antiviral or proinflammatory gene 877 

transcripts were measured in blood at 24 and 48 h.p.i. (F) and in heart tissue at 48 h.p.i. 878 

(G). Data are representative of at least two independent experiments (mean ± s.d. of 879 

n = 6 (B) or n = 4 (C−G) biological replicates). *P < 0.05, **P < 0.01, ***P < 0.001, 880 

****P < 0.0001. Mantel-Cox test (B) or two-tailed, unpaired student’s t-test (C−G). h.p.i., 881 

hours post-infection. ND, non-detected. Parts of Fig. 6A were created using 882 

Biorender.com. 883 

 884 

Figure S1. Validation of MDA5K23R/K43R mice, and functional assessment of MDA5 885 

oligomerization in cells derived from these mice. (A) Amino acid sequence 886 

alignment of the region that contains K23 and K43 (red) in MDA5 from the indicated 887 

species using Clustal Omega (1. 2. 4). Numbers denote amino acids. Asterisks define a 888 

single, fully conserved residue. Colons (:) indicate conserved groups having strongly 889 

similar properties. (B) Sanger sequencing chromatograms for the Mda5/Ifih1 exon1 890 

target site in representative WT and MDA5K23R/K43R mice. The red rectangles indicate 891 

the nucleotides encoding the target residues K23 (AAA) and K43 (AAA) (denoted by 892 
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grey inverted triangles) in WT mice (upper panel), and the introduced one-nucleotide 893 

changes to mutate K23 and K43 to arginines (AGA) in MDA5K23R/K43R mice (middle 894 

panel). AscI and PmeI are the two unique cut sites flanking the Mda5/Ifih1 exon1 895 

genomic DNA target. Lower panel: The deletion of the entire exon 1-containing genomic 896 

region due to non-homologous end joining (NHEJ) led to the generation of MDA5−/− 897 

mice. (C) Oligomerization of endogenous MDA5 in primary MDFs isolated from WT and 898 

MDA5K23R/K43R mice that were transfected ex vivo with increasing doses of EMCV RNA 899 

(0.2 - 0.6 μg/mL) for 16 h, assessed by SDD-AGE and IB with anti-MDA5. MDA5 protein 900 

abundance was determined by SDS-PAGE and IB with anti-MDA5. (D) Densitometric 901 

analysis of the MDA5 oligomer signal, normalized to the respective MDA5 abundance, 902 

from the experiment in (C). Values represent relative signal intensity normalized to 903 

values for unstimulated WT control cells, set to 1. Data are representative of at least 904 

three (C and D) independent experiments (mean ± s.d. of n = 3 biological replicates). 905 

**P < 0.01, and ****P < 0.0001 (two-tailed, unpaired student’s t-test). NS, statistically not 906 

significant. CARD, caspase activation, and recruitment domain; CTD, C-terminal 907 

domain. dsRNA, double-stranded RNA. Parts of Figure S1A were created using 908 

Biorender.com. 909 

 910 

Figure S2. The antiviral signaling ability of mouse MDA5 in primary dermal 911 

fibroblasts relies on MDA5 ISGylation. (A) IRF3 and TBK1 phosphorylation in WT 912 

and MDA5K23R/K43R mouse-derived MDFs that were infected for 6 h with EMCV (MOI 2) 913 

or SeV (250 HAU/mL), assessed in the WCLs by IB with anti-pS396-IRF3, anti-IRF3, 914 

anti-pS172-TBK1, and anti-TBK1. (B−D) Transcript levels of the indicated antiviral or 915 
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proinflammatory genes in WT, MDA5K23R/K43R, and MDA5−/− mouse-derived MDFs that 916 

were transfected with EMCV RNA (0.4 μg/mL) or RABVLe RNA (1 pmol/mL) for the 917 

indicated times, assessed by RT-qPCR analysis. (E−I) Transcript levels of the indicated 918 

cytokines or ISGs in WT, MDA5K23R/K43R, and MDA5−/−
 mouse-derived MDFs that were 919 

infected with EMCV (MOI 1) or SeV (20 HAU/mL) for the indicated times, determined by 920 

qRT-PCR. Data are representative of at least two independent experiments (mean ± 921 

s.d. of n = 3 biological replicates in (B−I)). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P 922 

