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Abstract

As the most common type of neurodegenerative diseases (NDDs), Alzheimer’s disease

(AD) is thought to be caused mainly by the excessive aggregation of β-amyloid protein (Aβ).

However, a growing number of studies have found that reactive oxygen species (ROS) play

a key role in the onset and progression of AD. The present study aimed to probe the neuro-

protective effect of high-frequency low-intensity pulsed electric field (H-LIPEF) for SH-SY5Y

cells against hydrogen peroxide (H2O2) and Aβ-induced cytotoxicity. By looking in a system-

atic way into the frequency- and amplitude-dependent neuroprotective effect of pulsed elec-

tric field (PEF), the study finds that H-LIPEF at 200 Hz produces the optimal protective

effect for SH-SY5Y cells. The underlying mechanisms were confirmed to be due to the acti-

vation of extracellular signal-regulated kinase (ERK) pathway and the downstream prosurvi-

val and antioxidant proteins. Because the electric field can be modified to focus on specific

area in a non-contact manner, the study suggests that H-LIPEF holds great potential for

treating NDDs, whose effect can be further augmented with the administering of drugs or

natural compounds at the same time.

Introduction

Neurodegenerative diseases (NDDs) feature progressive deterioration of brain function, result-

ing from the gradual degeneration or death of neurons. Along with increasing human lifespan,

deaths caused by NDDs have been on the rise over the past years, impacting the quality of life

of patients and their families. The World Health Organization (WHO) predicts that by 2040,

NDDs will overtake cancer to be the second leading cause of death, next to cardiovascular

diseases.

As the most common kind of neurodegenerative disorder among various NDDs, Alzhei-

mer’s disease (AD) displays such typical pathology including the deposition of extracellular
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cortical plaques formed by aggregation of β-amyloid protein (Aβ) and intracellular neurofibril-

lary tangles caused by hyperphosphorylation of Tau protein [1]. Scientists have long suspected

that these abnormal structures are major culprit in damaging and killing nerve cells, which

causes progressive brain degeneration and deterioration of cognitive function among elderly

people. Anti-amyloid therapies have long been pursued by scientists, however, a more nuanced

treatment is required because of the continuing clinical failures [2]. In addition, there has been

increasing evidence showing that ROS plays a central role in the onset and progression of AD

[3]. Therefore, drugs or treatments which could decrease the ROS level and protect neural cells

against oxidative damage may be potential strategies to treat AD. Some in vitro studies have

explored the therapeutic effect of antioxidant and antiapoptotic drugs in AD treatment [4, 5].

Clinical trials have been conducted to search for antioxidant supplements or drugs to treat AD

but the results have been disappointing [6–10]. There has yet to be an effective treatment for AD

or other kinds of NDDs. Existing medications can only avoid deterioration of symptoms or post-

pone their appearance at best. One blockade in AD drug development is the blood-brain barrier

(BBB), which is insurmountable for 98% of small molecule drugs and 100% of large molecule

drugs [11]. Therefore, effective AD treatment remains a major challenge for modern medicine.

In our previous study, non-invasive low-intensity pulsed electric field (LIPEF) was

employed, in conjunction with fucoidan, in preventing oxidative stress-induced mouse motor

neuron death [12]. It found that LIPEF suppressed the hydrogen peroxide (H2O2)-enhanced

expression of ROCK protein and increased the phosphorylation of Akt in H2O2-treated NSC-

34 cell line. The current study employed non-contact LIPEF stimulation in studying human

neural cell line SH-SY5Y, a neurodegenerative damage model with extensive application, and

probed the neuroprotective effect of LIPEF against oxidative damage caused by H2O2. It also

applied AD disease model by Aβ protein administration in neuroprotective study. Interest-

ingly, the study finds that the LIPEF parameters applied in mouse motor neuron are not effec-

tive in human neural cell line. The systematic study on frequency- and amplitude-dependent

neuroprotective effect of LIPEF was performed, and the result found that high-frequency

LIPEF (H-LIPEF) at 200 Hz had the optimal protective effect for SH-SY5Y cells. Since the

alternating current (AC) signal has only one frequency and intensity, it needs time-consuming

and painstaking effort for finding the specific AC electric signal to achieve a certain biological

effect. Therefore, the approach has only limited applicability, as the specific AC signal is by no

means sufficient in targeting complex signal transductions in a biological process or disease

treatment. By contrast, the pulsed electric field (PEF) features a composition of multiple sinu-

soidal subcomponents with diverse frequencies and intensities simultaneously [12]. The study

points out that thanks to its multi-frequency components, PEF can facilitate significantly the

development of new disease therapeutics in fulfilling different demands.

In the study, we applied the H-LIPEF stimulation to human neural cell line SH-SY5Y, and

examined the prosurvival effect of such physical stimulation against oxidative damage caused

by H2O2 and Aβ-induced cytotoxicity. The results found that exposure of the cells to H-LIPEF

at 200 Hz significantly ameliorated the H2O2- and Aβ-induced cytotoxicity in SH-SY5Y cells.

Examination of the underlying mechanism also showed that 200 Hz H-LIPEF could activate

extracellular signal-regulated kinase (ERK) pathway and downstream neuroprotective pro-

teins. These findings imply that H-LIPEF is a promising electrotherapy, shedding light on a

novel approach in treatment of AD or other NDDs.
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Materials and methods

Experimental setup for exposure of the cells to non-contact H-LIPEF

The LIPEF device described previously [13] was used for exposure of electric field with various

strengths and frequencies. The cells were placed between two copper flat and parallel elec-

trodes. Consecutive pulses with pulse duration 2 ms, different electric field intensities and dif-

ferent frequencies were applied across the electrodes. Cells treated with continuous LIPEF

were kept in a humidified incubator of 5% CO2 and 95% air at 37˚C. The control cells were

incubated in a similar LIPEF device without the electric field turned on. After optimization of

the pulse parameters, we used the H-LIPEF stimulation to produce the electric field in a non-

contact manner, and examined its neuroprotection effect against the oxidative insult caused by

H2O2 to SH-SY5Y human neural cells.

