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Abstract

Drug-induced liver injury (DILI) is a leading cause of acute liver failure and transplantation.

DILI can be the result of impaired hepatobiliary transporters, with altered bile formation,

flow, and subsequent cholestasis. We used gadoxetate dynamic contrast-enhanced mag-

netic resonance imaging (DCE-MRI), combined with pharmacokinetic modelling, to mea-

sure hepatobiliary transporter function in vivo in rats. The sensitivity and robustness of the

method was tested by evaluating the effect of a clinical dose of the antibiotic rifampicin in

four different preclinical imaging centers. The mean gadoxetate uptake rate constant for the

vehicle groups at all centers was 39.3 +/- 3.4 s-1 (n = 23) and 11.7 +/- 1.3 s-1 (n = 20) for the

rifampicin groups. The mean gadoxetate efflux rate constant for the vehicle groups was

1.53 +/- 0.08 s-1 (n = 23) and for the rifampicin treated groups was 0.94 +/- 0.08 s-1 (n = 20).

Both the uptake and excretion transporters of gadoxetate were statistically significantly

inhibited by the clinical dose of rifampicin at all centers and the size of this treatment group

effect was consistent across the centers. Gadoxetate is a clinically approved MRI contrast

agent, so this method is readily transferable to the clinic. Conclusion: Rate constants of
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gadoxetate uptake and excretion are sensitive and robust biomarkers to detect early

changes in hepatobiliary transporter function in vivo in rats prior to established biomarkers

of liver toxicity.

Introduction

Drug-induced liver injury (DILI) is a leading cause of acute liver failure and transplantation

[1]. DILI is a major challenge for the pharmaceutical industry and regulatory agencies.

Twenty-nine percent of drugs withdrawn from the market between 1998 and 2008 were with-

drawn due to liver toxicity [2]. The costs of additional clinical trials and delays in reaching the

market can be substantial [3]. The ‘classic’ biomarker of liver injury, serum alanine amino-

transferase (ALT), is not a valid biomarker of the severity of liver injury and is not a test of

liver function [4]. An elevation in serum total bilirubin is highly specific for liver disease, but

often occurs late in the disease process [4]. Ideally, more sensitive biomarkers that respond

early, prior to irreversible injury, would offer improved outcomes for patients [5].

Pharmaceutical companies reduce the likelihood that new drugs will induce limiting

toxicities by identifying hazards early in the research phase of drug development. In vitro
approaches, such as membrane vesicle assays, transporter over-expressing cell systems, and

sandwich-cultured hepatocytes, are used to reduce the likelihood that candidate drugs selected

for clinical development will cause DILI in humans [6]. These approaches have improved the

specificity of DILI predictions to 90–95%; however, the sensitivity of these screens is still only

50% [7]. Regulatory animal toxicity studies also predict only 55% of drugs that induce DILI

[8]. The importance of hepatic transporters and examples of how they may affect hepatocyte

drug concentrations has been reviewed [9, 10]. Inhibition of hepatobiliary efflux transporters

may lead to changes in drug exposure in the hepatocyte and consequent hepatotoxicity with

only minor changes in drug plasma exposure [11]. New tools, translatable to the clinic, need to

be developed to measure the function of efflux transporters.

Hepatobiliary MRI contrast agents such as gadoxetate dimeglumine (Gd-EOB-DTPA,

Eovist1; Primovist1; Bayer HealthCare Pharmaceuticals, Berlin, Germany) and gadobenate

dimeglumine (Gd-BOPTA, MultiHance; Bracco Imaging, Milan, Italy) are used in routine

medical practice to detect focal liver tumors [12, 13]. Gadoxetate is taken up by hepatocytes

via organic anion-transporting polypeptide 1 (Oatp1) transporters and therefore not taken up

by tumor cells. It is pumped into the bile by multidrug resistance-associated protein 2 (Mrp2)

transporters [14–16]. In addition to detecting liver tumors, gadoxetate has been used to moni-

tor hepatobiliary transporter activity in preclinical [17–20] and clinical MRI studies [21, 22].

These studies have used empirical data models to measure uptake of gadoxetate by hepato-

cytes. Huppertz et al. [23] investigated the effect of a clinical dose of erythromycin on the rela-

tive enhancement of a liver contrast agent, but did not see a statistically significant effect. The

signal intensity in DCE-MRI reflects the changes in contrast agent concentration after a bolus

injection. Gadoxetate DCE-MRI with a unique kinetic analysis to describe intracellular uptake

and excretion has been used to examine inhibition of hepatobiliary transporters at toxicologi-

cal doses of a drug in one animal study [24] and in one clinical study of patients with hepato-

biliary disease [25]. In this pharmacokinetic model, gadoxetate uptake was associated with the

function of the Oatp1 transporter and efflux was associated with Mrp2 function.