< 0.0001 (two-tailed, unpaired student’s t-test). Red and blue asterisks in (B−I) indicate 923 

the statistical significance (P-values) for WT vs. MDA5K23R/K43R and WT vs. MDA5−/−
 924 

values, respectively. h.p.t., hours post-transfection; h.p.i., hours post-infection.  925 

 926 

Figure S3. MDA5 ISGylation promotes MDA5-mediated innate signaling events in 927 

immune cells. (A) STAT1 phosphorylation in WT, MDA5K23R/K43R, and MDA5−/−
 mouse-928 

derived BMDMs that were infected with EMCV (MOI 5) or SeV (200 HAU/mL) for 8 h, 929 

assessed in the WCLs by IB with anti-pY701-STAT1 and anti-STAT1. (B−C) Ifna1 and 930 

Ccl5 mRNA expression in WT, MDA5K23R/K43R, and MDA5−/−
 mouse-derived BMDMs that 931 

were transfected with EMCV RNA (0.4 μg/mL) or RABVLe RNA (1 pmol/mL) for the 932 

indicated times, assessed by RT-qPCR. Data are representative of at least two 933 

independent experiments (mean ± s.d. of n = 3 biological replicates in (B−C)). **P < 934 

0.01, ***P < 0.001, and ****P < 0.0001 (two-tailed, unpaired student’s t-test). Red and 935 

blue asterisks in (B−C) indicate the statistical significance (P-values) for WT vs. 936 

MDA5K23R/K43R and WT vs. MDA5−/−
 values, respectively. h.p.t., hours post-transfection. 937 

 938 
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Figure S4. HERC5/HERC6-induced MDA5 ISGylation promotes antiviral transcript 939 

expression. (A) Silencing efficiency of endogenous HERC5 and ARIH1 in primary 940 

NHLFs that were transfected for 48 h with the indicated siRNAs and then either Mock-941 

treated or transfected with EMCV RNA (0.4 μg/mL) for 16 h, assessed by RT-qPCR 942 

analysis. (B) Ifnb1, Ifna1, Rsda2, and Tnf transcripts in WT mouse-derived MDFs that 943 

were transfected for 48 h with the indicated siRNAs and then either Mock-treated or 944 

transfected with EMCV RNA (0.4 μg/mL) for 16 h, determined by RT-qPCR. The 945 

silencing efficiency of endogenous Herc6 was also evaluated by RT-qPCR analysis. 946 

Data are representative of at least two independent experiments (mean ± s.d. of n = 3 947 

biological replicates (A−B)). **P < 0.01, ***P < 0.001, and ****P < 0.0001 (two-tailed, 948 

unpaired student’s t-test). 949 

 950 

Figure S5. Increased weight loss of MDA5K23R/K43R mice after EMCV infection as 951 

compared to WT mice, and synergistic role of MDA5 regulation by TRIM65 and 952 

CARD ISGylation in promoting MDA5 higher-order assemblies. (A) WT, 953 

MDA5K23R/K43R, and MDA5−/− mice (6-8-week-old) were infected with EMCV (25 PFU) via 954 

i.p. inoculation. Body weights of mice were analyzed at the indicated times. (B) 955 

Endogenous MDA5 oligomerization in WT and MDA5K23R/K43R mouse-derived MDFs that 956 

were transfected for 48 h with either si.C or TRIM65-specific siRNA (si.TRIM65) and 957 

then transfected with EMCV RNA (0.4 μg/mL) for 16 h, assessed by SDD-AGE and IB 958 

with anti-MDA5. MDA5 protein abundance as well as knockdown of endogenous 959 

TRIM65 were determined by SDS-PAGE and IB with anti-MDA5 or anti-TRIM65. Data 960 

are representative of at least two independent experiments (mean ± s.d. of n = 6 961 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2024. ; https://doi.org/10.1101/2024.09.20.614144doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.20.614144
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 