Cell culture and treatment

The SH-SY5Y cells were purchased from Bioresource Collection and Research Center

(Hsinchu, Taiwan) and maintained in MEM/F-12 mixture containing 10% fetal bovine serum

(FBS) (HyClone; GE Healthcare Life Sciences) and 1% penicillin-streptomycin, supplemented

with 1 mM sodium pyruvate and 0.1 mM non-essential amino acids. Cells were maintained in

a humidified incubator composed of 5% CO2 and 95% air at 37˚C. Cells were harvested with

0.05% trypsin–0.5 mM EDTA solution (Gibco; Thermo Fisher Scientific, Inc.) and prepared

for in vitro experiments. To differentiate SH-SY5Y cells, the cells were incubated in low serum

medium (0.5% FBS) containing 20 μM retinoic acid (RA) (Sigma-Aldrich; Merck KGaA) for 5

days. Cells were pretreated with H-LIPEF for 4 h and then challenged with 500 μM H2O2 [14,

15] in the continuous administration of H-LIPEF for another 24 h. For the AD disease model,

the cells were pretreated with H-LIPEF for 4 h and then challenged with 25 or 50 μM Aβ25–35

protein solution [16, 17] in the continuous administration of H-LIPEF for another 4 days. The

Aβ stock solution was prepared by solubilizing the Aβ25–35 peptide (Sigma-Aldrich; Merck

KGaA) in sterile deionized water to a concentration of 1 mM and then incubated at 37˚C for 3

days to allow self-aggregation before treatment. After the treatment, the cell viability was deter-

mined by MTT assay. Aβ fibrilization was determined by Thioflavin T (ThT) (Sigma-Aldrich;

Merck KGaA) staining. Aβ stock solution was diluted with PBS to 25 μM Aβ solution contain-

ing 10 μM ThT. The ThT fluorescence was then measured by SpectraMax i3x plate reader

(Molecular Devices, LLC.) with excitation filter of 450 nm and emission filter of 490 nm. For

the ERK inhibitor experiment, 50 μM PD98059 (Cell Signaling Technology, Inc.) was treated 1

h before the H-LIPEF treatment.

Cell viability assay

Viability of SH-SY5Y cells after treatments with or without H-LIPEF was assessed by 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Sigma-Aldrich; Merck

KGaA) assay. Briefly, the medium was replaced with MTT solution (0.5 mg/mL in SH-SY5Y

culture medium) and incubated at 37˚C for 4 h. During this period, the ability of mitochon-

drial dehydrogenases to reduce the MTT to formazan crystal is an indicator of cellular viabil-

ity. Following MTT reaction, formazan dissolution was performed by using 10% sodium

dodecyl sulfate (SDS) and 0.01 M HCl. The optical density of each well was then determined at

570 nm subtracting the background at 690 nm using an ELISA microplate reader. The cell via-

bility was calculated based on the intensity of formazan, and expressed as percentage of the

non-treated control.
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Flow cytometric detection of apoptotic cells

The mode of cell death was analyzed by flow cytometry with an Annexin V-FITC and propi-

dium iodide (PI) double-staining kit (BD Biosciences). After the treatments, SH-SY5Y cells

were collected by trypsinization and resuspended in binding buffer containing Annexin V and

PI. Cells were incubated for 15 min at 25˚C in the dark before being analyzed by flow

cytometry.

ROS level detection

After the treatments, the SH-SY5Y cells were collected and the ROS levels were detected using

the fluorescent dye dihydroethidium (DHE) (Sigma-Aldrich; Merck KGaA). Cells were incu-

bated with 5 μM DHE dye for 20 min at 37˚C in the dark and then the fluorescence intensity

was measured by flow cytometry in the PE channel. The ROS levels were expressed as mean

fluorescence intensity for comparison.

Mitochondrial Membrane Potential (MMP) measurement

The detection of MMP was carried out by flow cytometry using 3,3’-dihexyloxacarbocyanine

iodide (DiOC6(3)) (Enzo Life Sciences International Inc.). DiOC6(3) is a lipophilic cationic

fluorescent dye which is selective for the mitochondria of live cells. It allows estimation of the

percentage of cells with depleted MMP which reflects the initiation of proapoptotic signal.

Cells treated with H2O2 and H-LIPEF alone or in combination for 24 h were harvested and

suspended in PBS with 20 nM DiOC6(3). After incubation at 37˚C for 15 min in the dark, the

fluorescence intensity was immediately measured by flow cytometry.

