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Abstract

Earthworms (Crassiclitellata) being ecosystem engineers significantly affect the physical,

chemical, and biological properties of the soil by recycling organic material, increasing nutri-

ent availability, and improving soil structure. The efficiency of earthworms in ecology varies

along with species. Therefore, the role of taxonomy in earthworm study is significant. The

taxonomy of earthworms cannot reliably be established through morphological characteris-

tics because the small and simple body plan of the earthworm does not have anatomical

complex and highly specialized structures. Recently, molecular techniques have been

adopted to accurately classify the earthworm species but these techniques are time-con-

suming and costly. To combat this issue, in this study, we propose a machine learning-

based earthworm species identification model that uses digital images of earthworms. We

performed a stringent performance evaluation not only through 10-fold cross-validation and

on an external validation dataset but also in real settings by involving an experienced taxon-

omist. In all the evaluation settings, our proposed model has given state-of-the-art perfor-

mance and justified its use to aid earthworm taxonomy studies. We made this model openly

accessible through a cloud-based webserver and python code available at https://sites.

google.com/view/wajidarshad/software and https://github.com/wajidarshad/ESIDE.

1. Background

Earthworms (Crassiclitellata) also known as rainworms are terrestrial invertebrates, habitually

found in soil, eating a wide variety of organic matter [1]. Earthworms normally burrow during

the day and consume soil and extract nutrients from decomposing organic matter such as

leaves and roots [2]. Earthworms vibrantly affect soil health by transporting nutrients and
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minerals from below to the surface through their waste and their passageways ventilate the

ground. Earthworms being ecosystem engineers significantly affect the physical, chemical, and

biological properties of the soil by recycling organic material, increasing nutrient availability,

and improving soil structure [3].

Earthworms with more than 6000 extant species constitute a highly diverse group of bur-

rowing annelids [4]. The ecology niche and life strategies of earthworms vary from species to

species [4]. Moreover, the presence of more than one species in mixed cultures leads to lower

reproduction rates and ineffective ecosystem engineering [4]. Many important activities per-

formed by pharmacologists, farmers, taxonomists, foresters, conservation biologists, and tech-

nical personnel of environmental agencies such as monitoring endangered species, studying

biodiversity, and determining the impact of climate change depend on accurate species identi-

fication. Therefore, the role of taxonomy in earthworm study is significant as without a reliable

taxonomy most of the ecological studies are irrelevant [5]. Based on feeding habits and soil

profile, earthworms have been classified into three main categories: epigeic, anecic, and endo-

geic. These parameters are not sufficient to classify earthworms properly and therefore, for the

vast majority, nothing is known about their biology and ecology [4, 5].

Mostly, the taxonomy of earthworms is established using different morphological charac-

teristics such as prostomium shape, position, segment number and shape of clitellum, sper-

mathecae, and the arrangements of setae [4, 5]. However, taxonomic classification based on

these morphological characteristics is difficult in most of the species and requires a high degree

of expertise because the small and simple body plan of earthworms does not have anatomical

complex and highly specialized structures [6, 7]. Recent molecular-based techniques such as

16S rDNA, 18S rDNA, and COI sequences have been successfully used as an alternative

approach for earthworm identification [6, 8, 9]. However, these technologies need a wide data-

base of DNA sequences of earthworms and involve enormous time and budget. Therefore,

there is an utmost requirement for a computational approach that can assist studies to identify

and correctly establish the taxonomy of different earthworm species.

In this study, we propose a machine learning-based earthworm species identification model

that uses digital images of earthworms. Machine learning has successfully been used to classify

different animal species in digital images [10, 11]. Currently, as a pilot study, we have only

focused on Eisenia fetida (tiger worm) because of its wide range of applications in the field of

medicine, pharmaceutical, and agriculture and constraints of availability of data in the form of

digital images. E. fetida possessed anticoagulation and fibrinolytic activity [12], act as an anti-

tumor, antioxidant, wound healing, and antibacterial agents [12, 13], best for vermicompost-

ing [14]. Here, we aim to develop a method that uses a digital image of an earthworm and

predict whether it is E. fetida or not. To the best of our knowledge, this is the first attempt to

design such a method to identify earthworm species from digital images.