It is not known whether gadoxetate DCE-MRI can detect the effect of a clinical dose of a

marketed drug on hepatobiliary transporter function in rats. In addition, the need for

Multicenter preclinical MRI to evaluate liver transporters function

PLOS ONE | https://doi.org/10.1371/journal.pone.0197213 May 17, 2018 2 / 18

This work was supported in part by the National

Center for Toxicological Research (NCTR)/U.S.

Food and Drug Administration (FDA), protocol

P00800. In addition, KLRB receives funding from

the National Institutes of Health through award

number R01 GM041935 and R35 GM122576 from

the National Institute of General Medical Sciences.

For each of the authors listed below who work for a

commercial entity (AstraZeneca, GlaxoSmithKline,

Amgen Inc., Wolfram MathCore and Antaros

Medical): The funder provided support in the form

of salaries for authors [AK, SCL, BY, MFF, EJ, MAP,

RAP, DPW, SEU, REM, BMJ, PDH] but did not

have any additional role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript. The specific roles of

these authors are articulated in the ’author

contributions’ section. MedTech West is a non-

profit platform between several universities and

research institutes. PDH doesn’t get salary from

MedTech West.

Competing interests: The following authors work

for a commercial entity (AstraZeneca,

GlaxoSmithKline, Amgen Inc., Wolfram MathCore

and Antaros Medical): AK, SCL, BY, MFF, EJ, MAP,

RAP, DPW, SEU, REM, BMJ, PDH. There are no

patents, products in development or marketed

products to declare. This does not alter our

adherence to PLOS ONE policies on sharing data

and materials.

Abbreviations: AUC, Area Under the Curve; DCE-

MRI, Dynamic Contrast Enhanced Magnetic

Resonance Imaging; DILI, Drug-induced liver

injury; ICC, intraclass correlation coefficient; MR,

Magnetic Resonance; Mrp2, multidrug resistance-

associated protein 2; Oatp1, organic anion-

transporting polypeptide 1; RE, Relative

Enhancement.

https://doi.org/10.1371/journal.pone.0197213


multicenter trials to evaluate novel biomarkers is recognized in the clinical setting [26],

however, these studies are rarely conducted for preclinical biomarkers [27]. The aim of the

present study was to evaluate liver transporter function with gadoxetate DCE-MRI in rats

treated with either vehicle or a clinical dose of rifampicin, at four different preclinical imag-

ing centers (Amgen, AstraZeneca, U.S. Food and Drug Administration (FDA) and GlaxoS-

mithKline) using various MR scanner field strengths. Rifampicin is an antibiotic used to

treat tuberculosis and is known to inhibit the hepatobiliary transporters Oatp1 and Mrp2

[28].

The present work was conducted as part of the International Life Sciences Institute Health

and Environmental Sciences Institute Translational Imaging Committee program. This is a

consortium of industry, government and academic scientists whose mission is to advance

development of biomarkers of target organ toxicity that bridge from the preclinical to the clini-

cal stages of drug development. Participants in this consortium subgroup, which focused on

liver imaging, were Amgen, AstraZeneca, FDA, GlaxoSmithKline, and The University of

North Carolina at Chapel Hill.

Materials and methods

Compound selection

A literature search found 97 marketed compounds that inhibited the hepatic uptake trans-

porter Oatp1 and efflux transporter Mrp2. Compounds with missing or inconsistent IC50 val-

ues, IC50 values well above the reported maximum plasma concentration, or where there could

be a perceived conflict of interest, were removed, leaving a shortlist of five compounds, cyclo-

sporine A, diclofenac, fusidate, ketoprofen and rifampicin. Rifampicin was selected as the

model inhibitor for this study based on the relative IC50 values of Oatp1 and Mrp2, which

allowed both the inhibitor drug and contrast agent to enter the hepatocytes.

Animal experiments

All experiments were conducted in accordance with guidelines and laws for the care and use of

laboratory animals. Experiments conducted at Amgen (Thousand Oaks, CA), GlaxoSmithK-

line (King of Prussia, PA) and FDA (Jefferson, AR) were approved by the local Institutional

Animal Care and Use Committees. Experiments conducted at AstraZeneca (Gothenburg, Swe-

den) were approved by the regional Ethical Committee on Animal Experiments.