 

biological replicates (A)). *P < 0.05, ****P < 0.0001 (Two-way ANOVA followed by 962 

Bonferroni’s post-test). 963 

 964 

  965 
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Table 1 966 

OLIGONUCLEOTIDES SOURCE      IDENTIFIER 
Primer 1: IFIH1 WT Forward 5�-

CGGGAGACTCCTCTCCCATTTCC-3� 
Integrated 

DNA 
Technologies 

N/A 

Primer 2: IFIH1 WT Reverse 5�-
TCCAGAAACCTGTCTCCGACTACATTG-3� 

Integrated 
DNA 

Technologies 

N/A 

Primer 3: IFIH1 KI-Forward 5�-
GGAGACTCCTCTCCCATTTGGC-3� 

Integrated 
DNA 

Technologies 

N/A 

Primer 4: IFIH1 KI-Reverse 5�-
TCCAGAAACCTGTCTCCGACTGTTTAAAC-

3� 

Integrated 
DNA 

Technologies 

N/A 

Primer 5: To confirm IFIH1 KO-  
Homology arm- Forward 5�-

GATCTGTGGGTGGAAGGCAATAC-3� 

Integrated 
DNA 

Technologies 

N/A 

Primer 6: To confirm IFIH1 KO-  
Homology arm- Reverse 5�-

ACTGGCTGACATACTGAGGAATAGGT-3� 
 

Integrated 
DNA 

Technologies 

N/A 

Pre-designed RT-qPCR primers SOURCE IDENTIFIER 
PrimeTime qPCR assay: human GAPDH Integrated 

DNA 
Technologies 

 

Hs.PT.39a.22214836 

PrimeTime qPCR assay: human IFNB1 Integrated 
DNA 

Technologies 
 

Hs.PT.58.39481063.g 

PrimeTime qPCR assay: human IFNA1 
 

Integrated 
DNA 

Technologies 

Hs.PT.58.46311748.g 

PrimeTime qPCR assay: human MX1 Integrated 
DNA 

Technologies 
 

Hs.PT.58.26787898 

PrimeTime qPCR assay: human CXCL10 Integrated 
DNA 

Technologies 
 

Hs.PT.58.3790956.g 

PrimeTime qPCR assay: mouse GAPDH Integrated 
DNA 

Technologies 
 

Mm.PT.39a.1 
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 967 

 968 

PrimeTime qPCR assay: mouse IFNB1 
 

Integrated 
DNA 

Technologies 

Mm.PT.58.30132453.9 

PrimeTime qPCR assay: mouse CCL5 Integrated 
DNA 

Technologies 
 

Mm.PT.58.43548565 

PrimeTime qPCR assay: mouse MX1 
 

Integrated 
DNA 

Technologies 

Mm.PT.58.42626819 

PrimeTime qPCR assay: mouse OAS1 Integrated 
DNA 

Technologies 
 

Mm.PT.56a.42488855 

PrimeTime qPCR assay: mouse IL6 Integrated 
DNA 

Technologies 

Mm.PT.58.10005566 

PrimeTime qPCR assay: mouse IFNA2 Integrated 
DNA 

Technologies 

Mm.PT.58.45839156.g 

PrimeTime qPCR assay: mouse CXCL2 Integrated 
DNA 

Technologies 

Mm.PT.58.10456839 

PrimeTime qPCR assay: mouse CXCL10 Integrated 
DNA 

Technologies 

Mm.PT.58.43575827 

PrimeTime qPCR assay: mouse TNF Integrated 
DNA 

Technologies 

Mm.PT.58.12575861 

PrimeTime qPCR assay: mouse OAS1 Integrated 
DNA 

Technologies 

Mm.PT.58.30459792 

PrimeTime qPCR assay: mouse MXA Integrated 
DNA 

Technologies 

Mm.PT.58.12101853.g 

PrimeTime qPCR assay: mouse RSAD2 Integrated 
DNA 

Technologies 

Mm.PT.58.11280480 

PrimeTime qPCR assay: mouse CXCL1 Integrated 
DNA 

Technologies 

Mm.PT.58.42076891 
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