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ABSTRACT
The thermal preferences of Apis mellifera carnica drones (male individuals) are poorly
understood, though their reproductive quality affects the quality of the inseminated
queen and thewhole honey bee colony. Therefore, the aimof this studywas to determine
the thermal preferences of individual drones according to their age and sexual maturity.
Drones at the ages of 1, 5, 10, 15, 20 and 25 days were tested. The drones were placed
on a platform in a temperature gradient in the range 20 ◦C and 46 ◦C. The thermal
preferences of the drones were measured with the use of a thermal-imaging camera.
Drones significantly differed with their choice of a preferred temperature. The one-
day-old and the 25-day-old drones preferred the lowest temperatures. A slightly higher
temperature was preferred by the 5-day-old drones, and the highest temperature was
chosen by the drones at the ages of 10, 15, and 20 days. The changes in the thermal
preferences of drones correspond to physiological changes occurring with age and
connected with the rate of sexual maturation.

Subjects Animal Behavior, Entomology
Keywords Apis mellifera carnica, Drone age, Temperature, Mucous gland

INTRODUCTION
The development and functioning of a honey bee colony strongly depends on the ambient
temperature that determines the activities of a colony and each individual bee, and also
determines the course of metabolic processes (Abou-Shaara et al., 2017; Cook et al., 2021).
Inside the nest, the temperature is actively regulated by the workers and adapted to the
colony’s needs (Stabentheiner, Kovac & Brodschneider, 2010; Stabentheiner et al., 2021). In
the centre of the nest, in the place of the brood rearing, the temperature is maintained
at a level of 33–36 ◦C (Kleinhenz et al., 2003; Abou-Shaara et al., 2017). As the distance
from the nest centre increases, the temperature decreases. On the edges of a comb, in
the area of drone brood rearing, the temperature falls by about 1.5 ◦C, whereas in other
places in the comb, where honey is collected, the temperature can be maintained at below
32 ◦C (Kronenberg & Heller, 1982; Stabentheiner, Kovac & Brodschneider, 2010; Scheiner et
al., 2013).

The temperature of a honey bee nest meets the thermal requirements of all the
bees, but this does not mean that particular individuals always stay at their preferred
temperature. The research has so far focused mainly on the range of the thermal
functioning of individual bees, and their behaviour in different temperatures (Free
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& Spencer-Booth, 1960; Levin & Collison, 1990; Hrassnigg & Crailsheim, 2005; Kovac et
al., 2014). Additionally, the research has mostly concentrated on workers (Grodzicki &
Caputa, 2005; Grodzicki & Caputa, 2014; Grodzicki, Piechowicz & Caputa, 2020), and only
sporadically on male individuals called drones (Ohtani & Fukuda, 1977; Crailsheim et al.,
1999; Kovac, Stabentheiner & Brodschneider, 2009), which considerably differ from workers
anatomically, morphologically, physiologically and behaviourally (Hrassnigg & Crailsheim,
2005). Workers develop from fertilised eggs and their development takes 21 days, whereas
drones develop from unfertilised eggs and their development takes 24 days (Hrassnigg &
Crailsheim, 2005). Drones are more sensitive to temperatures and stay active in a narrower
temperature range of 14–40 ◦C, whereas workers are active in a temperature range of
10–46 ◦C (Free & Spencer-Booth, 1960; Cahill & Lustick, 1976; Heinrich, 1979; Stürup et al.,
2013). In a honey bee colony, drones are responsible for producing and transmitting semen
to the queen during a mating flight. The reproductive quality of drones influences the
quality of the inseminated queens, which, in turn, directly affects the quality of the whole
colony (Boes, 2010; Brutscher, Baer & Niño, 2019; Rangel & Fisher, 2019). However, there is
very little data on the thermal preferences of drones depending on their age (Mindt, 1962;
Crailsheim et al., 1999).