2. Methods

In this section, we give the detail of our methodology adopted to design and develop a machine

learning-based earthworm species identification system and its evaluation.

2.1. Dataset and preprocessing

For this study, we have collected samples of various earthworm species including E. fetida
from different localities of Azad Jammu and Kashmir, Pakistan. After carefully washing, we

took digital images of all the collected samples with a high-quality digital camera (Nikon

D5300). After getting high-quality images, we have sorted out these images into two categories
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E. fetida and others by consulting taxonomy experts in the field. In this way, we have a dataset

of 1240 images of E. fetida and 772 images of other species.

We have cropped and enhanced all the images in our dataset to be used in the proposed

machine learning setting. Cropping involves removing the unwanted area of the image to

emphasize earthworm only. We cropped images in our dataset by bounding boxes using

Adobe Photoshop (version 19). Different image enhancement techniques such as adaptive his-

togram equalization (AHE) have also been applied to improve the quality and the local con-

trast of the images [15]. These enhancement techniques have been applied using a python

based tool called Scikit-Image (version: 0.17.2) [16].

2.2. Proposed methodology

We propose a machine learning-based approach for the identification of earthworm species

(E. fetida) from raw digital images. Various steps involved in earthworm species (E. fetida)

identification using our proposed scheme are given in Fig 1 and discussed below (please also

see S1 Video). We have used conventional (shallow) machine learning models such as support

vector machines (SVMs) and transfer learning paradigm instead of deep learning due to data

scarcity.

2.2.1. Feature extraction. In image analysis, feature extraction is important as it involves

obtaining the most relevant details from the image by reducing dimensionality. If we employ a

better feature extraction technique, then it can be expected that the extracted features will bet-

ter represent the relevant information to perform well over the desired task. In this study, we

have used both hand-crafted and deep features extracted using different off-the-shelf CNN

based pre-trained models on ImageNet [17]. All of these feature representations ϕ(�) have been

extracted from individual earthworm images. In what follows, we describe the different types

of feature representations used in this study.

• Hand-Crafted Features

Fig 1. A proposed methodology for the development of computer-aided identification of earthworm species (E. Fetida) using machine learning and digital

images.

https://doi.org/10.1371/journal.pone.0255674.g001
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We have used various handcrafted features in this study such as Histogram of Oriented

Gradients (HOG) [18], scale-invariant feature transform (SIFT) [19], DAISY [20], Grey Level

Co-Occurrence matrix (GLCM) [21], HAAR features [22], Local binary patterns (LBP) [23].

We have extracted these features from all the images in our dataset using Scikit-image (version:

0.17.2) and OpenCV (version: 3.4.2) [16, 24].

• Deep Feature Maps

We have used different off-the-shelf CNN-based pre-trained models on ImageNet to extract

useful feature maps from the raw digital images of earthworms in our datasets [17]. These pre-

trained models include Resnet50 [25], InceptionV3 [26], Xception [27], VGG16 [28], NASNe-

tLarge [29], DenseNet121 [30]. The selection of these pre-trained CNN-based models was

based on their reported accuracy. Preprocessing such as pixel scaling and resizing expected by

the pre-trained models (varies from model to model) have been applied before extracting the

required feature maps. We applied resizing with resampling using pixel area relation through a

library for computer vision in python called OpenCV [24].

2.2.2. Classifiers for the identification of earthworm species. In the proposed machine

learning setting, we have posed E. fetida identification from digital images as a classification

problem. For this purpose, we represent each digital image in our dataset as an example of the

form (Ii, yi) where Ii is an earthworm image and yi 2 {+1, −1} is its associated label that indi-

cates whether Ii is E. fetida (+1) or not (-1). For a given image Ii in our dataset, we extract

hand-crafted features and deep feature maps which can be denoted as a feature vector xi. Our

objective is to learn a function f(�) using these feature vectors to identify whether an input

image belongs to E. fetida or some other species. For this purpose, we have used three different

classifiers: classical Support Vector Machine (SVM), Random Forest (RF), and Gradient

Boosting Machine (XGBoost) [31–33].

