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Abstract

The traits of two subspecies of western honey bees, Apis mellifera scutellata and A.m.

capensis, endemic to the Republic of South Africa (RSA), are of biological and commercial

relevance. Nevertheless, the genetic basis of important phenotypes found in these subspe-

cies remains poorly understood. We performed a genome wide association study on three

traits of biological relevance in 234 A.m. capensis, 73 A.m. scutellata and 158 hybrid individ-

uals. Thirteen markers were significantly associated to at least one trait (P� 4.28 × 10−6):

one for ovariole number, four for scutellar plate and eight for tergite color. We discovered

two possible causative variants associated to the respective phenotypes: a deletion in

GB46429 or Ebony (NC_007070.3:g.14101325G>del) (R69Efs*85) and a nonsense on

GB54634 (NC_007076.3:g.4492792A>G;p.Tyr128*) causing a premature stop, substan-

tially shortening the predicted protein. The mutant genotypes are significantly associated to

phenotypes in A.m. capensis. Loss-of-function of Ebony can cause accumulation of circulat-

ing dopamine, and increased dopamine levels correlate to ovary development in queenless

workers and pheromone production. Allelic association (P = 1.824 x 10−5) of NC_007076.3:

g.4492792A>G;p.Tyr128* to ovariole number warrants further investigation into function

and expression of the GB54634 gene. Our results highlight genetic components of relevant

production/conservation behavioral phenotypes in honey bees.

Introduction

Modern western honey bees (Apis mellifera) show substantial genetic and phenotypic variation

across their extensive geographic range [1]. They occur naturally in Europe, the Middle East,

western Asia, and Africa, where the species is composed of between 25–35 subspecies [2–4].

This bee has been spread outside its native range to the Americas, Australia, New Zealand, and
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other locations globally, largely due its ability to produce honey and its use as the principal pol-

linator of a variety of agricultural crops.

Two subspecies of western honey bees, A.m. scutellata and A.m. capensis, are among those

endemic to the Republic of South Africa (RSA) [5]. Apis mellifera scutellata is a light-colored phe-

notype and is adapted for survival in hot and arid climates in central and southern Africa [6]. It

also displays behavioral traits that many beekeepers outside its native range consider undesirable.

These include excessive swarming (colony-level reproduction), absconding (complete nest aban-

donment), usurpation (swarm takeover of another colony) and heightened defensiveness [6–8].

This honey bee subspecies was introduced into Brazil in the 1950’s in an effort to improve the

Brazilian beekeeping industry [9]. It hybridized with local stocks of European-derived honey

bees, becoming known as “Africanized” or “killer” bees. They are now considered invasive

throughout South America, Central America and southern regions of North America [7, 10].

Apis mellifera capensis is a darker colored honey bee subspecies found in the Fynbos region

of RSA, where the climate is Mediterranean with rainy winters. In contrast to A.m. scutellata,

this bee can act as a social parasite, given its workers can reproduce via thelytoky [6], a type of

parthenogenesis in which female offspring can result from unfertilized eggs. This trait allows

some worker bees to develop into pseudoqueens with semi-developed spermathecae, that

remain unused, and a larger-than-normal number of ovarioles [11–15]. These worker bees,

then, can fly into neighboring hives and replace the queens contained within, becoming the

reproductive in the nest [16]. Interestingly, colonies headed by A.m. capensis workers are

doomed, as laying workers cannot maintain the egg output of that of a normal queen. The

colonies eventually dwindle and die, resulting in the ‘capensis calamity’ that has plagued the

South African beekeeping industry in the past [17].

Despite the perceived drawbacks associated with these bees outside their native range, beekeep-

ers in RSA keep both subspecies for management purposes. Nevertheless, the potential movement

of both bee subspecies beyond where they currently occur remains a concern of beekeepers and

regulatory officials in many areas globally. These concerns have led to the search for better meth-

ods to identify both bee subspecies and their hybrids quickly and reliably. Recently developed

techniques based on the reduction of genome complexity, such as Genotyping by Sequencing

(GBS), have the potential to provide a large number of SNPs in understudied genomes, enabling

genetic diagnostics for monitoring these two subspecies [18]. Despite genomic studies on various

honey bee subspecies, the genetic basis of important phenotypes found in A.m. scutellata and A.

m. capensis remain poorly understood, though progress has been made with the thelytoky trait

[19–25]. We have the opportunity to fill this gap given recent work [26] that used traditional

morphometric techniques to identify populations of both bees from samples collected in RSA.