In a honey bee colony, drones occur seasonally during the reproductive period
(i.e., swarming) and they usually constitute from 5% to 10% of the population of adult
bees (Boes, 2010). In the nest, drones stay in different temperature zones according to
their age (Örösi Pál, 1959; Free, 1967; Ohtani & Fukuda, 1977; Crailsheim et al., 1999;
Kovac, Stabentheiner & Brodschneider, 2009). It is suggested that young drones stay more
frequently in the brood rearing area, where the temperature is higher, whereas older
drones leave this zone (Free, 1957; Ohtani & Fukuda, 1977; Harrison, 1987; Abd Al-Fattah,
El-Shemy & El-Masarawy, 2016). They leave the nest only when the ambient temperature
is above 20 ◦C (Drescher, 1969; Cahill & Lustick, 1976).

In honey bee drones, the spermatogenesis process starts at the larva stage and is
completed at the end of the pupa stage (Bishop, 1920; Lago et al., 2020). After eclose, drones
need some time to mature for copulation. They reach sexual maturity (i.e., capability to
mate with the queen) at the age of 10–16 days (Woyke & Ruttner, 1958; Rhodes, 2002).
During the first days of life of a drone as an imago, spermatozoa pass from testicles to
seminal vesicles where they are stored until copulation (Bishop, 1920; Hayashi & Satoh,
2019). Directly after the eclose of a drone, the process of the production of mucus and the
maturity of mucous glands also begins (Moors et al., 2005), at the end of which drones are
ready to copulate with a queen (Cruz-Landim & Dallacqua, 2005). Drones copulate only
once, most frequently at the age of 15–23 days, with the average at 21 days (Couvillon et
al., 2010).

Reproductive quality and the rate of maturation to copulation depend, to a large
extent, on the nutritional status and temperature at which the drones settle during their
postembryonic development (Hrassnigg & Crailsheim, 2005; Czekońska, Chuda-Mickiewicz
& Chorbiński, 2013; Czekońska, Chuda-Mickiewicz & Samborski, 2015; Szentgyörgyi,
Czekońska & Tofilski, 2017; Szentgyörgyi, Czekońska & Tofilski, 2018), and the temperature
in which drones stay until copulation (Stürup et al., 2013; Rangel & Fisher, 2019). In the
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nest, some drones can stay at the range of their preferred temperatures, whereas others
will only stay within the range of tolerated temperatures due to temperatures fluctuations
(Abou-Shaara et al., 2017; Cook et al., 2021) or the presence of parasites (Duay, De Jong &
Engels, 2002).

Gathering of young drones in the warmest part of the nest is explained by the higher
temperature (Free, 1967; Örösi Pál, 1959; Ohtani & Fukuda, 1977) or the presence of large
number of nurse bees, which can feed or groom the young drones (Crailsheim et al.,
1999; Goins & Schneider, 2013). Kovac, Stabentheiner & Brodschneider (2009) reported that
the distribution of young drones in the nest is more differentiated when the number of
drones at the age of three to seven days old does not exceed 36% in warmer brood area. It
can be, therefore, expected that the drone’s distribution may depend on their individual
thermal preferences. We suggest that the thermal preferences of the drones can depend
on the degree of their maturity to copulate with a queen. Our hypothesis might explain
the drones’ reproductive sensitivity to temperature depending on age (Czekońska, Chuda-
Mickiewicz & Chorbiński, 2013; Stürup et al., 2013; Rangel & Fisher, 2019). We suggest that
sexually immature young drones, whose spermatozoa have passed from their testicles to
their seminal vesicles, may differ in their thermal preferences from sexually mature older
drones preparing for their mating flight and transferring semen to the queen. In order to
explain this, we performed this study that aimed to know the thermal preferences of drones
according to their age and the degree of their maturity to mating.

MATERIAL AND METHODS
Drones
The study was conducted on Apis mellifera carnica drones at known ages from three
colonies in the experimental apiary belonging to the University of Agriculture in Krakow
located at Garlica Murowana. Drones were reared from May to June 2020. Drones at the
same age came from combs with drone brood that were placed in an incubator 24 h before
the expected eclose, at a temperature of 34 ◦C and a relative humidity of 50–60%. Directly
after eclose, the drones were collected from each comb (n= 3) and each colony (n= 3), and
placed in separate wooden cages (8× 10× 5 cm). The cages with drones were placed in three
strong unrelated colonies located next to the laboratory of the University of Agriculture in
Krakow, and three strong colonies in the experimental apiary as reserves. Approximately
1,800 drones were collected. Previous research indicated that the nest environment has
little effect on adult drone physiology and had no effect on the life span and survival of
the adult drones (Stürup et al., 2013; Czekońska, Szentgyörgyi & Tofilski, 2019). In the hives,
cages with drones were placed between two peripheral combs. In each cage, one wall was
made of an excluder to ensure the constant and free access of workers to drones. The
location of the cages within the hives allowed easy access to them without disturbing the
colony’s work. In each colony, there were a maximum of six cages, with 50 drones in each
one.
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Figure 1 The temperature platform: (A) front view, (B) top view.
Full-size DOI: 10.7717/peerj.13494/fig-1