• Support Vector Classification (SVC)

We have used Support Vector Machines (SVMs) for the detection of earthworm species

through a digital image by learning a function f(x) = hw,xi with w as parameters to be learned

from the training data {(xi, yi)|i = 1,2,. . .,N} where, xi is the feature representation of an earth-

worm image Ii. The optimal value of the w is obtained in SVM by solving the following optimi-

zation problem [32].

minw;x
1

2
lkwk2

þ
XN

i¼1

xi

Such that for all i : yihw; xii � 1 � xi; xi � 0 ð1Þ

The objective function in Eq (1) maximizes the margin while minimizing margin violations

(or slacks ξ) [32]. The hyper-parameter l ¼ 1

C controls the tradeoff between margin maximiza-

tion and margin violation. We used both linear and radial basis function (RBF) kernels and

coarsely optimized the values of λ and γ using grid search with Scikit-learn (version: 0.23) [34,

35].

• Random Forest Classification (RFC)

Random forest is a supervised learning algorithm that builds an ensemble of decision trees,

usually trained with the “bagging” method. A random forest operates by constructing several

decision trees in parallel during training and outputs the mean of the classes as the prediction

of all trees [31]. It usually performs better on problems having features with non-linear rela-

tionships. Each classification tree in the RF is constructed on randomly sampled subsets of
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input features. In this study, we have optimized RF for the number of decision trees in the for-

est, the maximum number of features considered for splitting a node, the maximum number

of levels in each decision tree, and a minimum number of samples required to split. We have

also seen this machine learning technique effectively in use in many other studies [36–39].

• XGBoost Classification (XGBC)

XGBoost is a boosting-based ensemble learning technique that chains several weak learners

into stronger ones in an iterative way [33, 40]. At the core of XGBoost, there is boosting that

lessens biases by supervising the model about what errors have been made by previous models

and variance by maneuvering multiple models. In the XGBoost technique, each subsequent

model is mentored using the residuals (the variance between the predicted and actual values),

then models are fitted via subjective differentiable loss function and gradient descent optimiza-

tion method by pushing the limits of computational resources for efficient throughput. Here,

we used trees as default base learners and optimized XGBoost in terms of the number of boost-

ing iterations, the learning rate, booster, maximum depth, and subsample ratio by employing

grid search technique and a python-based package called XGBoost (version: 0.7) [35, 40].

2.3. Experimental setup

To train a machine learning-based model and to evaluate its performance to predict the earth-

worm species from a digital image, we have followed the following experimental setup. We

have divided the preprocessed earthworm images into two sub-sets: train-test set (80%), held-

out validation set (20%), and reported performance metrics on both the sub-sets. For the

train-test set, we have used stratified 10-fold cross-validation (CV). In the stratified 10-fold

CV, we have shuffled images in our datasets and then split them into 10 groups by preserving

the percentage of samples for each class. 10 models have been trained and evaluated with each

group given a chance to be held out as the test set [41]. Average values of performance metrics

across folds have been reported in this study. Similarly, to further confirm the robustness of

the generalization performance of our proposed technique, we have used the held-out valida-

tion dataset to mitigate the possible bias performance improvement under 10-fold CV with

hyperparameter tuning using the same training set. For the held-out validation set, we trained

the classification models using the whole train-test set and tested them on the validation set.

We have used the area under the ROC curve (ROC), the area under the precision-recall curve

(PR), and F-measure as performance measures for model evaluation and performance assess-

ment [41–43]. We have computed these metrics using Scikit-learn (version: 0.23) [34]. We

used grid search over the training data to find the optimal values of hyper-parameters of differ-

ent classification models using a python based open-access library for machine learning called

Scikit-learn [34, 35]. This automatic grid search was performed once using the train-test set

and then the optimum values of hyperparameters have been used during the whole cross-vali-

dation process.