Male Wistar Han rats (Charles River, Raleigh, NC; Wilmington, MA; and Sulzfeld, Ger-

many) weighing 250–300 g were used in the study. Each center purchased rats from the local

Charles River supplier. Animals were housed in rooms with temperature regulated to 20±2 ˚C

and a 12/12 hour light/dark cycle with artificial light. Rats were acclimatized for at least one

week prior to the study. Animals were allowed access to food and water ad libitum as well as

enrichment. Each center purchased standard rat chow from its local supplier. Rats were not

fasted and all experiments were run during light cycle.

Rats were randomly assigned into rifampicin or vehicle treated groups. Rats were anesthe-

tized with 2.5% isoflurane in air and anesthesia was maintained at 1.8–2.0% throughout the

procedure. The tail vein was cannulated with a 26G catheter. Rectal temperature and respira-

tion rate were monitored throughout the imaging procedure (SA instrument, New York,

USA) and maintained at 35–37 ˚C and 50–60 breaths/min.

Rats were sacrificed without regaining consciousness by an overdose of isoflurane and ter-

minal cardiac puncture at the end of the experiment.

Multicenter preclinical MRI to evaluate liver transporters function
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Sample size justification

The intraclass correlation coefficient (ICC) measure of agreement between centers was

unknown, and different animals were used at each center. Hence, the sample size was based on

detecting a difference between treatments in a multicenter study. Using standard equations for

cluster trials [29], if six rats/group were used with four centers (i.e., a total sample size of 48),

even with an ICC up to 0.95 the effective sample size was still above that required for the equiv-

alent four rats/group single-site study. This sample size was chosen for pragmatic reasons to

power the study for a wide range of ICC values, and to allow for attrition.

Formulation, administration and dosing of compounds

Rifampicin (Sigma-Aldrich, Munich, Germany) was formulated at 5 mg/mL in 5% DMSO,

10% PEG 300, 20% cavitron (hydroxypropyl-beta-cyclodextrin) in water while the control

group received the vehicle alone. A commercialized solution of gadoxetate (Eovist1, Primo-

vist1 Bayer HealthCare Pharmaceuticals, Berlin, Germany) was used at the clinically recom-

mended concentration of 0.25 mmol/mL.

MRI data acquisition

MR images were acquired at various field-strengths (one 4.7 T, one 7.0 T and two 9.4 T mag-

nets; Bruker, Billerica, MA). Scout images were acquired with IntraGateFLASH (repetition

time 36–88 ms, echo time 1.2–1.8 ms, flip angle 30˚, matrix 128x128, Field-of-View 60x60

mm2, 10 slices, and slice thickness of 2 mm). A coronal slice orientation intersecting both the

liver and the spleen was selected for the DCE-MRI sequence. DCE-MRI images were acquired

with a single-slice T1-weighted gradient-echo sequence (IntraGateFLASH, repetition/echo

time 7.1/1.8 ms, flip angle 30˚, matrix 256x256 or 128x128), Field of view 60x60 mm2, slice

thickness of 2 mm) over 60 minutes. IntraGateFLASH is a retrospective triggering technique

which was set to accept data from the quiescent 70% of the respiratory cycle [30]. Cardiac trig-

gering was not used. DCE-MRI imaging started 5 minutes prior to IV administration of

25 μmol/kg gadoxetate through the tail vein catheter with an automatic microinjection pump

at 250 μl/min. Images were reconstructed with a temporal resolution of 1 minute.

Study 1: Rifampicin dose response

In a pilot single-center study, rats received a single IV injection of rifampicin at 1 mg/kg

(n = 3), 3 mg/kg (n = 3), 6 mg/kg (n = 4) or 20 mg/kg (n = 3) while the vehicle group (n = 8)

received the vehicle alone. DCE-MRI acquisition commenced 60 minutes after rifampicin or

vehicle injection and continued for another 60 minutes.

Study 2: Rifampicin pretreatment evaluation

In a single-center pilot study, rats received 10 mg/kg IV rifampicin at 15 (n = 2), 30 (n = 2) or

60 minutes (n = 2) before the DCE-MRI acquisition. The control group (n = 3) received vehi-

cle alone 60 minutes before the DCE-MRI acquisition.