In the present study, we performed a genome wide association study (GWAS) on three

traits (number of ovarioles, tergite and scutellar plate color) measured in 464 A.m. capensis, A.

m. scutellata and hybrid individuals (S1 Table) [26]. These same bees had been examined pre-

viously using GBS [18]. Apis mellifera capensis is known to be darker and have a greater num-

ber of ovarioles per ovary than does A.m. scutellata. Accordingly, the GWAS allowed us to

determine what chromosomal regions are most associated with these phenotypic traits. The

detected associations provide improved understanding of the genetic basis of phenotypic and

behavioral differentiation between A.m. capensis and A.m. scutellata from RSA.

Results

GWAS associates traits mainly to two chromosomes

The GWAS resulted in significant associations to markers on chromosomes LG1, LG2, LG7,

LG9 and LG10. Thirteen markers were significantly associated to at least one trait (P� 4.28 x
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10−6): one for ovariole number, four for scutellar plate and eight for tergite color. A total of 10

genes are annotated in candidate regions determined by markers within r2� 0.2 to the most

significant marker, and adjacent genes (Fig 1 and Table 1).

A frameshift and a nonsense mutation are associated to color and ovariole

number

Functional inspection of annotated genes within each candidate region indicated two genes

with coding variants. The likely candidate gene for tergite and scutellar plate color is GB46429,

mycosubtilin synthase subunit C, also known as Ebony, a non-ribosomal peptide synthetase,

which also has sequence similarities to microbial enzymes [27]. This gene shares 46.99%

(EnsemblMetazoa release 103, LOC409109) [28] of its sequence with the Drosophila melanoga-
ster Ebony gene. A deletion identified by the GBS pipeline in GB46429 (NC_007070.3:

g.14101325G>del) (R69Efs�85) leads to an early stop codon and truncates the normal amino

acid sequence from the predicted 860aa to only 85 amino acids.

A single variant was found for ovariole number within the coding region of GB54634. The

nonsense SNP (NC_007076.3:g.4492792A>G;p.Tyr128�) causes a premature stop, shortening

the protein by two of the six predicted exons (45% of the protein sequence) (Fig 2).

The distribution of causative variants demonstrates that the mutant form is significantly

associated to phenotypes in A.m. capensis, while the wildtype locus is associated to A.m. scutel-
lata phenotypes (Fig 3). No coding variants were discovered in our GBS dataset for the other

annotated genes within each candidate region; yet these could hold biological effects of interest

for the honey bee.

Discussion

Color variation in honey bees may have diverse biological implications [30]. For example, Glo-

ger’s rule states that coloration changes according to environmental effects, and species tend to

Fig 1. Manhattan and QQ plots of the respective genome wide association study for a. tergite color ranked-transformed; b. scutellar plate

color ranked-transformed; and c. ovariole number rank-transformed. Respective annotated genes within the shared regions in chromosomes

LG1 and LG7, as well as genes possessing non-synonymous variants (in bold), are also shown. The red line represents the Bonferroni corrected

threshold value of P� 4.28 x 10−6, and markers above this line are significantly correlated to the respective trait.

https://doi.org/10.1371/journal.pone.0260833.g001
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be darker in hot and humid environments [31]. Yet, this rule might not apply to the present

case, as the A.m. scutellata individuals were collected from, on average, warm semi-arid zones,

while the A.m. capensis or hybrid samples came from cooler, Mediterranean or cool subtropi-

cal zones; yet, A.m. scutellata had significantly lighter phenotypes both in tergite and scutellar

plate color [26]. Additionally, previous thelytoky genome mapping efforts pointed to a locus

near GB46429 [24]. However further inspection into expression and gene function demon-

strated that this gene has no apparent effect on the mode of parthenogenesis in the honey bee,

but segregates according to subspecies and color [32].

In Drosophila melanogaster, the orthologous gene to GB46429 is Ebony (named after the

mutant phenotype): darker Drosophila flies have lower expression, while lighter individuals

have normal to high expression of Ebony [33]. Variants in Ebony also contribute to diverse

phenotypic variations including behavioral, neurologic, locomotor, and visual ability [34, 35].