2.4. Statistical analysis

We have also performed the statistical analysis by checking the statistical significance of

obtained performance (F1 score) across different features and classifiers. For this purpose, we

have used Wilcoxon test [44]. The test considers the null hypothesis as the median of the per-

formance scores of different models are equal. Alternatively, the performance scores of differ-

ent models are different. We have used the test statistics at a 95% confidence interval (or α =

0.05). We have performed this analysis using an online webserver (URL: https://tec.citius.usc.

es/stac/) [45].
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2.5. Webserver to identify E. fetida
We have developed and deployed a user-friendly cloud-based webserver that uses the optimal

machine learning model for E. fetida identification. This webserver takes an earthworm digital

image and predicts whether this image belongs to E. fetida or not. The webserver is available at

https://sites.google.com/view/wajidarshad/software.

3. Results and discussion

In this study, we have proposed and developed a machine learning-based computational

model to identify earthworm species. For this purpose, we have used a dataset of earthworm

digital images, various machine learning algorithms, and different features. In what follows we

present results showing the earthworm species identification performance of our proposed

method using digital images across different evaluation schemes.

3.1. Earthworm species identification performance using handcrafted

features

We have trained various classical machine learning models for the classification of E. fetida
versus other earthworm species with a range of handcrafted features and evaluated them using

both 10-fold cross-validation (CV) and on an external validation dataset. In both the adopted

settings results are shown in Tables 1 and 2. Using 10-fold CV, we observed a maximum

Table 1. Predictive performance for earthworm species prediction across different classification models and handcrafted features using 10-fold CV (E. fetida vs

others).

Features SVC RFC XGBC

ROC PR F1 ROC PR F1 ROC PR F1

HOG 0.69±0.14 0.81±0.09 0.66 0.75±0.13 0.83±0.08 0.64 0.75±0.11 0.85±0.06 0.66

SIFT 0.75±0.10 0.84±0.06 0.70 0.74±0.13 0.82±0.11 0.65 0.71±0.10 0.84±0.09 0.68

DAISY 0.74±0.12 0.85±0.08 0.71 0.76±0.13 0.86±0.07 0.64 0.75±0.14 0.86±0.08 0.68

GLCM 0.69±0.14 0.81±0.09 0.66 0.73±0.13 0.81±0.08 0.63 0.75±0.11 0.84±0.06 0.66

HAAR 0.75±0.15 0.86±0.09 0.71 0.76±0.13 0.86±0.07 0.65 0.75±0.14 0.86±0.08 0.68

LBP 0.70±0.13 0.80±0.10 0.66 0.65±0.13 0.78±0.10 0.62 0.68±0.12 0.80±0.08 0.65

ROC (Area under the ROC curve), PR (Area under the precision-recall curve), F1 (F1 Score), SVC (Support Vector classifier), RF (Random Forest classifier), XGBC

(XGBoost classifier). Bold-faced values indicate the best performance for each model.

https://doi.org/10.1371/journal.pone.0255674.t001

Table 2. Predictive performance for earthworm species prediction across different classification models and handcrafted features on external validation dataset (E.
fetida vs others).

Features SVC RFC XGBC

ROC PR F1 ROC PR F1 ROC PR F1

HOG 0.72 0.82 0.72 0.77 0.81 0.66 0.76 0.84 0.69

SIFT 0.77 0.80 0.74 0.77 0.83 0.68 0.73 0.82 0.68

DAISY 0.75 0.83 0.73 0.77 0.87 0.68 0.74 0.87 0.70

GLCM 0.71 0.80 0.69 0.70 0.80 0.60 0.71 0.83 0.68

HAAR 0.77 0.85 0.75 0.79 0.88 0.68 0.77 0.87 0.70

LBP 0.72 0.79 0.70 0.68 0.80 0.61 0.68 0.82 0.69

ROC (Area under the ROC curve), PR (Area under the precision-recall curve), F1 (F1 Score), SVC (Support Vector classifier), RF (Random Forest classifier), XGBC