Western blot analysis

After the treatments, cells were washed with phosphate buffered saline (PBS) and then har-

vested and lysed in RIPA lysis buffer (EMD Millipore) containing fresh protease and phospha-

tase inhibitor cocktail (EMD Millipore). The lysates were then centrifuged, and the

supernatant was collected and used for the determination of protein concentration. Equal

amounts of protein extracts were loaded in the 10% SDS-PAGE wells and transferred to poly-

vinylidene fluoride membranes. After drying for 1 h at room temperature (RT), the mem-

branes were probed with ROCK (Abcam, plc.), phosphorylated ERK (p-ERK), total ERK (t-

ERK), Nrf2, phosphorylated CREB (p-CREB), total CREB (t-CREB), Bcl-2, Bax (Cell Signaling

Technology, Inc.), and GAPDH (GeneTex, Inc.) antibodies overnight at 4˚C. Subsequently,

the washed membranes were incubated with horseradish peroxidase-coupled secondary anti-

bodies (Jackson ImmunoResearch Laboratories, Inc.) for 1 h at RT. All the antibodies were

diluted at the optimal concentration according to the manufacturer’s instructions. Finally, pro-

tein bands were visualized with an enhanced chemiluminescence substrate (Advansta, Inc.)

and detected with the Amersham Imager 600 imaging system (GE Healthcare Life Sciences).

The images were analyzed with Image Lab software (Bio-Rad Laboratories, Inc.). For normali-

zation of proteins, GAPDH was used as an internal control.

Statistical analysis

Each data point represents the average from larger or equal to three independent experiments

and is expressed as the mean ± standard deviation. Statistical analyses were performed using

OriginPro 2015 software (OriginLab). Differences of statistical significance were analyzed by

one-way or two-way analysis of variance (ANOVA), followed by Tukey’s post-hoc test. P-

value < 0.05 was considered to indicate a statistically significant difference.
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Results

In vitro-applied H-LIPEF

The H-LIPEF was applied in a non-contact manner with the apparatus consisting of two thin

parallel conductive electrodes mounted on the insulating acrylic frame (Fig 1A). The culture

dishes were placed between the parallel electrodes so the cells were not in contact with the elec-

trodes directly. Therefore, the H-LIPEF stimulation device can provide the electric field in a

non-invasive manner, avoiding the harmful effects caused by conduction current and Joule

effect via contact electrodes. The pulsed electric signal was from a function generator and

Fig 1. The experimental setup of H-LIPEF. (A) Image of the H-LIPEF stimulation device. The culture dishes were placed in the stimulation device

constructed of two parallel electrodes. The blue arrows shown here indicate the schematic representation of non-invasive H-LIPEF exposure on cells. (B)

Schematic representation of the pulse train waveform applied on the electrodes.

https://doi.org/10.1371/journal.pone.0250491.g001
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amplified by a voltage amplifier. In the study, the applied electric signal was characterized by a

pulse train waveform (Fig 1B) with various field intensities (1–60 V/cm) and frequencies (2–

499 Hz) for optimization of the treatment.

Effect of H-LIPEF exposure on H2O2-induced cytotoxicity in SH-SY5Y cells

The oxidative stress plays a critical role in the etiology and exacerbates the NDDs progression.

We applied H2O2 to SH-SY5Y cells as an oxidative stress and looked into the neuroprotective

effect of H-LIPEF technique. As shown in Fig 2A, administration of H2O2 on SH-SY5Y cells

for 24 h decreased the cell viability in a concentration-dependent manner. Treatment of

SH-SY5Y cells with 500 μM H2O2 for 24 h reduced the cell viability to 52% compared to the

control cells, which was used in the subsequent experiments. To examine whether H-LIPEF

could produce protection and increase the cell viability against the oxidative insult, cells were

pretreated with H-LIPEF for 4 h and then exposed to H2O2 in the continuous administration

of H-LIPEF for another 24 h. In our previous study, the low frequency LIPEF with parameters

of 2 Hz, 60V/cm, and 2 ms pulse duration was used in the mouse motor neurons NSC-34 [12],

but the result showed that this parameter combination is ineffective in the SH-SY5Y cells. In

this study, we used H-LIPEF in our experiments, and found that the H-LIPEF stimulation

using the parameters of 200 Hz, 10 V/cm, and 2 ms pulse duration produced significant pro-

tection against the oxidative insult caused by H2O2 to SH-SY5Y human neural cell line. To

examine whether the frequency and intensity are both critical parameters in the neuroprotec-

tive effect, the systematic study on frequency- and amplitude-dependent effects was per-

formed. The intensity of H-LIPEF was firstly fixed at 10 V/cm and the frequency was varied

from 2 Hz to 499 Hz. The upper limit was set to 499 Hz since for 2 ms pulse duration, two

pulses will overlap for frequency greater or equal to 500 Hz. The results showed that for fre-

quency less than or equal to 100 Hz, their survival rates were not significantly different from

the H2O2-treated group. At high frequency region, the H-LIPEF conferred protective effect to

the H2O2-treated SH-SY5Y cells, and the maximum protective effect was at near 200 Hz (Fig

2B). For the intensity-dependent effect, the frequency was fixed at 200 Hz, and the intensity

varied from 1~60 V/cm was examined. As shown in Fig 2C, it was obvious that there was a

maximum at 10 V/cm, indicating that the best protective effect was at 10 V/cm. Therefore, we

conclude that both the frequency and intensity are critical parameters in the neuroprotective

effect, and the optimum protective parameters (200 Hz, 10 V/cm, and 2 ms pulse duration)

(Fig 2D) were used in the following experiments. To further confirm the mode of cell death

induced by H2O2, cells were stained with Annexin V-FITC and PI and assessed by flow cytom-

etry. The results showed that H2O2-induced apoptotic cells were significantly reduced under

H-LIPEF treatment (Fig 3), indicating SH-SY5Y cells were undergoing apoptotic cell death

when treating with H2O2, and H-LIPEF could ameliorate the toxic effect. SH-SY5Y cell is a

human neuroblastoma cell line, which is widely used as a neuronal cell model in studying

NDDs. To investigate whether H-LIPEF could also provide neuroprotective effect in differenti-

ated SH-SY5Y cells, SH-SY5Y cells were differentiated with RA for 5 days prior to H2O2 or

H-LIPEF treatment. As shown in Fig 4A, the differentiated SH-SY5Y cells exhibited neuronal-

like morphology with high levels of neurite outgrowth. And the results showed that H-LIPEF

could provide similar neuroprotective effect in the differentiated SH-SY5Y cells (Fig 4B).