Study 3: Repeatability of the DCE-MRI assay

In a multi-center study in four centers, each center included six vehicle treated rats and six rats

treated with 10 mg/kg rifampicin (total 48 rats studied). Results from individual centers

(Amgen, AstraZeneca, FDA and GlaxoSmithKline) are presented anonymized as i, ii, iii and

iv. Each rat received an IV injection of rifampicin or the vehicle 60 minutes prior to the

DCE-MRI acquisition.
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Image analysis

The MR signal was assessed in regions-of-interests, manually drawn by each site on their own

images, covering the liver and the spleen using the image processing software ImageJ (v1.47,

National Institute of Health, USA), ParaVision (Bruker, Billerica, MA), or Analyze 11.0 (Ana-

lyzeDirect, Overland Park, KS) depending on the center. The area under the curve (AUC) was

calculated as the sum of the relative enhancement (RE) at each time-point during DCE-MRI.

RE at a given time-point is defined as:

REt ¼ ðSIt � SI0Þ=SI0 � 100% ð1Þ

where SI0 is the average pre-contrast MR signal intensity and SIt is the MR signal intensity at

time t.
Animals were excluded from the kinetic analysis when the images did not cover the spleen

(one rat in center i, one rat in center ii and one rat in center iii). Spleen data is essential for the

pharmacokinetic analysis described in the next section.

Pharmacokinetic model

Gadoxetate concentrations were estimated from the liver and spleen DCE-MRI as described

by Ulloa et al. [24] using the literature values for the pre-contrast longitudinal relaxation rate,

and post-contrast longitudinal relaxation calculated from the IntraGate FLASH images using

the signal equation of a saturation recovery spoiled gradient echo. Contrast agent kinetics were

assumed to be well-approximated by a linearized expression (Eq 2) of the model given by

Ulloa et al. [24] where k1 describes the uptake rate of gadoxetate from the extracellular space to

the hepatocytes, k2 describes the efflux rate of gadoxetate from the hepatocytes [25], and the

input function is provided by the spleen data.

dChepðtÞ
dt

¼ k1CES tð Þ � k2Chep tð Þ ð2Þ

Chep(t) and CES(t) are the gadoxetate concentrations in hepatocytes and extracellular space,

respectively. The volume fractions of the extracellular spaces in liver and spleen also were

taken from Ulloa et al. [24].

Precontrast longitudinal relaxation times (T1) in the liver and the spleen, and gadoxetate

relaxivities (r1) were estimated from literature data [31–36] and are summarized in Table 1. A

gamma-variate curve was fitted to the spleen data to reduce the influence of noise. For each

study subject, k1 and k2 were estimated using a nonlinear global optimization algorithm [37]

implemented in Mathematica (v10.0.2.0, Wolfram Research Inc., Champaign, IL) [25]. Phar-

macokinetic modeling of data from all sites was conducted by an independent third party

(Wolfram MathCore, Linköping, Sweden).

Liver and spleen T1s at the employed field strengths were found via curve fitting to litera-

ture data [31–36]. T1s were assumed to follow the form T1 = AvB, where A and B are constants

and v the 1H resonance frequency. Gadoxetate relaxivities also were estimated via curve fitting

based on references [38, 39].

Table 1. Estimated values for relaxation time and relaxivity at the employed field strengths.

B0 [T] Liver T1 [ms] Spleen T1 [ms] r1 [M-1ms-1]

4.7 900 1200 5.5

7.0 1050 1370 5.1

9.4 1180 1510 4.8

https://doi.org/10.1371/journal.pone.0197213.t001
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Plasma chemistry analysis

Plasma biomarkers of liver injury were measured at a single site during Study 3. Baseline blood

samples were obtained from the tail vein through a catheter immediately before rifampicin

dosing. Endpoint samples were obtained by cardiac puncture. Blood was collected in EDTA

and heparin tubes and centrifuged at 1700 rpm for 10 minutes at 4 ˚C. Plasma was stored at

-80 ˚C. Alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and total

and direct bilirubin were measured in plasma samples on a Horiba Pentra 400 Clinical Chem-

istry instrument.

Plasma miRNA-122

Total miRNA was extracted from plasma samples using miRNeasy MiniKit (Qiagen1, Hilden,

Germany). cDNA was synthesized from the extracted miRNA using a TaqMan1 MicroRNA

Reverse Transcription kit (Life Technologies1, Carlsbad, CA). qPCR to amplify miRNA-122

and the reference gene cel-39 were run using TaqMan Fast Universal PCR Master Mix and the

primers has-miR122 and cel-miR-39 (Life Technologies1, Carlsbad, CA). qPCR was run on a

QuantStudio7 Flex (Life Technologies1, Carlsbad, CA) device.

