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Exposure to stress induces a series of responses and influences a wide range of
biological processes including sex differentiation in fish. The present work investigated
the molecular and physiological response to thermal stress throughout the early
development stage covering the whole period of sex differentiation of bluegill, Lepomis
macrochirus. Larvae were treated using three temperatures, 17, 24, and 32◦C from 6
to 90 days posthatching (dph) in 30-L round tanks. There is no significant difference
of the sex ratio and survival among the three temperature groups in the geographic
population used in this study. Two ovarian differentiation-related genes foxl2 and
cyp19a1a were detected at 7 dph suggesting that these genes have already played
a role prior to sex differentiation. The expression of foxl2 reached the peak and was
thermosensitive just prior to the onset of ovarian differentiation at 27 dph. Histological
examination displayed that the proliferation of germ cells and ovarian differentiation
were delayed at the low-temperature treatment (17◦C) at 97 dph compared with higher
temperatures. In conclusion, the water temperature regulates the sex differentiation of
bluegill through modulation of the expression of foxl2 and cyp19a1a. A comparative
study of the expression profile of sex differentiation-related genes in species will shed
light on the evolution of sex-determination mechanisms and the impact of stress on sex
differentiation.

Keywords: foxl2, cyp19a, germ cells, stress, sex differentiation, TSD, GSD

INTRODUCTION

Sex could be initiated by genetic or environmental signals (e.g., temperature), and the sex-
determining gene(s) vary among fishes (Kikuchi and Hamaguchi, 2013; Bachtrog et al., 2014; Shen
and Wang, 2014, 2018a; Mei and Gui, 2015; Shen et al., 2016; Wang and Shen, 2018). The sex
differentiation-related genes are relatively conserved (Siegfried, 2010; Kobayashi et al., 2013; Shen
and Wang, 2014). Several studies explored the molecular aspects of sex differentiation, such as
transcription factor genes (foxl2, dmrt1, and sox9) and steroidogenic-related genes (cyp19a1, amh,
and sf-1). This line of research is important because comparative approaches across diverse taxa
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expand the understanding of the molecular function and
interactions, cellular behaviors (e.g., germ cells), and evolution of
signaling pathways in the realization of phenotypic sex.

A general schematic diagram represents the molecular players
that are involved in sex differentiation of teleosts, which
employ genetic sex determination (GSD) (Figure 1). Most of
the interactions between ovarian differentiation-related genes
(e.g., foxl2 and cyp19a1) and testicular differentiation-related
genes (e.g., dmrt1, amh, and sox9) are elusive. However, the
expression patterns are somewhat clear. Of these candidate
genes, foxl2 and cyp19a1a, have received considerably more
attention. The foxl2 is a forkhead domain transcription factor,
which is required for granulosa cell differentiation and ovarian
maintenance (Schmidt et al., 2004; Baron et al., 2005; Uhlenhaut
and Treier, 2006; Corpuz et al., 2010; Kashimada et al., 2011;
Georges et al., 2013). Sexual dimorphic expression of foxl2 during
sex differentiation has been found in all species investigated
except American Alligator Alligator mississippiensis, including
species with either temperature-dependent sex determination
(TSD) or GSD (Table 1). The expression of foxl2 also
generally displays a parabola trend with a climax at the
critical point of or right before sex differentiation. Regarding
TSD, its expression displays a thermo-sensitive pattern, with
female-producing (promoting) temperature increasing and male-
producing temperature decreasing its expression (Table 1). The
pivotal role of the foxl2 gene in fish ovarian differentiation has
been confirmed by the evidence that foxl2 could upregulate
aromatase gene transcription directly by binding to the promoter
region of cyp19a1a, or indirectly through interacting with sf-1
(steroidgenic factor 1, also known as Ad4BP or Nr5a1) (Wang
et al., 2007; Yamaguchi et al., 2007). Furthermore, foxl2 is
regulated by water temperature and involved in temperature-
induced sex reversal in Japanese flounder with TSD (Yamaguchi
et al., 2007). Recently, a research study showed that XX female
medaka with disrupted foxl3 (a paralog of foxl2) developed
functional sperm (Nishimura et al., 2015), suggesting the crucial
role of foxl3 in female fate.