Effect of H-LIPEF exposure on Aβ-induced cytotoxicity in SH-SY5Y cells

For AD disease model, SH-SY5Y cells were treated with aggregated Aβ peptide, and the results

showed that 25 or 50 μM Aβ treatment significantly reduced the viability of SH-SY5Y cells

(Fig 5A). To confirm the Aβ aggregation state, the ThT dye was used to measure the β-sheet
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formation. The result showed that the fluorescence of the prepared Aβ stock solution was

greatly higher than the ThT dye alone control group (Fig 5B), indicating that the Aβ stock

solution was indeed in the β-sheet rich aggregated state. As shown in Fig 5C and 5D, the

H-LIPEF treatment greatly improved the viability and restored the cell morphology of Aβ-

treated SH-SY5Y cells, indicating the curative effect of H-LIPEF in AD disease model in vitro.

Fig 2. Effect of H-LIPEF on H2O2-induced cytotoxicity in SH-SY5Y cells. (A) The concentration response curve of SH-SY5Y cells treated with different

concentrations of H2O2 and the cell viability was measured by MTT assay at 24 h after the H2O2 treatment. (B) SH-SY5Y cells were pretreated with 10 V/cm PEF at

different pulse frequencies and challenged with 500 μM H2O2 for 24 h and then the cell viability was measured by MTT assay. (C) SH-SY5Y cells were pretreated

using 200 Hz PEF with different field intensities and challenged with 500 μM H2O2 for 24 h and then the cell viability was measured by MTT assay. (D) SH-SY5Y

cells were pretreated using 200 Hz H-LIPEF with field intensity of 10 V/cm and challenged with or without 500 μM H2O2. The cell viability was also measured by

MTT assay at 24 h after the H2O2 treatment. Data represent the mean ± standard deviation (n = 3). The concentration response curve of SH-SY5Y cells was

statistically analyzed using one-way ANOVA with Tukey’s post hoc test (���P< 0.001). Comparisons of the effect of H2O2 and H-LIPEF on the cell viability were

analyzed using two-way ANOVA with Tukey’s post hoc test (���P< 0.001).

https://doi.org/10.1371/journal.pone.0250491.g002
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The cell numbers were quantified using the ImageJ software [18] to investigate the effect of

H-LIPEF on Aβ-induced cell number loss. The results showed that H-LIPEF retained the cell

numbers of Aβ-treated SH-SY5Y cells (Fig 5E).

H-LIPEF attenuates H2O2-induced ROS generation

Since the onset of AD is associated with ROS accumulation, we further examined the effect of

H-LIPEF on the ROS level regulation by flow cytometry (Fig 6A). Quantification results (Fig

6B) showed that the ROS level was increased to 175% of the control level after exposure to

500 μM H2O2 for 24 h. Compared to the group of H2O2 alone, the H-LIPEF treatment greatly

ameliorated the H2O2-induced ROS level elevation, indicating that H-LIPEF could have the

ability to decrease the ROS level.

H-LIPEF attenuates MMP loss in H2O2-treated cells

Substantial evidence suggests that mitochondria play important roles in NDDs through the

accumulation of net cytosolic ROS production [19]. In healthy cells, the levels of MMP are

kept relatively stable, and the depletion of MMP suggests the loss of mitochondrial membrane

integrity. Apoptotic signals are usually initiated by such mitochondrial dysfunctions. To exam-

ine whether the neuroprotective effect of H-LIPEF is associated with mitochondrial functions,

the MMP is further analyzed by the flow cytometry with DiOC6(3) fluorescent dye. As shown

in Fig 7A, it was found that H2O2 caused mitochondrial dysfunction, decreasing the MMP and

Fig 3. Assessment of the mode of cell death via Annexin V-FITC/PI double staining. (A) SH-SY5Y cells were pretreated using 200 Hz H-LIPEF with field

intensity of 10 V/cm and challenged with or without 500 μM H2O2 for 24 h. The apoptotic cells were then assessed by flow cytometric analysis of Annexin

V-FITC and PI staining. The cells in the Q2 and Q4 quadrants indicate Annexin V-positive apoptotic cells. (B) Quantification of SH-SY5Y apoptotic cells.

Comparisons of the effect of H2O2 and H-LIPEF on the apoptotic cells were analyzed using two-way ANOVA with Tukey’s post hoc test (��P< 0.001 and
��P< 0.01).

https://doi.org/10.1371/journal.pone.0250491.g003
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therefore decreased the intensity of the DiOC6(3) fluorescent signal while H-LIPEF alone did

not change the MMP. From the quantification results (Fig 7B), we found that the cells with

decreased MMP drastically increased after the H2O2 treatment, and H-LIPEF pretreatment

noticeably suppressed the H2O2-induced dissipation of MMP, so the cells with decreased

MMP reduced significantly. The results indicate that H-LIPEF could prevent the mitochondria

from damaging by the oxidative stress and thus caused the blockage of the apoptotic signaling

transduction.