Some Drosophila Ebony mutants’ electroretinograms lacked the on- and off-transients of light

response [36, 37]. Most importantly, Ebony participates in dopaminergic neuron function,

metabolizing dopamine into N-β-alanyl dopamine (NBAD) [38]. We discovered a single non-

sense variant in GB46429 (Ebony) significantly associated to color phenotypes in both honey

bee subspecies and hybrids of the two. Furthermore, this variant severely impacts the predicted

protein structure and may lead to loss-of-function of this protein. Consistent with our find-

ings, loss-of-function Ebony mutants in Drosophila accumulate circulating dopamine, which is

then directed to other pathways [39]. In the honey bee, increased dopamine levels correlate to

ovary development in queenless workers, as the queen mandibular pheromone (QMP) regu-

lates dopamine pathways in the worker bees [40, 41]. In A.m. capensis, pheromonal dominance

allows for parasitic behavior, even in the presence of an A.m. scutellata queen [42]. We postu-

late that the mutant GB46429 causes a darker pigmentation phenotype and may play a role in

dopaminergic pathways and parasitic behavior in A.m. capensis. This gene’s contribution to

behavioral and reproductive traits in honey bees is worthy of further investigation.

Table 1. Genome wide association study traits, significant markers, respective chromosome (Chr) location, number of base pairs, statistical information, and within

region/nearby annotated genes.

Trait Marker ID Chr Base Pair P-value Genes

Ovariole Number S1_108729877� 7 4497718 1.8241 x 10–7 GB54634
Tk

Scutellar Plate S1_14074192�� 1 14074192 1.12149 x 10–9 GB46427 GB46500 GB46429
S1_14077754�� 1 14077754 1.03746 x 10–7

S1_108729877� 7 4497718 1.03692 x 10–7 GB54634
Tk

S1_108786716��� 7 4554557 1.83841 x 10–7 –

Tergite Color S1_14074192�� 1 14074192 1.19236 x 10–13 GB46427 GB46500 GB46429
S1_14077754�� 1 14077754 1.79334 x 10–9

S1_14080360�� 1 14080360 5.6368 x 10–8

S1_15042195 1 15042195 6.60343 x 10–7 GB52133
S1_34570644 2 4677136 8.12408 x 10–7 –

S1_108786716��� 7 4554557 6.28334 x 10–8 –

S1_132740677 9 1742429 5.37694 x 10–7 GB43750 GB43751 GB43755 Tpx-4
S1_147958987 10 5840186 1.25779 x 10–6 –

�An asterisk (�) represents the marker sharing the same candidate region.
–A minus (–) means no annotated genes occurred in the candidate region.

https://doi.org/10.1371/journal.pone.0260833.t001
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Previous work evaluating quantitative trait loci (QTLs) impacting the number of ovarioles

in honey bees resulted in a significant QTL on LG11 [43]. Although our GWAs did not associ-

ate any markers on LG11 to ovariole number, this difference in findings could be due to popu-

lation genetic differences as the LG11 QTL resulted from Africanized Honey Bees (AHB)

collected in Arizona, USA, compared to European Honey Bee samples collected from US com-

mercial colonies.

Unfortunately, there is little information of the function and expression of the GB54634
gene in honey bees even though we found the significant (P = 1.824 x 10−5) allelic association

of the NC_007076.3:g.4492792A>G;p.Tyr128� variant to ovariole number (Fig 3). The

GB54634 gene was tagged by genomic sweeps associated to social parasitic behavior [44] and

A.m. capensis versus A.m. scutellata differentiation [18], although candidate genes for thely-

toky phenotype recently reported do not implicate GB54634 in this specific phenotype [24,

25]. Additionally, this uncharacterized protein (LOC725260 isoform X1) does not seem to dif-

fer in expression and splicing in the presence or absence of queen pheromones [45]. Yet, this

expression analysis was conducted in an uncharacterized A. mellifera subspecies; thus, findings

could be different for A. m. capensis and A. m. scutellata. Given the correlation reported here,

further investigation into association of this variant to social parasitic traits such as the number

of ovarioles, as well as possible pleiotropic effects, warrants additional exploration and biologi-

cal characterization of GB54634.

Fig 2. Predicted protein structure (Phyre2) for both wild type and discovered variants of genes. a.GB46429
(Ebony), correlated to both scutellar plate and tergite color phenotypes., and b. GB54634, correlated to ovariole

number.

https://doi.org/10.1371/journal.pone.0260833.g002
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Although we did not discover coding sequence variants for the other genes within candi-

date regions, biological functions related to A. m. capensis phenotypes may be of interest for

future analysis. For instance, candidate regions for the color traits GB43750 (prefoldin subunit
5) are located within a haplotype associated to high altitude adaptation in A. m. scutellata [46].