The cyp19a1a gene is expressed in the undifferentiated,
differentiating, and differentiated gonads, as well as organs
of adult fish and encodes aromatase, which is a key enzyme
during the formation of estrogens from androgens (Piferrer and
Blázquez, 2005; Guiguen et al., 2010; Shen and Wang, 2014).
The expression of cyp19a1a is increased prior to morphological
sex differentiation in the gonochoristic fish species and is tightly
related with temperature-induced feminization (Siegfried, 2010;
Shen and Wang, 2014). The cyp19a1a is also involved in natural
sex reversal of hermaphroditic species (Huang et al., 2009).

Changes in the water temperature result in various
physiological and molecular stress responses to maintain
the essential biological functions in fish and other aquatic
species (Eissa and Wang, 2013, 2016; Eissa et al., 2017, 2018).
Bluegill sunfish (Lepomis macrochirus) belongs to Centrarchidae
(Near and Koppelman, 2009) and receives much attention
because of the extraordinary biological characteristics, such as
sex-determining mechanism (Wang et al., 2014; Shen et al.,
2016), hybridization (Shen and Wang, 2018b), and alternative
mating tactics (Gross and Charnov, 1980; Dominey, 1981;

Garner and Neff, 2013). These biological features influence
population sex ratio solely or interactively and make bluegill
to be an excellent organism for investigation of interactions,
population dynamics, speciation, and sexual selection.

To our knowledge, molecular pathways involved in sex
differentiation of bluegill have not been studied yet. Therefore,
the present study aimed to investigate the molecular players that
can regulate the sex differentiation of bluegill.

MATERIALS AND METHODS

Fish, Experimental Design, and Sampling
Points
The experiments were conducted in accordance with the ethical
standards and according to the national and international
guidelines. This study and all experimental procedures involving
animals were performed according to the protocol that was
approved by The Ohio State University Institutional Animal Care
and Use Committee.

Larvae were produced according to the procedures of bluegill
out-of-season spawning established in the Aquaculture Genetics
and Breeding Lab at The Ohio State University South Centers
(Gao et al., 2009; Wang et al., 2014). Newly hatched larvae
were reared at 24 ± 1◦C in 400-L round tanks (spawning
tank). Five-days posthatching (dph) larvae were transferred to
30-L round tanks with aeration and flow-through water. The
experiment consisted of three different temperature treatments:
17, 24, and 32◦C. On the next day of the transfer on 6 dph,
water temperatures were adjusted to targeted ones within a week
period, using cold well water (17◦C), heated water (24◦C), or
heated water plus heaters (32◦C). Temperature treatments were
carried out in triplicates, each having 500 larvae. After 90 dph,
water temperatures for all groups were gradually adjusted to 24◦C
and then maintained at 24± 1◦C until the end of the experiment.
Photoperiod was adjusted at 16 h light and 8 h dark during the
experiment.

Fish were periodically sacrificed with an overdose of MS-
222 (300 mg kg−1) and whole fish samples were collected at
7, 17, 27, 37, and 57 dph from each treatment replicate. These
sampling points cover the critical period of sex differentiation in
bluegill according to Gao et al. (2009). The whole fish samples
were stored in RNAlater R© Stabilization Solution (Ambion R©, Life
Technologies, United States) at 4◦C overnight and transferred
to −80◦C until further analysis. Moreover, six fish from each
temperature group were overanesthetized and fixed in 10%
formalin (Anatech Ltd., MI, United States) at 57 and 97 dph for
histological examination.

RNA Extraction and cDNA Synthesis
Total RNA was extracted from the individual whole fish
samples (except 7 dph, for which 30 samples taken from each
treatment replicate were pooled) by homogenization in TRIzol R©