The temperature platform
The base of the temperature platform was an aluminium sheet approximately 1 m ×1 m
(Fig. 1). The sheet was insulated by four mm polyethylene foam on the underside. On one
edge of the sheet, a heating strip with a temperature regulator ESCO ES10 was mounted.
On the opposite edge, a cooling strip made of fans connected with a modular power
supply LED PB021505 (300W, 12V, 25A) was attached. Such a construction facilitated the
maintaining of the platform at the required temperature gradient within the range 20 ◦C
to 46 ◦C from a cooling edge to a heating edge. On the top side, the sheet was divided
by aluminium T-profiles (about one mm width, 20 mm height and 1,000 mm length)
into 14 sectors. Each sector was divided by aluminium U-profiles (about 10 mm width,
0.8 mm height and 1,000 mm length) on two measurement paths in which drones were
placed individually. Along each measurement path, the surface of the aluminium sheet
was covered by black insulating tape, preventing light reflection. The sides of each sector
were closed off by carton dividers. The temperature platform was covered on the top by a
cellophane sheet to prevent drones from moving out of their sectors and to help maintain
the stability of the thermal gradient.

The experiment
The experiment was conducted in the laboratory between 12:00 and 15:00 keeping the
order of repetitions performed. Initially, measurements were taken in a darkened room
where the windows were covered by blinds. However, because diffused daylight was causing
increased drone activity, the measurements were taken in darkness in a tent made of black
foil, in conditions similar to those prevailing in the nest. Inside the tent, all work was
performed in the red light of an LED lamp. The experiment was conducted in a room
temperature of 24 ◦C. Drones were placed in the measurement paths from the edge of the
platform where the temperature was lower.

Before each test of thermal preferences, cages with drones at a particular age were
placed in the incubator at a temperature of 30 ◦C for 15 min to standardise experimental
conditions. One cage in three containing drones from a given comb was used in the testing.
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Figure 2 The image of the place on the temperature platform preferred by a drone taken with a
thermal-imaging camera: (A) an infrared photograph (B) a standard photograph.

Full-size DOI: 10.7717/peerj.13494/fig-2

In the first place, drones kept in three colonies located next to the laboratory were used for
testing. Drones from the other cages were reserves, and they were used for testing as some
drones from the first cage were lost. During testing, the drones were not fed.

Drones in the first day of life were tested in diffuse daylight in a darkened room and
in darkness in a tent, whereas older drones were tested only in darkness. After placing the
drones in measurement paths on the temperature platform, they were undisturbed for 10
min. The preliminary data showed that during this time, drones calmed dawn and stayed
in the chosen place (Fig. 2). Then, an image of the place on the temperature platform,
where each of the tested drones was staying, was recorded with the use of a FLIR E8
thermal-imaging camera in order to determine the temperature chosen by each drone. The
temperature in which a drone stayed was read from the surface of the platform covered
by black insulating tape with an accuracy of up to 0.1 ◦C using FLIR Tools software,
version 5.13 (Fig. 2). The emissivity value was settled at 0.95 according to the instruction
of the camera in order to correct for reflection of ambient radiation. The images were
taken at the same distance from the platform. The attenuation of infrared radiation by the
cellophane sheet covering the platform was also corrected during the evaluation setting in
the software to a value allowing to compensate that change, which was 0.1 ◦C. After the test
was completed, the drones were returned to their cages and to the foster colonies where
they were kept until the next measurements. At any one time, up to 28 drones were being
tested, one drone in each measurement path. A total of 1,154 images were taken.

