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Abstract

COVID-19 patients with multiple comorbid illnesses are more likely to be using polypharmacy 

to treat their COVID-19 disease and comorbid conditions. Previous literature identified several 

DDIs in COVID-19 patients; however, various DDIs are unrecognized. This study aims to discover 

novel DDIs by conducting comprehensive research on the FDA Adverse Event Reporting System 

(FAERS) data from January 2020 to March 2021. We applied seven algorithms to discover 

DDIs. In addition, the Liverpool database containing DDI confirmed by clinical trials was used 

as a gold standard to determine novel DDIs in COVID-19 patients. The seven models detected 

2,516 drug-drug pairs having adverse events (AEs), 49 out of which were confirmed by the 

Liverpool database. The remaining 2,467 drug pairs tested to be significant by the seven models 

can be candidate DDIs for clinical trial hypotheses. Thus, the FAERS database, along with 

informatics approaches, provides a novel way to select candidate drug-drug pairs to be examined 

in COVID-19 patients.
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Introduction

Approximately 25% of COVID-19 patients are reported to have at least one comorbidity 

[9], and those with one comorbid condition are at increased risk for poor clinical outcomes, 

including admission to ICU and death[18]. COVID-19 patients with multiple comorbid 

illnesses are more likely to be using polypharmacy to treat their COVID-19 illness and 

comorbid conditions. The more medications a patient is taking, the higher the risks of 

adverse events induced by drug-drug interactions (DDIs)[4]. This situation can lead to an 

enhanced likelihood of unrecognized adverse DDIs, increasing risks for additional morbidity 

or even mortality[11].

Research on DDIs in patients with COVID-19 can be broadly classified into three categories. 

The first category discovers DDIs by conducting a meta-analysis on published articles in 

PubMed, Medline, Scopus, and Google Scholar[14]. For example, Awortwe et al. identified 

potential DDIs, particularly between antiretroviral drugs, initially considered for use in the 

treatment of COVID-19 and other drugs for treating comorbidity[2]. However, there are 

critical weaknesses of meta-analysis, such as heterogeneity of results and publication bias. 

Furthermore, reviewing the biomedical literature looking for DDIs is time-consuming by 

the researchers and professionals, and small differences in search strategies can produce 

large differences in the set of studies found. The second detects DDIs based on public 

DDI datasets. For example, Bai et al. trained Bi-Level Graph Neural Networks on public 

DDI datasets (e.g., Drugbank) for biological DDI prediction[5]. However, despite several 

resources of DDIs exist to help improve DDI knowledge and have been used as gold 

standards, detections based on the datasets which were created before the pandemic cannot 

generalize well to unseen DDIs in patients with COVID-19[3]. The third category focuses 

on predicting DDIs via analyzing DDIs in clinical trials. For instance, the University of 

Liverpool evaluated the DDI risk in COVID-19 therapies using results in ClinicalTrials.gov 

and created a dynamic version of a COVID-19 Drug Interactions Checker (www.covid19-

druginteractions.org)[12]. Clinical trials detected/confirmed many DDIs in COVID-19 

patients. However, there is a potentiality that they missed many drug-drug paris that have 

potential interactions. Also, it is challenging for clinical trial studies to select appropriate 

candidate drug paris to study adverse events from a large number of drug pairs (> 2 million) 

in COVID-19 patients.

To discover novel DDIs which were not found in previous literature, we applied 

DDI detection algorithms to the FDA Adverse Event Reporting System (FAERS). The 

DDI algorithms include logistic regression, the Ω shrinkage measure, additive model, 

multiplicative model, combination risk ratio model, association rule mining model, and 

chi-square statistics.
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Methods

Study Materials

The FDA adverse event reporting system—The U.S. Food and Drug Administration 

(FDA) Adverse Event Reporting System (FAERS) is a database that collects spontaneous 

adverse events submitted by pharmaceutical companies, clinicians, pharmacists, and 

patients. FAERS has served as the cornerstone for pharmacovigilance purposes mostly 

focusing on detecting adverse events of drugs, and has proven to be a useful source of 

evidence in the safety evaluation process[7; 13; 24]. The FAERS database contains nearly 

20 million reports, and more than 28,000 adverse reports are related to COVID-19, which 

provides an extensive resource to investigate DDIs in COVID-19 patients. It comprises 

the following information: demographic and administrative information; drug information; 

adverse events; patient outcomes; report sources; therapy dates; and indications for use.