Reagent (Ambion R©, Life Technologies, United States) following
the manufacturer’s procedure. Concentrations were assessed by
spectrophotometry (NanoDrop 1000, Thermo Fisher Scientific
Inc., United States). The quality of the RNA was checked by
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FIGURE 1 | General schematic diagram of molecular players involved in sex differentiation of gonochoristic teleost with genetic sex determination. Note that this
represents a “typical” sex-differentiation pathway, while large-scale variations exist with respect to timing and sexual dimorphism of expression, as well as regulatory
mechanisms. MPF, male producing/promoting factors, including androgens, estrogen receptor antagonists, aromatase inhibitors, male producing temperature, etc.
FPF, female producing/promoting factors, including estrogens, androgen receptor antagonists, female producing temperature, etc. Upward/downward arrows
indicate the expression of specific gene is upregulated/downregulated, respectively. Arrows pointing to specific gene indicate that the expression is upregulated.
Inhibiting symbols pointing to specific gene indicate that the expression is downregulated. Data refer to D’Cotta et al. (2007); Vizziano et al. (2007); Wang et al. (2007,
2010); Yamaguchi et al. (2007); Baron et al. (2008); Ijiri et al. (2008); Liu et al. (2010); Siegfried (2010); Poonlaphdecha et al. (2013); and Shen and Wang (2014).

electrophoresis on 1% agarose gel (SYBR R© Green stain) and
by A260 nm/A280 nm ratios. Isolated RNA samples were then
treated with RQ1 RNase-Free DNase (Promega Corporation)
according to the manufacturer’s procedure. Total RNA (1 µg) was
reverse-transcribed to cDNA with high-capacity cDNA Reverse
Transcription Kits (Applied Biosystems R©, Life Technologies,
United States) following the manufacturer’s instructions.

Quantitative and Qualitative Gene
Expression Analysis
Real-time reverse transcription polymerase chain reaction
(RT-PCR) reactions were performed with an ABI 7500 real-time
PCR System (7500 Software v2.0.6, Applied Biosystems R©)
using the SYBR R© Select Master Mix (Applied Biosystems).
Primer sequences (5′–3′) used in the present study were:
foxl2 forward CAGAGCATGGCGCTCCCCAGC, reverse
AACGCCGAGTGTTTGGTCTCGTG (target length 227 bp);
18S rRNA forward AGGAATTGACGGAAGGGCAC, reverse
GGTGAGGTTTCCCGTGTTGA (target length 73 bp); and
cyp19a1a forward ACTCACTTAGACGGCTTGGACAG, reverse
CACTCACAGGTACACCCAGGAAG (target length 109 bp).

Primers were designed according to available sequences. The
PCR conditions were optimized through gradient testing
for the best annealing temperature, combining melt curve
and electrophoresis for best primer concentration, etc. before
quantitative analysis. Data analysis using the 2−11Ct method was
applied in the study (Livak and Schmittgen, 2001; Schmittgen
and Livak, 2008). Therefore, primer PCR efficiencies (E) were
evaluated with the standard curve method, and only primers
for foxl2 (E = 104.048%) and 18S rRNA (E = 106.331%) were
adopted for qRT-PCR. Primers for cyp19a1a were only used for
qualitative analysis (express or not). The samples from 7 dph
larvae were applied as a calibrator. Hence, exponential power
for the fold change of gene expression deduced from 2−11Ct

formula can be expressed as follows:

−11Ct = − [(Ct,foxl2 − Ct, 18S rRNA) Time X

−(Ct,foxl2 − Ct, 18S rRNA) Time 0]

Where Ct, foxl2 and Ct, 18S rRNA denote the threshold cycles
(Ct) for the target gene foxl2 and reference gene 18S rRNA,
respectively; Time X denotes different sampling point; Time 0
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TABLE 1 | foxl2 expression profile.

Species Express
before
MGD

Sexual
dimorphic
expression
during SDi

Reverse
parabola

expression

Thermo-
sensitive

Population
used

Positively
correlated

with cyp19a

Regulate
cyp19a
directly

Regulate
cyp19a by

sf-1

SDe mode Reference

Nile tilapia
√ √

× NS XX female
XY male

√
NS NS GSD+TE (Ijiri et al., 2008)

√ √
NS NS XX female

XY male
XY female
XX male

√ √ √
(Wang et al.,
2007)

Japanese
flounder

√ √
NS

√
XX female

√ √
NS GSD+TE£ (Yamaguchi et al.,

2007)

Medaka ×
√

NS NS Mixed sexes# NS NS NS GSD+TE (Nakamoto et al.,
2006)

Airbreathing
catfish

√ √ √
NS Mixed sexes

√
NS NS GSD+TE (Sridevi and

Senthilkumaran,
2011)