The thermal preferences were assessed in drones at the ages of 1, 5, 10, 15, 20 and 25 days
referred to later in this paper as D1, D5, D10, D15, D20, and D25. Individual drones at the
ages of 10, 15, and 20 days, which stayed at the extreme ends of the gradient temperature
(20 ◦C and >44 ◦C), were collected to analyse the degree of their sexual maturity. For
this purpose, 10 drones were selected from each age group and each end of the gradient
temperature. The sexual maturity of the drones was assessed based on the degree of their
mucous-gland development (Moors et al., 2005). After preparing, the reproductive organs
were placed on a microscope slide and the degree of the filling of their mucous glands
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with secretion was evaluated, using a stereoscopic microscope Delta Optical SZ-453T. The
categories of mucous-gland development were established based on the degree of their
filling with secretion, as well as the colour and thickness of the secretion.

Statistical analysis
Parametric one-way ANOVA was used to evaluate the influence of light on the thermal
preferences of the drones tested in diffused daylight or in darkness. A comparison of the
thermal preferences of one-day-old drones was performed based on 191 images, 88 being
made in diffused daylight and 103 in darkness.

During the analysis of the collected images, 38 were rejected due to the behaviour
of the drones in a temperature gradient above 44 ◦C (i.e., the drones were settling on
carton dividers that closed the end of each sector). Finally, 1,116 images were used in
the analysis. Due to the absence of a normal distribution examined with the use of the
Kolmogorov–Smirnov test, the thermal preferences of the drones according to their age
were assessed using a non-parametric Kruskal-Wallis (KW) test. Multiple (post-hoc)
comparisons among age groups of the drones were performed using Dunn’s test. Fisher’s
exact test was used to compare frequencies of the drones differing with their mucous-gland
development due to small number of groups. All statistical analyses were performed using
Statistica software, version 13.

RESULTS
The effect of light on the thermal preferences of the drones
The light had no significant influence on the thermal preferences of the drones (ANOVA:
F(1, 189) = 1.751, p= 0.187).

The effect of age on the thermal preferences of the drones
Drones significantly varied in their thermal preferences depending to their age (KW test:
H = 102.23, df = 5, n= 1116, p< 0.001; Fig. 3; Table 1). Drones from groups D1 and
D25 preferred the lowest temperatures (mean ± SE: 30.9 ± 0.29 ◦C and 32.7 ± 0.52 ◦C,
respectively). A slightly higher temperature (mean ± SE: 33.1 ± 0.46 ◦C) was preferred by
D5 drones, and the highest temperature (mean ± SE: 35.4 ± 0.36 ◦C, 35.0 ± 0.57 ◦C and
35.1 ± 0.44 ◦C) was chosen by the D10, D15 and D20 drones. Drones also differed with
the range of preferred temperatures. Young drones (D1 and D5) stayed in the temperature
gradient between 20 ◦C and 40 ◦C, whereas older ones (D10, D15, D20 and D25) preferred
a higher range of temperatures—between 24 ◦C and 44 ◦C.

The effect of the development of the mucous glands on the thermal
preferences of the drones
The evaluation of the colour and degree of development of the mucous glands of drones
at the same age, which stayed in an extreme gradient of temperatures, showed anatomical
and physiological differences in their rate of maturation (Table 2, Figs. 4A–4D). Drones
that preferred a lower temperature (24–26 ◦C) showed more advanced development of
the mucous glands compared with drones at the same age choosing a higher temperature
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Figure 3 Median± IQR (interquartile range)—the preferred temperature of drones at different ages
(the same letters indicate the lack of significant differences at p> 0.05).

Full-size DOI: 10.7717/peerj.13494/fig-3

Table 1 The significance (p values, post-hoc Dunn’s test) of the differences between the preferred tem-
perature of drones at different ages.