TK (prepro-AmTRP or tachykinin) was also found in the candidate region associated to

ovariole number in the GWAS. Previously implicated in female-related behavior, the expres-

sion levels of prepro-AmTRP are present only in the brain of female bees (queens and work-

ers) and show lower expression levels according to labor division (lower in younger/nurse

bees, higher in queens and foragers) [47]. The tachykinin neuropeptide also controls metabolic

and desiccation responses in Drosophila [48, 49] and is related to aggression in other insects,

such as the Leaf-Cutting Ant Acromyrmex echinatior [50]. Other AmTRP neuropeptides are

implicated in the defensive behavior of Africanized honey bees [51].

Fig 3. Allele distribution for variants discovered in GB54634 and GB46429 (Ebony), as well as respective color

phenotypes. a. Ruttner [2] ranking for tergite color, also applied to scutellar plate phenotyping [19]; b. Allelic

distribution of the NC_007070.3:g.14101325G>del;p.R69Efs�85 variant for tergite color and c. scutellar plate color; d.

Allelic distribution of the NC_007076.3:g.4492792A>G;p.Tyr128� variant for ovariole number; and e. Individuals

from the Apis mellifera scutellata (above) and A.m. capensis (below) representing the variation in color [29].

https://doi.org/10.1371/journal.pone.0260833.g003
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Several genomic regions are likely involved in ovariole number, a social parasitism-related

phenotype of A.m. capensis colonies [44]. The GB46427 gene (LOC409096) within the ovariole

number LG1 candidate region is implicated in parasitism behavior and was deemed the thely-

toky gene [24], also demonstrating Log2-fold differential expression of 3.24 to 4.68 between

thelytokous A.m. capensis and arrhenotokous A.m. scutellata [24, 44]. A non-synonymous var-

iant (p.Thr400Ile) likely responsible for this differential expression was suggested as the sole

change responsible for thelytoky in worker bees [24]. Our GBS dataset did not possess any var-

iants within the coding region of this gene; thus, we could not evaluate the phenotypic reper-

cussions. Furthermore, GB46500 (LOC724495 or Ethr) is also in linkage with GB46427 [24]. In

Drosophila, lower levels of the hormones transcribed by Ethr halt oogenesis and ovulation dur-

ing nutritional or heat stress [52]. Therefore, its effects on honey bee social parasitism might

be of biological relevance, though we could not find coding variants for this gene.

Conclusions

We associated genomic regions with important biological phenotypes as tergite color, scutellar

plate color, and ovariole number within A.m. capensis and A.m. scutellata populations from

RSA. Among the 28 candidate genes identified, Ebony, within the tergite color candidate

region on chrLG1, possessed a variant predicted to alter protein structure significantly. Fur-

thermore, non-functional variants of Ebony impacting pigmentation are well-documented in

other insect species. Although the candidate variant correlated to ovariole number is in an

uncharacterized gene, further investigations into its function are warranted given its biological

implications. Our results help pave the way for the development of marker-assisted selection

and diagnostic genetic differentiation in the honey bee and highlight potentially production/

conservation relevant pleiotropic behavioral phenotypes.

Material and methods

Honey bee samples

The samples included 464 adult worker honey bees collected from RSA in 2013 and 2014. The

samples were collected from managed colonies of A. mellifera with permission granted by the

owner beekeepers (see Acknowledgements). Location data for the samples, including GIS

coordinates, can be found in S1 File. Combined morphometrics, SNP, microsatellite and mito-

chondrial DNA data were used to determine that 73 bees were A.m. scutellata, 234 were A.m.

capensis and 158 were hybrids of the two subspecies [18, 26, 53, 54]. Phenotyping methods as

described in [19] determined morphometric phenotypes that significantly differed between

the two subspecies of honey bees. We utilized the following traits in a GWA: number of ovari-

oles, pigmentation of abdominal tergite (A3) and pigmentation of the scutellar plate (Fig 4 and

S1 File). The distribution for these quantitative phenotypes within the 464 samples was not

normal; thus, we normalized the data prior to the GWAs using a Rank normalization on

JMP1, Version 15 (SAS Institute Inc., Cary, NC, 1989–2019).