Effect of H-LIPEF treatment on ROCK protein expression in SH-SY5Y cells

In our previous study, the neuroprotective effect of LIPEF was found to be associated with the

inhibition of the H2O2-induced activation of ROCK pathway in the motor neuron cell line

NSC-34 [12]. In this work, we examined the ROCK protein expressions in order to investigate

whether the protective effect of high frequency LIPEF on human neuroblastoma SH-SY5Y

cells was related to the ROCK pathway. As shown in Fig 8, the expression of ROCK protein is

slightly higher after H2O2 treatment but almost unaffected after the treatment of both

H-LIPEF and H2O2. This phenomenon points out that although the H-LIPEF treatment can

protect SH-SY5Y cells, the main mechanism is not associated with the ROCK pathway. There-

fore, other prosurvival protein pathways should be considered in the following experiments.

Effect of H-LIPEF exposure on ERK-Nrf2/CREB signalling pathways in

H2O2-treated SH-SY5Y cells

We then studied the signalling pathways that could participate in the neuroprotective mecha-

nism of H-LIPEF stimulation. ERK is one of the major cascades of mitogen-activated protein

kinases (MAPK) family and has been known to be widely associated with cell survival [20].

Fig 4. Effect of H-LIPEF on H2O2-induced cytotoxicity in differentiated SH-SY5Y cells. (A) Morphology of differentiated SH-SY5Y cells. Scale bar = 50 μm. (B)

Differentiated SH-SY5Y cells were pretreated using 200 Hz H-LIPEF with field intensity of 10 V/cm and challenged with or without 500 μM H2O2 for 24 h. The cell

viability was then determined by MTT assay. Comparisons of the effect of H2O2 and H-LIPEF on the cell viability were analyzed using two-way ANOVA with Tukey’s

post hoc test (���P< 0.001).

https://doi.org/10.1371/journal.pone.0250491.g004
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Upon phosphorylation, the active ERK proteins enter into the nucleus where they can phos-

phorylate certain transcription factors, thus regulating the expression of specific genes that

contribute to cell survival [21]. Therefore, in our study, we examined the phosphorylation of

ERK and the downstream transcription factors including cAMP response element binding

protein (CREB) and nuclear factor erythroid 2-related factor 2 (Nrf2) by western blot analysis.

In comparison to the untreated control cells, as shown in Fig 9A, the normalized level of p-

ERK (p-ERK/t-ERK) was found to slightly increase in the cells exposed to H-LIPEF alone for

24 h. In contrast, the normalized level of p-ERK (p-ERK/t-ERK) in the cells was significantly

decreased when exposed to 500 μM H2O2 for 24 h without the treatment of H-LIPEF. In addi-

tion, the result showed that the H-LIPEF treatment induced a significant recovery of the p-

ERK and t-ERK levels in the cells exposed to 500 μM H2O2. The results indicate that the neuro-

protection provided by H-LIPEF could be related to the recovery of the H2O2-induced decline

of ERK expression and its phosphorylation. In the following, we further examined the expres-

sion levels of Nrf2 and p-CREB proteins using western blot analysis. Nrf2 is a key transcription

Fig 5. Effect of H-LIPEF on Aβ-induced cytotoxicity in SH-SY5Y cells. (A) The cell viability of SH-SY5Y cells treated with 25 or 50 μM Aβ for 4 days. (B) The Aβ
aggregation state was assessed by the ThT fluorescence. (C) The SH-SY5Y cells were pretreated with H-LIPEF for 4 h and then exposed to 50 μM Aβ in the

continuous administration of H-LIPEF for another 4 days, and the cell viability was measured by MTT assay. (D) Representative light microscopy images of

SH-SY5Y cells after Aβ and/or H-LIPEF treatment. The integrity of the cells was destructed by Aβ, and the H-LIPEF treatment caused the protective effect and

retained the cell morphology. Scale bar = 100 μm. (E) Quantification of the cell numbers in the light microscopy images by ImageJ software. Data represent the

mean ± standard deviation (n = 3). Cell viability of SH-SY5Y cells treated with different concentration of Aβ and the ThT fluorescence experiment were statistically

analyzed using one-way ANOVA with Tukey’s post hoc test (���P< 0.001). Comparisons of the effect of Aβ and H-LIPEF on the cell viability and the cell numbers

were analyzed using two-way ANOVA with Tukey’s post hoc test (���P< 0.001 and ��P< 0.01).

https://doi.org/10.1371/journal.pone.0250491.g005
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factor that regulates the expression of antioxidant proteins participating in the protection of

oxidative damage triggered by injury and inflammation. As shown in Fig 9B, the level of Nrf2

was also increased in H-LIPEF treated SH-SY5Y cells compared to the untreated cells. In con-

trast, the level of Nrf2 in the cells exposed to 500 μM H2O2 for 24 h but without the treatment

of H-LIPEF was decreased. Meanwhile, the H-LIPEF treatment was found to recover the

expression of Nrf2 in the cells exposed to 500 μM H2O2 obviously. This result showed that the

neuroprotective effect was due in part to the H-LIPEF induced Nrf2 expression and the antiox-

idant effect. Next, CREB is also an important transcription factor triggering the expression of

prosurvival proteins. As shown in Fig 9C, the levels of both p-CREB and t-CREB in cells were

greatly decreased when exposed to 500 μM H2O2 for 24 h without the treatment of H-LIPEF.