Liverpool Database—We used the Liverpool database as a gold standard to discover 

novel DDIs in patients with COVID-19. The Liverpool database is created based on 

Covid19-druginteraction.org[12], the COVID-19 Drug Interactions website created by the 

University of Liverpool based on the drug-drug interaction risk of experimental COVID-19 

therapies. The Liverpool database provides information on whether the combination of 

medications for COVID-19 and comorbidity treatment is safe or not. It is updated regularly 

as new treatment regimens for COVID-19 emerge, and the last update was performed on 

19 April 2021. The Liverpool database contains 28 and 552 drugs for COVID-19 and 

comorbidity treatments, respectively. DDIs were graded into four levels: “no clinically 

significant interaction expected”; “potential weak interaction”; “potential interaction that 

may require close monitoring”; and “do not be co-administered.” We considered drug-drug 

pairs which were not in the “no clinically significant interaction expected” group as positives 

(DDIs). Among 15,456 drug-drug interactions, 2,049 drug-drug pairs had at least potential 

weak interactions.

COVID-19 Cohort creation

Our study extracted all adverse events in the FAERS database from January 2020 to 

March 2021. Adverse events in the FAERS database were coded to terms in the Medical 

Dictionary for Regulatory Activities (MedDRA) terminology. However, since the FDA did 

not curate drug names, the drug name normalization step was essential. Therefore, we 

used the Adverse Event Open Learning through Universal Standardization (AEOLUS) ETL 

process to remove FAERS data deduplication and map drug names to RxNorm concepts[6].

We created a COVID-19 cohort in which each patient had at least one adverse event between 

January 2020 to March 2021, and the medication indication was for COVID-19 treatment.

A 4 by 2 contingency table creation

We created two groups of drugs: i) drugs used to treat COVID-19 (Drug 1 group), and ii) 

drugs used to treat illnesses other than COVID-19 (Drug 2 group). “Drug 2” group may 

include the drugs in the “Drug 1 group” since the drugs in the “Drug 1” group could be used 

for the treatment of diseases other than COVID-19 in pre- or intra-COVID-19 pandemic. 
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We extracted all possible Drug 1-Drug 2 combinations from the COVID-19 cohort and 

created the 4 by 2 contingency table for drug-drug-AE combinations (Table 1). Reports are 

assigned to one of the contingency table cells according to the status of Drug 1, Drug 2, 

and AE. For example, a denotes the number of reports that contain neither Drug 1 and Drug 

2 but contained the targeted AE, and b denotes the number of reports that contain neither 

Drug 1 and Drug 2 and didn’t contain the targeted AE. To maintain adequate candidate 

drug-drug-AE combinations, we excluded the drug-drug-AE combinations occurring in less 

than ten counts (g < 10).

DDI detection algorithms

Logistic regression model—The logistic regression model for DDI detection was first 

proposed by van Puijenbroek et al [21]. The following logistic regression model was used to 

estimate the individual drug and DDI effect.

log  odds = β0 +  β1age  +  β2gender  +  β3D1 +  β4D2 +  β5D1D2 (1)

where D1= drug D1 exposure status, D2= drug D2 exposure status, D1D2 = the concomitant 

use of a drug D1 and drug D2. A statistically significant value of the coefficient β5 indicates 

an additional effect of concomitant use of drug1 and drug 2. p-values of 0.05 or less and 

odds ratio of the statistical interaction term of the combined use of both drugs bigger than 1 

were considered statistically significant

Ω shrinkage measure model—The Ω shrinkage measure model developed by Norén et 

al.[17] is based on a measure calculated as the observed reporting ratio of AE caused by 

concomitant use of 2 drugs (Drug 1 and Drug 2) and its expected value.