Statistical analysis

Unless otherwise stated, all values are reported as the mean +/- SEM. Unpaired t-tests and sta-

tistical analyses were performed using GraphPad Prism 6.00 (La Jolla, CA) on maximum RE

values, plasma chemistry and miRNA122 copy number. Results were considered to be signifi-

cant for a p value <0.05 (�), p<0.01 (��), p<0.001 (���) and p<0.0001 (����).

A mixed effects model was fitted to data from Study 3, where treatment and center were

treated as fixed effects and animals were random effects. The main model effects were treat-

ment, center, and the treatment-by-center interaction. Results were considered to be signifi-

cant for a p value <0.05 (�), p<0.01 (��), p<0.001 (���) and p<0.0001 (����). Variance

components were extracted to compare sources of variation, such as that caused by center.

ICC, a measure of the proportion of variation explained within each center, was estimated

using SAS 9.2 (SAS Institute, Cary, NC).

The sample size for a range of treatment effects in both single and multicenter settings was

estimated using nQuery software (Statistical SolutionsLTD, Cork, Ireland). The standardised

effect size is defined as the mean for vehicle rats at all centers minus the mean for rifampicin

treated rats at all centers, divided by the global standard deviation in all centers.

Results

A MR signal peak was generally observed 3 minutes after the injection of gadoxetate (Fig 1A).

Greater RE of MR signal intensity was observed in the liver of rats receiving the vehicle alone

compared to the rats treated with rifampicin.

Study 1: Rifampicin dose response

Rifampicin treatment decreased the maximum mean RE in the liver from 82% in the vehicle

group, to 63% in the 1 mg/kg group, 45% in the 3 mg/kg group, 25% in the 6 mg/kg group and

21% in the 20 mg/kg group (Fig 1B). Effects were significant for doses 3 to 20 mg/kg (p<0.01).

The decrease in the RE compared to the vehicle group was proportional to the dose of inhibi-

tor administered between 1 mg/kg and 6 mg/kg, while the decrease in RE was similar between

6 mg/kg and 20 mg/kg rifampicin. Based on these results, the clinical dose of 10 mg/kg rifam-

picin was chosen for subsequent studies.

Multicenter preclinical MRI to evaluate liver transporters function
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Study 2: Rifampicin pretreatment time evaluation

The impact of time between treatment with rifampicin and liver transporter inhibition was

evaluated in rats (Fig 1C). A statistically significant (p <0.0001) decrease in maximum RE was

observed after 15-, 30- or 60-minutes treatment with 10 mg/kg rifampicin compared to the

control group (maximum RE of 115%). A similar reduction in maximum RE of between 46%

and 57% was observed regardless of pretreatment time (Fig 1C). 60 minutes pretreatment with

rifampicin was selected for the multicenter study.

Study 3: Multicenter DCE-MRI assay

The robustness of the method was evaluated by running the gadoxetate DCE-MRI assay 60

minutes after pretreatment with 10 mg/kg rifampicin at four independent research centers

(Fig 2).

The maximum RE in the vehicle groups varied between sites from a minimum of 75%

(Fig 2iv) to a maximum of 150% (Fig 2ii) and these differences were statistically significant

(p<0.0001). Rifampicin caused a statistically significant decrease in maximum mean RE

Fig 1. MR images and RE time curves from studies 1 and 2. Typical vehicle treated and 10 mg/kg rifampicin treated rats pre- and post- injection of

gadoxetate (25 μmol/kg) (A); DCE-MRI RE curves after 1 mg/kg (n = 3), 3 mg/kg (n = 3), 6 mg/kg (n = 4) or 20 mg/kg (n = 3) of rifampicin or vehicle

(n = 8) dosed IV (B); DCE-MRI RE curves in vehicle treated rats (n = 3) or 15 minutes (n = 2), 30 minutes (n = 2) or 60 minutes (n = 2) after dosing

with 10 mg/kg rifampicin (C). Values are presented as mean +/- SEM.

https://doi.org/10.1371/journal.pone.0197213.g001
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compared to vehicle at all centers (p<0.0001). The treatment-by-center interaction term was

significant (p<0.0001) indicating that the treatment effect varied between centers (Table 2).

The ICC was 0.82 indicating that much of total variance was between centers.