We further found that the normalized level of p-CREB (p-CREB/t-CREB) was significantly

reduced upon H2O2 treatment while H-LIPEF restored the p-CREB/t-CREB level. The results

indicate that the neuroprotection provided by H-LIPEF could be related to the recovery of the

H2O2-induced decline of CREB expression and its phosphorylation. Furthermore, it is widely

known that CREB phosphorylation regulates Bcl-2 family proteins including anti-apoptotic

Bcl-2 and pro-apoptotic Bax proteins, and the ratio of Bcl-2/Bax determines whether neurons

undergo survival or death after an apoptotic stimulus. Therefore, the expressions of Bcl-2 and

Bax protein levels were also examined in the study. As shown in Fig 9D, for SH-SY5Y cells

under the H-LIPEF treatment alone, the expression levels of Bcl-2 and Bax were increased and

Fig 6. Effect of H-LIPEF on H2O2-induced ROS generation in SH-SY5Y cells. (A) ROS level was measured by flow cytometry with DHE fluorescent dye. (B)

Quantification of the ROS levels after H-LIPEF, H2O2, or H-LIPEF+H2O2 treatment. Data represent the mean ± standard deviation (n = 3). Comparisons of the

effect of H2O2 and H-LIPEF on the ROS generation were analyzed using two-way ANOVA with Tukey’s post hoc test (���P< 0.001).

https://doi.org/10.1371/journal.pone.0250491.g006
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decreased respectively, leading to a higher elevation of the Bcl-2/Bax ratio compared to the

untreated control cells. Meanwhile, in comparison to the untreated control cells, the level of

Bcl-2/Bax ratio of SH-SY5Y cells was found to decrease when exposed to 500 μM H2O2, indi-

cating that the cells had undergone apoptosis. Moreover, it was observed that the H-LIPEF

treatment notably restored the expression of Bcl-2/Bax ratio in the cells exposed to 500 μM

H2O2. To sum up, the results showed that the H-LIPEF treatment induced the anti-apoptotic

effect by regulating the Bcl-2 family proteins via modulating the ERK/CREB pathways and

thus promoted the cell survival against oxidative stress.

Effect of PD98059 on the H-LIPEF activated ERK pathway and protective

effect

To confirm the neuroprotective effect of H-LIPEF is related to the ERK pathway, we inhibited

the MAPK kinases MEK1 and MEK2, the upstream kinases of ERK, by the inhibitor PD98059

[22] in the study. In Fig 10A, we found that H-LIPEF could significantly increase the cell via-

bility of SH-SY5Y cells to about 80% of the control level under H2O2 stress. In the presence of

MEK inhibitor, the p-ERK level was indeed reversed and the neuroprotective effect of

H-LIPEF treatment against H2O2-induced cell apoptosis was abrogated (Fig 10A and 10B).

The inhibitor PD98059 greatly inhibited the phosphorylation of ERK protein, and therefore

resulted in the accumulation of total ERK which was in agreement with previous studies [23,

24]. The results indicate that the ERK pathway was involved to mediate the neuroprotective

effect of H-LIPEF treatment against H2O2 toxicity. On the whole, the data point out that

H-LIPEF treatment may produce neuroprotective effect via activation of the ERK signalling

pathway in the H2O2-treated SH-SY5Y human neural cells.

Fig 7. Effect of H-LIPEF on H2O2-induced MMP reduction in SH-SY5Y cells. (A) MMP was analyzed by flow cytometry with DiOC6(3) fluorescent dye. (B)

Quantification of the cells with decreased MMP after H-LIPEF, H2O2, or H-LIPEF+H2O2 treatment. Data represent the mean ± standard deviation (n = 3).

Comparisons of the effect of H2O2 and H-LIPEF on the MMP were analyzed using two-way ANOVA with Tukey’s post hoc test (���P< 0.001 and ��P< 0.01).

https://doi.org/10.1371/journal.pone.0250491.g007
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Discussion

The focus of this study was to probe the neuroprotective effect of H-LIPEF on SH-SY5Y cells.

The results demonstrated that application of high-frequency (~200 Hz) and low-intensity (~10

Fig 8. Effect of H-LIPEF on expressions of ROCK protein in SH-SY5Y cells. (A) Western blot analysis of ROCK protein expressions. (B) Quantification of

ROCK expression level after H-LIPEF, H2O2, or H-LIPEF+H2O2 treatment. The expression levels were normalized to GAPDH and each relative expression level

was compared with control. Data represent the mean ± standard deviation (n = 3).

https://doi.org/10.1371/journal.pone.0250491.g008
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Fig 9. Effect of H-LIPEF on ERK/Nrf2 and ERK/CREB signalling pathways and related protein expressions. Western blot analysis of p-ERK and t-ERK (A), Nrf2

(B), p-CREB and t-CREB (C), Bcl-2 and Bax (D) protein expressions. The expression levels of p-ERK and p-CREB were normalized to t-ERK and t-CREB, respectively.

The expression level of Nrf2 was normalized to GAPDH and each relative expression level was compared with control. Data represent the mean ± standard deviation

(n = 3). Comparisons of the effect of H2O2 and H-LIPEF on different protein levels were analyzed using two-way ANOVA with Tukey’s post hoc test (���P< 0.001,
��P< 0.01 and �P< 0.05).

https://doi.org/10.1371/journal.pone.0250491.g009
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Fig 10. Effect of PD98059 on the neuroprotective effect of H-LIPEF and p-ERK protein expression induced by H-LIPEF

stimulation. (A) H-LIPEF increased the cell viability of SH-SY5Y cells under H2O2 oxidative stress. The neuroprotective effect of
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V/cm) pulsed electric field produced the most significant protection for SH-SY5Y human neu-

ral cells against H2O2- and Aβ-induced apoptosis. The western blot results exhibited that

H-LIPEF triggered the ERK signalling pathway and mediated the activation of CREB and Nrf2

transcription factors.