Ω = log2
g + 0.5

Eg + 0.5 (2)

Ω025 = ϕ(0.975)
log (2) g (3)

Eg is the expected value of adverse events targeted by the Drug 1-Drug2 combination. Ω025 

> 0 is used as a threshold for detecting the DDI signals.

Additive model—The additive model assumes that there is the potential DDI if the risk 

associated with Drug 1 without Drug 2 is lower than the risk associated with Drug 1 and 

Drug 2 together[20].

f11 − f00 = f10 − f00 + f01 − f00 (4)

When f11 − f10 − f01 + f00 > 0, the DDI signal of the additive model is detected.

Multiplicative model—The multiplicative model assumes that there is a positive DDI if 

the proportion of an AE associated with the concomitant use of Drug 1 and Drug 2 is bigger 
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than the product of proportional risks of individual drugs in the absence of either Drug 1 or 

Drug 2[20].

f11
f00

= f10
f00

× f01
f00

(5)

When 
f11 × f00
f10 × f01

> 1 the DDI signal of the multiplicative model is detected.

Combination risk ratio model—The combination risk ratio model assumes that there 

is the DDI signal if the ratio between the PRR of concomitant use and the maximum PRR 

among PRRs obtained separately for both drugs exceeded 2[19].

Combination risk ratio; = PRRDrug 1 ∩ Drug 2
max PRRDrug 1, PRRDrug 2

(6)

When g ≥ 3, PRRDrug 1 ∩ Drug 2 > 2, χ2Drug 1 ∩ Drug 2 > 4, Combination risk ratio > 2, 

the DDI signal of the combination risk ratio model is detected.

Association rule mining—The association rule mining is a data mining technique that 

discovers patterns hidden in large databases [1]. Many recent studies have been applied this 

model for the identification of patterns of high-order interactions [10; 16]. In this study, the 

association rule “Drug2 → Drug1 ∩ AE” was used to check the degree of the influence 

on Drug1-AE combination by the addition of Drug2. Two measurements were calculated to 

detect DDIs: lift, and conviction. Lift is the ratio of the observed frequency of co-occurrence 

Drug1 ∩ AE and Drug2 the expected frequency. The lift of rule Drug2 → Drug1 ∩ AE is 

defined as:

lift(Drug2 Drug1 ∩ AE) =
g

(g + ℎ + e + f)
g × c

N
(7)

When the lift value is larger than one, it indicates that the occurrence of Drug2 has a positive 

effect on the occurrence of Drug1 ∩ AE The larger the lift value, the more significant the 

association.

Conviction compares the probability that Drug2 appears without Drug1 ∩ AE if they were 

dependent with the actual frequency of the appearance of Drug2 without Drug1 ∩ AE.

conviction(Drug2 Drug1 ∩ AE) =
1 − g × c

N
1 − g

(g + ℎ + e + f)
(8)

Similar to lift, if Drug1 ∩ AE and Drug2 are independent, the conviction is 1. If the 

conviction value is greater than 1, it means that incorrect predictions Drug2 → Drug1 ∩ 
AE occur less often than if Drug1 ∩ AE and Drug2 were independent. We used the lift and 

conviction as the detection criteria, and when lift > 1 and conviction > 1 were used as a 

threshold for detecting signals.
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Chi-square statistics model—For the chi-square statistics model, χ0 is used to 

estimate the discrepancy between the observed and expected numbers of AEs with drug 

combinations[8].

χ = g − Eg − 0.5
Eg

(6)

When χ > 2, the DDI signal of the chi-square statistics model is detected.

Random permutation model—To test that the DDIs detected by the seven algorithms 

are not random, we generated a random permutation of 100 times. We generated random 

drug-drug pairs based on the FAERS database by shuffling between drugs in the “Drug 

1” group and drugs in the “Drug 2” group for each random permutation. We counted the 

number of DDIs confirmed in the Liverpool database in each random permutation. The 

p-value was calculated as the fraction of the runs where the number of permutations whose 

number of DDIs confirmed by the Liverpool database was greater than or equal to the 

minimum number of DDIs detected by the seven models and confirmed by the Liverpool 

database.