Results were similar for AUC. The treatment-by-center interaction term was also signifi-

cant (p<0.01), indicating the treatment effect varied between centers. The ICC was 0.47.

k1 (gadoxetate uptake rate constant) for the vehicle group was 39.3 +/- 3.4 s-1 (n = 23) and

11.7 +/- 1.3 s- 1 (n = 20) for the rifampicin treated group S1 Table. There were significant dif-

ferences in the values for vehicle observed at the four centers (p<0.0001), however all centers

detected a significant decrease (p<0.001) in k1 in the rifampicin treated group compared to

the vehicle treated group (Fig 3). The overall treatment effect for rifampicin vehicle was -27.5

s-1. The k1 treatment-by-center interaction term was non-significant (p = 0.10), indicating that

there was no evidence against the same relative treatment effect at all centers. Both the treat-

ment and center effects for k1 were highly significant (p<0.0001). All key comparisons are

presented in Table 2. Although there was an imbalance in the sample sizes between centers,

this had a negligible influence on the original sample size assumptions. The ICC for treatment

effect, measuring relative clustering between centers, was 0.35, indicating that much of the var-

iance comes on the individual animal level.

Similarly, for k2 (gadoxetate efflux rate constant) the mean for the vehicle treated group was

1.53 +/- 0.08 s-1 (n = 23) and the mean for the rifampicin treated group was 0.94 +/- 0.08 s-1

(n = 20). There were significant differences in the values for vehicle observed at the four cen-

ters and all centers detected a significant decrease with treatment (p = 0.001) (Fig 4). The over-

all treatment effect size was -0.58 s-1. The treatment-by-center interaction term was non-

Fig 2. RE time curves from the 4 centers in the multicenter study. Gadoxetate (25 μmol/kg) DCE-MRI RE curves 60 minutes after IV dosing with

vehicle (n = 6 per center) or 10 mg/kg rifampicin (n = 6 per center). Images were acquired at four independent research centers i, ii, iii, and iv. Results

are presented as mean +/- SEM.

https://doi.org/10.1371/journal.pone.0197213.g002
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significant (p = 0.53), again indicating that there was no evidence against the same relative

treatment effect at all centers. The ICC was 0.02, which was the lowest ICC value of all the end-

points and showed that between-center variability had the least effect.

Pooled estimates of variability for the vehicle and rifampicin treated groups for k1 (SD =

12.2 and 4.3 s-1, respectively) and k2 (SD = 0.32 and 0.30 s-1, respectively) were estimated by

taking a weighted average of the variance for each treatment from the four centers. Based on a

two-group Satterthwaite t-test for unequal variances, for a 1-sided test with 80% power and

alpha of 5%, power curves for single-center studies were generated. Using the ICC value to cal-

culate the design expansion (DE) factor for a given number of animals per center (m), the sam-

ple sizes for multi-center studies were also generated [29] (Fig 5).

Plasma chemistry and miRNA-122 copy number

Evidence of potential for induction of liver toxicity was evaluated using plasma biomarkers

(Fig 6). There was no significant difference in any of the measured hepatic enzymes aspartate

aminotransferase, alanine aminotransferase or alkaline phosphatase between the rifampicin

and vehicle treated groups (Fig 6A, 6B and 6C) with these plasma biomarkers of potential

DILI. Furthermore, there was no significant difference between miRNA-122 copy number in

plasma samples between groups (Fig 6D).

A significant increase (p<0.0001) in total and direct bilirubin levels 2 hours after the rifam-

picin treatment was observed (Fig 6E and 6F).

Discussion

Rifampicin exhibited a dose-dependent impact on the relative enhancement of MR signal after

gadoxetate injection. Inhibition of gadoxetate transport in the rat liver was detected at one-

third of the 10 mg/kg clinical dose of rifampicin, indicating that the assay has the sensitivity to

detect effects on hepatobiliary transporter function in rats at clinically relevant doses. The

Table 2. Mixed model results on k1, k2, AUC and maximum RE parameters from multicenter in vivo Study 3.

Parameter F DF Estimate SE LCL UCL p-value

k1 (s-1) Group 89.9 35 <0.0001

Center 10.3 35 <0.0001

Interaction 2.27 35 0.098

Rifampicin-Vehicle -27.52 2.90 33.42 21.63 <0.0001

k2 (s-1) Group 37.8 35 <0.0001

Center 6.5 35 0.001

Interaction 0.74 35 0.53

Rifampicin-Vehicle -0.58 0.10 -0.78 -0.39 <0.0001

AUC (RE.min) Group 35.7 39 <0.0001

Center 23.0 39 <0.0001

Interaction 5.72 39 0.0024

Rifampicin-Vehicle -5.14 0.86 -6.88 -3.40 <.0001

Maximum RE Group 434 35 <0.0001

Center 38.6 35 <0.0001

Interaction 22.7 35 <0.0001

Rifampicin-Vehicle -0.61 0.03 -0.67 -0.55 <0.0001

F: F-distribution; DF: Degrees of Freedom of a distribution; SE: Standard Error: LCL: Lower Confidence Level (of a 95% Confidence Interval CI); UCL: Upper

Confidence Level

https://doi.org/10.1371/journal.pone.0197213.t002
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response was not sensitive to the duration between rifampicin dosing and the start of

DCE-MRI in the range of 15 to 60 minutes.