As the most common form of age-related NDDs, AD features excessive aggregation of Aβ
and intracellular microtubule-associated protein tau, known as neurofibrillary tangles. With

many questions remaining unanswered, some researchers believe that the amyloid cascade

hypothesis offers the best explanation for the cause of AD [25], maintaining that Aβ is the

causative factor of Alzheimer’s pathology and that the neurofibrillary tangles, cell loss, vascular

damage, and dementia all result directly from such deposition. Although the mechanism of

Aβ-induced cytotoxicity has yet to be elucidated completely, several studies have proven that

the oxidative stress plays a vital role in Aβ-induced apoptosis [26–28]. Therefore, researchers

have been striving to find various antioxidants that can protect against oxidative stress and

alleviate the symptoms of NDDs [29–31]. However, the therapeutic effect of most antioxidant

compounds is limited, due to their incapability to cross the BBB. This is reflected in the failure

of antioxidant therapies in clinical trial [6, 7, 10]. Even for the fat soluble Vitamin E, there have

been no promising results as far as we know [8, 9]. Therefore, an effective AD treatment strat-

egy is urgently needed. Among different ROS species, H2O2 is one of the molecules most

related to the progression of AD. In the study, H2O2 was applied as the oxidative stress which

caused cell death at certain dosage. The results found that H2O2 treatment increased the ROS

level and H-LIPEF treatment significantly ameliorated the H2O2-induced ROS level elevation,

underscoring the antioxidant ability of H-LIPEF. The study employed MTT and MMP assays

to assess the cell viability and mitochondria integrity. The findings in both results showed that

H-LIPEF provided the neuroprotective effect and increased the viability and MMP in the

H2O2-treated neural cells. Furthermore, Aβ was used to investigate the neuroprotective effect

of H-LIPEF in the AD disease model. The MTT and light microscopy results also showed that

H-LIPEF greatly improved the viability and retained the cell integrity in the Aβ-treated cells.

As demonstrated by the recent studies in cancer treatment [32, 33], electric fields can penetrate

the human brain without being restricted by BBB, which suggests that H-LIPEF may be an

alternative therapeutic mode in NDDS treatment.

The electric stimulation has a long history of medical applications, including wound healing

[34], muscle relaxation [35], and increase of blood circulation [36], often involving passage of

electric current through the injury parts via direct contact between the body and implanted

electrodes. However, the invasive or contact manner significantly dampens the feasibility of

the treatment or even causes harms to cells or body, such as electrolysis, burns and muscle

spasms [37]. Therefore, it is desirable for electrotherapy to be carried out in a non-invasive or

non-contact manner. Our previous study demonstrated a non-contact electric stimulation

device [13], which operates as a parallel-plate capacitor generating electric field between two

parallel electrodes (Fig 1A). Therefore, the electric field with such capacitive coupling mode

can pass through biological samples to achieve specific biological effect without current actu-

ally flowing through cells or media via contact with electrodes. It is noteworthy that the

strength of electric field passing through culture dishes or media is the same as the voltage for

electrodes. Besides, the electric field waveform employed was a PEF, which is characterized by

H-LIPEF treatment was abrogated by addition of the MEK inhibitor PD98059. (B) The western blot analysis showed that the inhibitor

PD98059 reversed the activated level of p-ERK induced by H-LIPEF treatment. The p-ERK expression levels were normalized to t-ERK.

We used the abbreviation “PD” to represent the MEK inhibitor PD98059 in the figure. Data represent the mean ± standard deviation

(n = 3). Comparisons of the effect of PD on the neuroprotective effect of H-LIPEF and p-ERK protein levels were analyzed using two-

way ANOVA with Tukey’s post hoc test (���P< 0.001 and ��P< 0.01).

https://doi.org/10.1371/journal.pone.0250491.g010
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its multi-frequency component nature. Pulse train signal is composed of multiple sinusoidal

subcomponents with different frequencies and intensities [12]. When PEF enters a biological

sample, it encounters different proteins, cells and tissues with different dielectric constants

and is therefore dispersed to multiple frequencies electrically. Multi-frequency sinusoidal

waves may interact with molecules, proteins, or organelles simultaneously to induce specific

bioeffect in the PEF exposure. In our previous studies, the non-contact LIPEF exhibited prom-

ising potential in activating anticancer agent in pancreatic cancer treatment [38] and also in

the neuroprotection of mouse motor neurons [12]. In the current study, LIPEF with different

parameters was applied to the human neural cells for examination of its neuroprotective effect.

Unexpectedly, the LIPEF parameter applied in mouse motor neurons NSC-34 turned out to be

ineffective for human SH-SY5Y cells. The study found that for human SH-SY5Y cells, the neu-

roprotective effect of LIPEF was more pronounced in the high-frequency region, especially

near 200 Hz, quite different from the parameter at 2 Hz for NSC-34 mouse cell line. For

higher-frequency LIPEF, it consists more high-frequency components in its composition.

Therefore, the neuroprotective effect of H-LIPEF for human SH-SY5Y neural cells may be

attributable to the employment of high-frequency components participating in the treatment.

The results also showed that the therapeutic window of the H-LIPEF intensity for SH-SY5Y

cells was near 10 V/cm, which was smaller than the most effective parameter (60 V/cm) for

NSC-34 cells. Therefore, it is evident that the pulse frequency and the field intensity are critical

parameters for therapeutic applications. The parameters (frequency, intensity, and pulse dura-

tion) of LIPEF need to be fine-tuned and optimized for different types of cells or diseases. Fur-

thermore, the study proposes combination of multiple pulses with different parameters to treat

the targeted region simultaneously.