(XGBoost classifier). Bold-faced values indicate the best performance for each model.

https://doi.org/10.1371/journal.pone.0255674.t002
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F1-score of 0.71 (p<0.05) along with 0.75, and 0.86 as the area under the ROC curve, and the

area under the PR curve, respectively with Support Vector Classifier and HAAR feature repre-

sentation (Table 1). The F1 score of 0.71 implies that using a trained machine learning model

with SVMs and HAAR features, we have been able to classify E. fetida correctly approximately

70% of the time. To further confirm the generalization performance of our trained machine

learning models with handcrafted features, we have used an external validation dataset. Using

an external validation dataset, we observed a maximum F1-score of 0.75 along with 0.77, and

0.85 as the area under the ROC curve, and the area under the PR curve, respectively with Sup-

port Vector Classifier and HAAR feature representation (Table 2). We have also observed con-

sistently better performance of HAAR feature representation across RF and XGB classifiers.

3.2. Earthworm species identification performance using deep feature

maps

We have trained various shallow machine learning models for the classification of E. fetida ver-

sus other earthworm species with a range of deep learning-based feature maps and evaluated

using both 10-fold cross-validation (CV) and on an external validation dataset. The results of

our evaluation in both settings are shown in Tables 3 and 4 and Fig 2. Using 10-fold CV, we

observed a maximum F1-score of 0.80 (p<0.05) along with 0.95, and 0.98 as the area under the

ROC curve, and the area under the PR curve, respectively with Support Vector Classifier and

Densent121 feature map (Table 3). PR score of 0.98 represents high accuracy with fewer false

Table 3. Predictive performance for earthworm species prediction across different classification models and deep feature maps using 10-fold CV (E. fetida vs

others).

Feature Map SVC RFC XGBC

ROC PR F1 ROC PR F1 ROC PR F1

DenseNet121 0.95±0.04 0.98±0.02 0.80 0.89±0.07 0.95±0.03 0.77 0.92±0.07 0.96±0.03 0.80

Resnet50 0.84±0.12 0.88±0.07 0.74 0.78±0.15 0.86±0.10 0.70 0.80±0.15 0.88±0.08 0.70

Xception 0.90±0.07 0.95±0.04 0.77 0.85±0.08 0.93±0.05 0.74 0.90±0.07 0.94±0.04 0.75

InceptionV3 0.88±0.05 0.90±0.07 0.76 0.80±0.15 0.88±0.08 0.72 0.86±0.13 0.92±0.06 0.76

VGG16 0.93±0.05 0.97±0.03 0.77 0.87±0.08 0.93±0.05 0.70 0.90±0.05 0.94±0.03 0.78

NASNetLarge 0.82±0.12 0.90±0.07 0.70 0.78±0.13 0.88±0.07 0.70 0.83±0.12 0.90±0.07 0.71

ROC (Area under the ROC curve), PR (Area under the precision-recall curve), F1 (F1 Score), SVC (Support Vector classifier), RF (Random Forest classifier), XGBC

(XGBoost classifier). Bold-faced values indicate the best performance for each model.

https://doi.org/10.1371/journal.pone.0255674.t003

Table 4. Predictive performance for earthworm species prediction across different classification models and deep feature maps on external validation dataset (E.
fetida vs others).