The robustness of the gadoxetate DCE-MRI assay was tested by conducting the same exper-

iment in four different laboratories using MR scanners at three different field strengths and

Han Wistar rats from local suppliers. Each center measured MR signal intensity in liver and

spleen in their own images. Results from all sites were sent to a central lab for pharmacokinetic

analysis. The mixed effects model showed that the center effect was statistically significant for

k1, k2, maximum RE and AUC, indicating significant differences between sites. These differ-

ences may reflect differences in the rats from the local suppliers, the in vivo procedures, the

MRI scanners, or differences in the way the regions of interest were drawn.

The mixed effects model also showed a statistically significant treatment effect for k1, k2,

maximum RE and AUC. The size of this treatment group effect was consistent for k1 and k2

across the centers, but for AUC and maximum RE the size varied by center, which suggests k1

and k2 produce more robust results. This indicates that a similar drug effect can be detected

independent of test center when using k1 and k2 as endpoints. The descriptive analysis tech-

niques, maximum RE and AUC, have good signal-to-noise ratio and low variance at individual

Fig 3. Gadoxetate influx parameters in the multicenter study. Pharmacokinetic parameters describing the impact of

rifampicin on gadoxetate uptake (k1) at each of the four research centers: i, ii, iii, and iv. In each center, 6 animals are vehicle

treated (dark circles) while 6 animals are rifampicin treated (open circles). Results are presented as mean +/- SEM.

https://doi.org/10.1371/journal.pone.0197213.g003
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sites, however the effect size is not reproducible between sites, potentially reflecting a greater

dependence on experimental parameters. Power curves are presented that will allow other

investigators to appropriately power their own experiments given a predetermined effect size

and assuming similar standard deviations to Study 3.

Neither the established biomarkers of liver injury, aspartate aminotransferase, alanine ami-

notransferase and alkaline phosphatase, nor the novel biomarker miRNA-122, showed a differ-

ence between rifampicin and vehicle treated groups two hours after dosing with rifampicin.

This confirms the results of Lenhard et al. where changes in transporter function were

observed without an increase in liver injury enzymes [19]. In contrast, both total and direct bil-

irubin were elevated. These results are consistent with Watanabe et al. [40], who demonstrated

that an increase in total and direct bilirubin is a biomarker of hepatobiliary transporter inhibi-

tion. Rifampicin toxicity is only observed at much higher doses [41], emphasizing that gadoxe-

tate DCE-MRI detects hepatobiliary transporter function and not downstream effects of liver

toxicity.

Gadoxetate is taken up by hepatocytes via Oatp1 transporters and is pumped into the bile

by Mrp2 transporters [14, 15]. Jia et al. showed that gadoxetate clearance from the liver is

delayed in Mrp2-deficient rats and that no gadoxetate could be detected in feces, indicating

Fig 4. Gadoxetate efflux parameters in the multicenter study. Pharmacokinetic parameters describing the impact of rifampicin

on gadoxetate efflux (k2) at each of the four research centers: i, ii, iii, and iv. In each center, 6 animals are vehicle treated (dark

circles) while 6 animals are rifampicin treated (open circles). Results are presented as mean +/- SEM.

https://doi.org/10.1371/journal.pone.0197213.g004
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transport into bile is blocked [15]. Based on this data, it is unlikely that other transporters,

such as Bsep (Bile Salt Export Pump), transport gadoxetate across the canalicular membrane.

Thus, in the pharmacokinetic model used in the present study, Oatp1 function was associated

with k1 (uptake) and Mrp2 function with k2 (efflux). There may be transport of gadoxetate

back into plasma due to basolateral transporters such as multidrug resistance-associated pro-

tein 3 (Mrp3) [42]. Mrp3 is induced by liver disease or drugs, and therefore in the healthy

animals used in the present study we assumed that most efflux occurs via the canalicular mem-

brane. Compared to descriptive analysis techniques such as RE and AUC, kinetic models have

a physical meaning and can give insight into the mechanism of drug action [43, 44].