Age (days) 1 5 10 15 20 25

1 0.013 <0.001 <0.001 <0.001 0.351
5 0.013 0.017 0.510 0.235 1.000
10 <0.001 0.017 1.000 1.000 <0.001
15 <0.001 0.510 1.000 1.000 0.037
20 <0.001 0.235 1.000 1.000 0.009
25 0.351 1.000 <0.001 0.037 0.009

(42–44 ◦C; Table 2). Differences in the degree of filling of the glands with the secretion of
D10, D15 and D20 drones, staying in an extreme gradient of temperatures, were significant
(Fisher’s Exact test: p= 0.008, n= 10) in each age group (Table 2).

DISCUSSION
The results of the present study show that the thermal preferences of drones change with
their age. Younger drones at the age of one, five and the oldest ones at the age 25 days prefer
lower temperatures (median: 30.6–34.3 ◦C), whereas older drones at the age of 10-20 days
prefer higher temperatures (median: 33.8–35.6 ◦C). The range of preferred temperatures
also changes with drone age, as younger drones (D1 and D5) preferred a lower range of
temperatures (20–40 ◦C), whereas older ones (D10, D15, D20 and D25) preferred a higher
range of temperatures (24–44 ◦C). The changes in the thermal preferences correspond
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Table 2 Differences in development of the mucous glands of drones preferring the extreme ends of the gradient temperature.

Degree of development
of the mucous glands of drones

Temperature gradient Fisher’s exact test

Low
(24–26 ◦C)

High
(42–44 ◦C)

10-days-old Completely filled with pearl-white,
sparse secretion (n= 5)

Partly filled with white secretion
(n= 5)

p= 0.008

15-days-old Completely filled with white
and thick secretion (n= 5)

Completely filled with pearl-white
secretion of different thickness (n= 5)

p= 0.008

20-days-old Completely filled with white and
thick secretion, which is also in the distal
parts of the reproductive tract (n= 5)

Completely filled with white and thick
secretion (n= 5)

p= 0.008

to the subsequent development stages of the drones. The type of light does not affect the
thermal preferences of the drones, but diffuse daylight stimulates their motor activity.

The previous studies showed that younger drones were mostly concentrated in the
warmer brood area, whereas older drones were on the colder peripheral non-brood areas
(Free, 1957; Örösi Pál, 1959; Ohtani & Fukuda, 1977; Harrison, 1987; Crailsheim et al.,
1999; Goins & Schneider, 2013; Abd Al-Fattah, El-Shemy & El-Masarawy, 2016). However,
distribution of drones depending on their age is not homogenous (Kovac, Stabentheiner &
Brodschneider, 2009), and may depend on other factors, including the degree of nutrition
or nurse bees care (Mindt, 1962; Crailsheim et al., 1999; Goins & Schneider, 2013). Our
results indicate that distribution of drones in the nest may also depend on their thermal
preferences. The one-day-old, five-day-old and the 25-day-old drones preferred lower
temperatures in the range of optimal temperatures, whereas 10-, 15-, and 20-day-old
drones preparing to mate preferred higher temperatures. The one-day-old drones may
choose lower temperatures due to a lack of completely developed endothermy (Kovac,
Stabentheiner & Brodschneider, 2009), whereas the oldest drones (>25 days) may move to
the peripheral storage area where they feed themselves from open cells of honey (Jaycox,
1961). Themethodical differences can be responsible for the observed discrepancies between
our and previous results in relation to older drones preferring higher temperatures. In our
study, the drones were tested individually on the temperature platform, whereas in other
studies drones were investigated mostly on the combs in hives (ordinary or observation)
in the presence of other bees. Our study for the first time examined individual thermal
preferences of drones separated from the effects of nestmates, mostly nurse bees, and local
temperatures prevailing on different parts of the combs.

Our results indicate that changes in the thermal preferences of drones occurring
with age correspond to anatomical and physiological changes reported in other studies
connected with their maturation (Bishop, 1920; Moors et al., 2005; Hayashi & Satoh, 2019;
Lago et al., 2020). The dimensions of the reproductive organs change along with the
age of the maturing drones (Czekońska, Chuda-Mickiewicz & Chorbiński, 2013; Metz &
Tarpy, 2019). We suggest that young drones in the age groups of D1 and D5 prefer lower
temperatures until the spermatozoa are in the testicles. After passing sperms from the
testicles to the seminal vesicles, which takes place between the third and the eighth day
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Figure 4 Stages of development of mucous glands of drones: (A) partly filled with secretion, (B) com-
pletely filled with sparse secretion, (C) completely filled with thick secretion, (D) secretion of the mu-
cous glands in the distal parts of the reproductive tract.