Genotyping and SNP QC

DNA extraction, library construction, sequencing and quality control criteria were conducted

by The Genomic Diversity Facility at Cornell University. The GBS methods were previously

described [18], and resulted in an average of 70,475 SNPs per individual sample. We filtered

GBS SNPs (coded as major/minor allele) using VCFtools version 0.1.15 [55] and the following

criteria: (1) no more than two alleles, neither of which was a gap allele, (2) a minor allele fre-

quency (MAF) of at least 5%, (3) no more than 92% missing data, (4) mapped to one of the 16
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assembled A. mellifera chromosomes in the Amel4.5 assembly [56] and (5) with an index of

panmixia (FIT) of at least −0.2. After quality control, 20,006 SNPs were left. We then imputed

missing genotypes for the 20,006 loci using Beagle 4.1 [57] with a window and overlap of 500

and 50 sites, respectively. After imputation, the SNPs were again filtered for MAF of at least

5%, resulting in a total of 11,656 SNPs retained per individual. The resulting VCF file was con-

verted to PLINK format/binary ped format with the—recode—make-bed command in PLINK

version 1.90b3.39 [58].

Genome wide association study

We performed a GWAS using a mixed linear model (MLM) analysis with the interrogated

SNPs falling on the same chromosome as the given candidate SNP excluded from the genetic

relationship matrix calculation (—mlma-loco) in GCTA ver. 1.25.2 [59]. A genetic relationship

matrix (GRM) was included in the MLM analysis to compensate for population structure

within the sample. We utilized a Bonferroni corrected threshold of P� 1.429 × 10−6 as the sig-

nificance cutoff based on 11,656 SNPs tested and the three traits analyzed (α = 0.05). We visu-

alized GWA results in JMP1, Version 15 (SAS Institute Inc., Cary, NC, 1989–2019).

Identification of candidate genes and functional variants

Markers above Bonferroni correction were inspected for supporting linkage (r2) in PLINK (—

chr [ChromosomeNumber]—r2—ld-snp [MarkerID]—ld-window-r2 0.00—ld-window

100000). Loci with a r2� 0.2 to the lowest p-value SNP defined the boundaries of candidate

Fig 4. Distribution of morphometric phenotypic traits per subspecies, representing a. Ovariole Number quantile,

b. Tergite Color quantile and c. Scutellar Plate color ranking. Red represents increased number of ovarioles (a) or

lighter phenotypes (b and c), while blue represents lower number of ovarioles (a) and darker phenotypes (b and c). The

visual distribution seems to correlate to the subspecies or hybrid geographical distribution.

https://doi.org/10.1371/journal.pone.0260833.g004
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regions considered for further analysis [60, 61]. We also evaluated genes adjacent to each can-

didate region, determined using the NCBI/GenBank annotation GCF_000002195.4

/GCA_000002195.1 (Amel 4.5) [56]. Gene function was also reported based on its homology

to functionally characterized genes from the A. mellifera genome (Amel 4.5) using the

EnsemblMetazoa database (release 103) [28] and a comprehensive scientific literature search

on other Hymenoptera order members [62, 63].

Visual inspection of genomic regions for polymorphisms within coding regions was per-

formed on the unfiltered, not imputed, GBS generated. vcf file, aligned, and uploaded to NCBI

Apis mellifera 4.5 (accession number GCF_000002195.4), coded as major/minor allele. For

candidate mutations, we evaluated protein impact using Phyre2, modeling both the wild type

and the sequence containing mutation(s) [64]. Allelic association of causative polymorphisms

to traits was performed on JMP1, Version 15 (SAS Institute Inc., Cary, NC, 1989–2019) using

ANOVA, with the significance threshold set to P� 0.00833 based on multiple tests per allele

(0.05/6).

Supporting information

S1 File. Phenotypic information, geographical coordinates and candidate variant geno-

types for samples used in this study. Ovary number value, scutellar plate and tergite color

scores and respective rank transformations, as well as respective combined probable Apis mel-
lifera subspecies ID and candidate variant genotypes per sample.

(XLSX)

S2 File. Candidate variant distribution of alleles per subspecies.

(PDF)

S1 Table. Sample Apis mellifera subspecies assignment per source information. Hybrid = A

cross between A.m. scutellata and A.m. capensis. NA = bee samples from that location were

not included in the respective analysis. The “Combined Probable ID” is inferred from the

most common identification (ID) made across the four referenced studies and it parallels the

identifications assigned using SNPs.

(PDF)
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