Feature Map SVC RFC XGBC

ROC PR F1 ROC PR F1 ROC PR F1

DenseNet121 0.96 0.99 0.92 0.92 0.95 0.85 0.90 0.95 0.92

Resnet50 0.90 0.92 0.90 0.93 0.97 0.86 0.88 0.95 0.91

Xception 0.88 0.90 0.88 0.86 0.90 0.87 0.87 0.91 0.87

InceptionV3 0.92 0.94 0.92 0.84 0.96 0.89 0.88 0.97 0.87

VGG16 0.90 0.93 0.92 0.90 0.96 0.88 0.90 0.93 0.89

NASNetLarge 0.86 0.90 0.87 0.84 0.88 0.84 0.88 0.97 0.87

ROC (Area under the ROC curve), PR (Area under the precision-recall curve), F1 (F1 Score), SVC (Support Vector classifier), RF (Random Forest classifier), XGBC

(XGBoost classifier). Bold-faced values indicate the best performance for each model.

https://doi.org/10.1371/journal.pone.0255674.t004
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positives (Classifying Other Species as E. fetida) and false negatives(Classifying E. fetida as

Other Species). To confirm further the classification accuracy of our trained machine learning

models with deep feature maps, we have used an external validation dataset. Using an external

validation dataset, we observed a maximum F1-score of 0.92 along with 0.96, and 0.99 as the

area under the ROC curve, and the area under the PR curve, respectively with Support Vector

Classifier and Densent121 feature map (Table 4; Fig 2). F1 score of 0.92 and PR score of 0.98

represent a consistently improved performance of our proposed machine learning model to

predict E. fetida class with high precision and recall (i.e. by producing fewer false positives and

false negatives). By observing these results obtained through deep feature maps and comparing

with the results obtained through handcrafted features, we can easily conclude that deep fea-

ture maps perform consistently better across all the classification algorithms. This performance

improvement of deep feature maps over handcrafted features has already been reported in a

Fig 2. Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves showing predictive performance of our proposed model for the classification of

digital images of earthworms across different classifiers (SVM, RF, XGB) and DenseNet feature map on an external validation dataset. E. fetida vs others: ROC(A),

PR(B).

https://doi.org/10.1371/journal.pone.0255674.g002

Fig 3. Some of the images of earthworm species (E. fetida and other) used to test ESIDE in a real use under the supervision of a qualified taxonomist.

https://doi.org/10.1371/journal.pone.0255674.g003
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previous study on X-ray scans [46]. These results justify the use of the proposed earthworm

species classification model in a real setting.

3.3. Predictive performance of the proposed model under a real setting

We have also checked the generalization performance of our best-trained model for earth-

worm species identification in a real setting under the supervision of an experienced taxono-

mist at the Vermi Tech Unit, University of Azad Jammu and Kashmir. For this purpose, we

have used 30 digital images of different classes (15 E. fetida, and 15 other species). A subset of

these images is shown in Fig 3. Results obtained through this evaluation are shown as a confu-

sion matrix in Fig 4. Our proposed system (ESIDE) has been able to classify correctly 15 out of

15 provided images of E. fetida (Fig 4). Similarly, for the provided images of other species, our

system classified correctly 11 out of 15 images, and 4 as E, fetida (Fig 4). These results show a

reasonable performance of our proposed system and justify the use of this model in real

settings.

4. Conclusions and future work

In this study, we have proposed a machine learning-based model called ESIDE to classify

earthworm species by using digital images. We have used both deep feature maps and

Fig 4. Confusion matrices: Showing the performance of our proposed model for earthworm species identification

in a real setting under the supervision of a qualified taxonomist.

https://doi.org/10.1371/journal.pone.0255674.g004
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handcrafted features in this study. Through a series of simulation experiments using both

types of features and three different classification algorithms, we have shown that deep feature

maps perform consistently better in comparison to handcrafted features while identifying

earthworm species through digital images. The stringent performance evaluation through

10-fold CV, on an external validation dataset, and in a use under real settings show that our

proposed system can effectively be used to identify E. fetida from a digital image. The use of

our proposed model can aid biologists in taxonomical studies of earthworms. We have made

our proposed system accessible through a publically open cloud-based webserver and open-

source code. In the future, we will try to develop a generic model for the identification of maxi-

mum species of earthworm by incorporating more data.

Supporting information

S1 Video. A short video showing the scientific significance, workflow and design of the

current study.
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