Full-size DOI: 10.7717/peerj.13494/fig-4

of the drone’s life (Bishop, 1920; Hayashi & Satoh, 2019; Metz & Tarpy, 2019), they prefer
higher temperatures. Our results indicate that preferences of 10-day-old drones, where
the spermatozoa are in the seminal vesicles, for a higher temperature may be linked with
their physiological and physical preparation for the next stage of sexual maturation for the
mating flight and copulation with a queen. The changes in the thermal preferences of ready
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to mate drones can result not only from the need to eat honey, but also from physiological
causes as evidenced by the lower temperature chosen by 25-day-old drones.

During drone maturation, the mucous glands develop, filling with secretion, which
gradually changes colour from transparent to milky-white (Moors et al., 2005; Czekońska,
Chuda-Mickiewicz & Chorbiński, 2013; Metz & Tarpy, 2019). The production of this
secretion, which plays an important role during the transfer of semen to the reproductive
tract of the queen (Bishop, 1920; Colonello & Hartfelder, 2003; Colonello-Frattini &
Hartfelder, 2009), is completed before drones reach sexual maturity (Cruz-Landim &
Dallacqua, 2005). At this time, drones begin to show a greater tolerance to higher
temperatures (Stürup et al., 2013). This indicates that dronesmay need higher temperatures
in their final stage of maturation, and therefore, they prefer them. The results of the present
study clearly indicate that the drones—at the ages of 10, 15, and 20 days—chose the highest
temperatures.

In our opinion, the variation in the thermal preferences of drones at the same age
mainly result from different rates of maturity, as differences in the degree of mucous-gland
development of drones staying at extreme temperatures indicate, and were observed
mainly in the age groups D10 and D15. The evaluation of the mucous glands appears
to indicate that slower developing drones at the ages of 10 and 15 days preferred higher
temperatures than the same-aged drones, which chose lower temperatures. It is likely that
the thermal preferences of drones at the age from 10 to 20 days can be associated with the
biochemical changes occurring in the composition of themucous gland secretion (Colonello
& Hartfelder, 2003; Cruz-Landim & Dallacqua, 2005). Morphological and histological
changes of the mucous glands are observed until the ninth day of life (Bishop, 1920;
Colonello & Hartfelder, 2003). The research indicates that lower temperatures can retard
drone maturity (Jaycox, 1961) and influence the slowing down of testes atrophy (Stoian,
Papuc & Petrescu-Mag, 2020). Drones at different stages of development are exposed to
fluctuating temperatures in the nest, to a greater or lesser extent, which may retard or
accelerate their sexual maturation. The link between the thermal preferences of drones and
the degree of their sexual development needs further research, which makes it difficult,
because of the lack of the possibility to the maintain reproductive organs of drones without
them being damaged or without changes in filling the mucous glands with secretion as a
result of freezing (Carreck et al., 2013).

Drones at the same age can differ in their rate of maturation due to various causes,
not only fluctuating temperatures in the nest, but also the maternity colony, nutritional
status, or body mass (Jaycox, 1961; Ohtani & Fukuda, 1977; Crailsheim et al., 1999; Boes,
2010; Czekońska, Chuda-Mickiewicz & Samborski, 2015; Czekońska, Szentgyörgyi & Tofilski,
2019; Szentgyörgyi, Czekońska & Tofilski, 2016; Szentgyörgyi, Czekońska & Tofilski, 2017).
The indicated differences can influence on the distribution of drones in the nest (Ohtani
& Fukuda, 1977; Kovac, Stabentheiner & Brodschneider, 2009). The drones in our study
came from three different colonies that could also impact on their rate of maturation. It
is possible that drones at the same age that mature faster move to a zone with a higher
temperature earlier (Stürup et al., 2013).
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In conclusion, our results indicate that the thermal preferences of drones correspond
to physiological changes occurring with their age, and are consistent with the degree of
their maturity to copulation. Further research is needed to better understand the effects of
thermal conditions on drone reproductive quality.
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