As for the neuroprotective mechanism, it was found previously that the LIPEF treatment

obviously suppressed the H2O2-enhanced expression of ROCK protein in NSC-34 cells. How-

ever, for SH-SY5Y cells, the H-LIPEF simulation did not have significant impact on ROCK

protein expression. It is thus known that the neuroprotective mechanism is not through the

ROCK pathway. In the western blot results, the study proved that such neuroprotective effect

induced by H-LIPEF was through activation of ERK pathway. The ERK pathway plays an

important role in regulating of proliferation and differentiation as well as survival of various

cell types [39]. It transmits external cues, including growth factors into signalling cascade via

the phosphorylation of ERK. Several studies have suggested that the stimulation of ERK path-

way may be a potential way for neuroprotection [20, 21]. Here, the study showed that the

H-LIPEF stimulation induced a significant recovery of the p-ERK level in the cells under H2O2

oxidative stress. The result indicates that the neuroprotection effect produced by H-LIPEF

could be related to the recovery of the H2O2-induced reduction of p-ERK. Moreover, it should

be noted that the normalized p-ERK level (p-ERK/t-ERK) stimulated by H-LIPEF alone was

only slightly higher than the untreated control cells without significant difference (Fig 9A).

The study found that H-LIPEF did not cause cell proliferation as assessed by MTT assay (Fig

2D). Therefore, the result confirmed that the neuroprotective effect of H-LIPEF stimulation

was not caused by the increased cell numbers, but by specific protein pathways induced by

H-LIPEF on SH-SY5Y cells. Furthermore, since the ERK pathway is initiated by the binding of

epidermal growth factor (EGF) to the epidermal growth factor receptor (EGFR), we speculate

that H-LIPEF could have an interaction with EGFR and cause the conformation change of

EGFR, thus triggering the ERK pathway. Previous study had shown that magnetic field could

alter the conformation of TRPV1 ion channel, making it more favorable for capsaicin binding

[40]. The results implicate that the PEF or magnetic field with different parameters could acti-

vate different signalling pathways. In the study, H-LIPEF with 200 Hz frequency and 10 V/cm

field intensity was found to significantly recover the p-ERK protein level and produce the
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neuroprotective effect. The phosphorylation of ERK protein could result in the activation of its

kinase activity and lead to phosphorylation of many downstream targets including certain

transcription factors containing CREB and Nrf2 required for neuroprotection.

CREB is an important transcription factor activated by phosphorylation from ERK or other

kinases. It triggers expression of neurotrophins and antiapoptotic proteins such as brain-

derived neurotrophic factor (BDNF) and B-cell lymphoma 2 (Bcl-2) [41]. Besides, CREB

downregulation is related to the pathology of AD [42], and thus increasing the CREB expres-

sion has been considered as a potential therapeutic strategy for AD. In this study, the result

found that the H-LIPEF treatment notably recovered the expression of p-CREB in the cells

exposed to 500 μM H2O2. On one hand, it is known that CREB phosphorylation regulates Bcl-

2 family proteins including anti-apoptotic Bcl-2 and pro-apoptotic Bax proteins. The antia-

poptotic protein, Bcl-2, has been proposed to be a pivotal component for neuroprotection

[43]. It suppresses apoptosis by heterodimerizing with Bax protein and neutralizes the effects

of Bax. When Bcl-2 is present in excess, cells are protected against apoptosis. It should be also

pointed out that when Bax is excessive and the homodimers of Bax dominate, cells are suscep-

tible to programed cell death. Therefore, it is the ratio of Bcl-2 to Bax which determines the

fate of a cell [44]. In the results, we found that the H-LIPEF treatment obviously restored the

expression of Bcl-2/Bax ratio in the cells exposed to 500 μM H2O2, indicating the prosurvival

effect of H-LIPEF in SH-SY5Y cells.

Another possible mechanism for neuroprotection of the H-LIPEF stimulation may be asso-

ciated with the Nrf2 protein. Nrf2 is also an important transcription factor activated by ERK

pathway. It regulates the expression of various antioxidant proteins and maintains their redox

states in mammalian cells [45]. The results showed that the H-LIPEF treatment obviously

recovered the expression of Nrf2 in the cells exposed to 500 μM H2O2, indicating that the neu-

roprotective effect was due in part to the H-LIPEF induced Nrf2 expression and the antioxi-

dant effect.

In the study, our results confirmed the neuroprotective effect of H-LIPEF stimulation on

SH-SY5Y cells. Because electric field can be modified to focus on a targeted region, it affirms

the applicability of H-LIPEF treatment for different human organs. Moreover, it found that

H-LIPEF technique can significantly reduce treatment risk and time, thanks to its non-contact

and multi-frequency nature. In addition, the study also demonstrated the ability of H-LIPEF

in rescuing the Aβ-induced cytotoxicity. Since the accumulation of misfolded proteins in

brain is also a typical symptom of some NDDs, the study could shed light on future exploration

for optimal LIPEF conditions in the treatment of other NDDs.

In summary, the study demonstrates for the first time that the physical stimulation by

H-LIPEF can protect SH-SY5Y human neural cells from H2O2- and Aβ-induced cytotoxicity.

The underlying molecular mechanism for the neuroprotective effect is partially attributed to

the activation of ERK pathway and the function of some downstream proteins, such as CREB,

Nrf2, and Bcl-2. Further studies are necessary to ascertain the optimal LIPEF conditions for

other NDDs and the involvement of other proteins in the neuroprotective effect. The combi-

nations of H-LIPEF with NDD drugs or natural compounds are also advisable for future

studies.
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