Fig 5. Sample size calculations for single- and multi-center studies. k1 (A) and k2 (B) in single-center (open triangles) or multi-center (closed circles)

studies. The number of animals per center (m) is set to 6 in this example. n is the total number of animals needed to achieve statistical significance for a

given standardized effect size.

https://doi.org/10.1371/journal.pone.0197213.g005

Multicenter preclinical MRI to evaluate liver transporters function

PLOS ONE | https://doi.org/10.1371/journal.pone.0197213 May 17, 2018 12 / 18

https://doi.org/10.1371/journal.pone.0197213.g005
https://doi.org/10.1371/journal.pone.0197213


Specifically, the model employed in the present study can separate the impact of a drug on

uptake and efflux rates.

Before novel biomarkers are applied in drug development, they undergo a method valida-

tion [45, 46]. The validity of imaging biomarkers depends on the use of medical imaging tech-

niques and images analysis [47, 48]. Despite widespread recognition of the importance of

multicenter studies in biomarker validation, to the best of our knowledge, the current study is

the first multicenter preclinical imaging study. The four imaging centers agreed on a common

imaging protocol, animal species and strain, test substance and dose, and that all pharmacoki-

netic modelling would be done by an independent third party. However, there is no guarantee

that animals from various local suppliers are identical, so variation will be higher than for a

more controlled population at a single site. In addition, there were different MRI scanners at

each site with different magnetic field strengths, gradient coils, and hardware releases. This

multi-center study has shown that comparable drug effect size can be found in different labo-

ratories when using pharmacokinetic endpoints to measure gadoxetate uptake and excretion.

This result gives confidence that further consortium work to evaluate gadoxetate DCE-MRI

can be reproduced between multiple laboratories. For the individual pharmaceutical compa-

nies, it gives confidence that comparable results may be obtained even if a gadoxetate

DCE-MRI study is outsourced due to lack of internal resources. Results based on descriptive

analysis techniques should be avoided in the multi-center setting.

To qualify this biomarker for use in drug development, further work needs to be conducted

to explore effect size, robustness and timing with a broad range of drugs that alter transporter

Fig 6. Plasma biomarkers of liver injury. Plasma biomarkers of liver injury 2 hours after treatment with either vehicle (n = 5, dark bars) or 10 mg/kg

rifampicin (n = 6, light bars). Routine hepatic enzyme biomarkers aspartate aminotransferase (AST) (A), alanine aminotransferase (ALT) (B) and

alkaline phosphatase (ALP) (C) were measured as well as the early biomarker of liver injury miR-122 (D). Total (E) and direct (F) bilirubin were

measured as a biomarker of Mrp2 inhibition. Direct bilirubin was measured in plasma samples collected two hours after treatment with rifampicin.

Results are presented as mean +/- SEM. Differences between groups were evaluated using Student’s t-test with p<0.5 (�), p<0.01 (��), p<0.001 (���)

and p<0.0001 (����).

https://doi.org/10.1371/journal.pone.0197213.g006
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function and induce adaptation or DILI to understand the link between inhibition of hepato-

biliary transporters in preclinical studies and the development of DILI in the clinic. MRI is

directly translatable between animal studies and the clinic [49], and gadoxetate is a contrast

agent approved for IV use to detect and characterize focal liver lesions in patients. Gadoxetate

DCE-MRI detects changes in transporter activity due to polymorphisms in healthy subjects

[50], and can predict hyperbilirubinemia during treatment of chronic hepatitis C patients [51].

Further studies should be conducted to determine whether gadoxetate DCE-MRI can detect

drug-induced inhibition of hepatobiliary transporters in clinical studies. The combination of

preclinical and clinical studies with the same gadoxetate DCE-MRI assay could allow quantita-

tive translational safety models to predict toxicity in humans [52]. This information will be

important for pharmaceutical companies and regulatory agencies when assessing the translat-

ability of preclinical hepatic safety studies.

In conclusion, this work has demonstrated that gadoxetate DCE-MRI is sufficiently sensi-

tive to detect effects on hepatobiliary transporter proteins at the clinical dose of rifampicin,

prior to a rise in liver injury markers. Pharmacokinetic modeling provides additional informa-

tion estimating both Oatp1 and Mrp2 transporter function. Finally, the changes in modeled

transporter functional parameters were robust between different laboratories and MR scanner

field strengths. These results are a first step in the validation of gadoxetate DCE-MRI as a bio-

marker of hepatobiliary transporter function that may be of value in the evaluation of drug

safety, and may ultimately also be of use in clinical practice for patients. This study demon-

strates that gadoxetate DCE-MRI is a sensitive and robust biomarker to detect early changes in

hepatobiliary transporter function in vivo in rats prior to established biomarkers of liver

toxicity.
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