Results

Sample characteristics

Table 2 summarizes the characteristics of the study population. 28,912 reports met 

our defined criteria for COVID-19. Among the adverse event reports from patients in 

COVID-19, the female: male ratio was 37.4:62.6, and the number of reports was highest in 

persons aged 60–79 (53.6%). The most frequent drug which was used for the treatment of 

COVID-19 was “Aspirin”(36.3%) and followed by “Xarelto” (22.4%).

Potential drug-drug interactions

In the COVID-19 cohort, 1,135 and 2,504 drugs were assigned to the “Drug 1” and “Drug 

2” groups, respectively. We noted that the total number of AEs in MedDRA was 4,048. 

Therefore, the number of drug-drug combinations and drug-drug–AE combinations were 

2,842,040 and 11,504,577,920, respectively. After filtering out DDI-AEs whose counts were 

smaller than 10, we extracted 6,512 drug-drug pairs (53,486 drug-drug–AE combinations).

The logistic regression, additive, multiplicative, combination risk score, association rule 

mining, Ω shrinkage measure, and chi-square statistics models detected 3,705 drug-drug 

pairs (16,451 DDI-AEs), 5,869 (46,054), 5,321 (36,836), 2,806 (16,467), 6,404 (52,860), 

6,047 (45,831), and 4,847 (36,562), respectively (Table 2). After implementing the random 

permutation procedure, the p-value was 0/100 < 0.0001 (Table 3).

There were 2,516 drug-drug pairs which all seven models detected. Out of 2,516 pairs, 49 

were confirmed to be in the Liverpool database (Figure 1).
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Discussion

This study investigated potential DDIs in patients with COVID-19 by using seven DDI 

detection models and employed the Liverpool database as our gold standard to discover 

potential DDIs which were unrecognized.

Among the seven models, most DDI signals were detected by the association rule mining 

model with 6,404 drug-drug pairs (98.3% of the total 6,512 pairs), followed by the additive 

model (6,047 pairs). In contrast, the logistic regression showed the most conservative DDI 

detection tendency (3,705 drug-drug pairs), but still had the highest number of drug-drug 

pairs confirmed by the Liverpool database. Unlike other models, the logistic regression 

model included confounding factors: age and gender, suggesting that it may be the most 

reliable model detecting novel DDIs.

Based on the results of random permutation, the 2,516 DDIs detected by the seven models 

are likely not occurring by chance. Thus, there is a high potentiality to generate clinical trial 

hypotheses based on the DDIs detected by the several models but not found in the Liver pool 

database.

There are known limitations in this study. First, the FAERS database doesn’t include patient 

characteristics, his/her medical history, and dosage information which are important risk 

factors of DDIs. Second, the FAERS database is recognized to be underreported of AEs, and 

AEs reported by it need to be further validated. Third, we did not examine the underlying 

pharmacology mechanism of detected DDIs.

Conclusions

This study showed the potentiality of using seven models to detect potential DDIs from a 

spontaneous adverse event reports dataset. The detected DDIs by the seven models are not 

likely to occur in chance.
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Figure 1. 
A Venn diagram depicting the DDIs. There were 2,089 DDIs confirmed in the Liverpool 

database, while there were 6,512 DDIs in the FAERS database. All seven models detected 

2,516 DDIs. Out of all total pairs examined, 49 pairs were significant in both the Liverpool 

database and seven models. There were 106 pairs found in both the Liverpool database and 

FAERS, but not detected by the seven models.
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Table 1.

Four-by-two contingency table for evaluating Drug 1-Drug 2–AE combinations.

Target AE All other AEs

Neither Drug 1 and Drug 2 a b f00=a/(a+b)

Only Drug 1 c d f10=c/(c+d)

Only Drug 2 e f f01=e/(e+f)

Both Drug 1 and Drug 2 g h f11=g/(g+h)
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