Rainbow trout
√ √

NS NS XX female
XY male

√
NS NS GSD+TE (Baron et al.,

2004)
√ √ √

NS XX female
XY male

× NS NS (Vizziano et al.,
2007)

Willow minnow
√

NS NS NS Mixed sexes NS NS NS GSD+TE£ (Ashida et al.,
2013)

Zebrafish
√ √ √

NS Mixed sexes§ NS NS NS GSD+TE (Hossain, 2010)

Oryzias
luzonensis

√ √
NS NS Mixed sexes§ NS NS NS GSD+TE (Nakamoto et al.,

2009)

Pacific oyster NS NS
√ √

Mixed sexes NS NS NS GSD+TE (Santerre et al.,
2013)

American
alligators

√
× NS × Mixed sexes

∫
NS NS NS TSD (Janes et al.,

2013)

Snapping turtle
√ √ √ √

Mixed sexes
∫

NS NS NS TSD (Shoemaker-Daly
et al., 2010)

Red-eared
slider turtle

√

√

√

√
NS
NS

√

√
Mixed sexes

∫
Mixed sexes

∫ NS
NS

NS
NS

NS
NS

TSD (Loffler et al.,
2003)
(Shoemaker
et al., 2007)

Bluegill sunfish
√

NS
√ √

Mixed sexes NS NS NS GSD or
TSD or
GSD+TE

Present work

MGD, morphological gonad differentiation; SDi, sex differentiation; SDe, sex determination; GSD, genetic sex determination; TSD, temperature-dependent sex
determination; TE, temperature effects.

√
, yes; ×, no; NS, not studied. #, genetic sex could be identified by PCR-based strategy. §, sex could be distinguished by

a molecular marker.
∫

, mono-sex was produced at female/male producing temperature. £, Sex determination has been claimed as GSD+TE or TSD, here we refer to
Ospina-Álvarez and Piferrer (2008).

denotes the calibrator sampling point, which was 7 dph in the
study.

Triplicates were run in a MicroAmp R© Optical 96-Well
Reaction Plate (Applied Biosystems R©) in a final volume of 20 µL,
which consisted of 10 µL SYBR R© Select Master Mix (2×), 300 nM
of each primer (final concentration), 1 µL cDNA template (from
50 ng RNA), and double distilled water. Cycling parameters
were 50◦C for 2 min, 95◦C for 2 min, followed by 40 cycles of
amplification at 95◦C for 15 s, annealing at 60◦C for 15 s, and
extension at 72◦C for 1 min. Finally, the temperature melt curve
step was performed at the end of the amplification phase to check
non-specific amplification. In addition, electrophoresis of PCR
products was performed to check early expression of cyp19a1a,
foxl2, and 18S rRNA qualitatively, non-specific amplification,
and the length of target genes. Raw data were exported from

7500 Software v2.0.6 in Excel format for further statistical
analysis.

Histological Analysis and Sex
Identification
Histological sectioning was carried out to investigate the effects of
temperature on sex differentiation. The fish heads were removed
prior to the branchiostegal membrane, and the tails were
removed after the anal opening. The remaining middle portion
samples were transferred into 70% ethanol, dehydrated, and
embedded in paraffin. Cross- or longitudinal sections of 6–7 µm
were cut, and slices were stained with H&E, and counterstained
with eosin. Tissue slices were examined and photographed under
a light microscope with an imaging system (Olympus MicroSuite
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FIVE, FL, United States). Development stages and cellular
identification were based on descriptions and photographs from
Gao et al. (2009). All fish were overanesthetized and subjected
to sex identification under microscope using the gonadal squash
method at the age of 170–190 dph.

Statistical Analysis
Differences in mean gene expression among three different
temperature treatments and at different days posthatching were
analyzed by two-way analysis of variance (Two-Way ANOVA,
General Linear Model). Before the analysis, data were tested
for normality (Shapiro-Wilk test) and gene expression levels ln
(natural log) transformed to ensure the homogeneity of variances.
Differences of sex ratio among the three temperature groups or
deviation from the balanced sex ratio of 1:1 were analyzed by Chi-
squared test. Statistical analyses were performed with IBM SPSS
Statistics Version 19. Differences were considered statistically
significant when P < 0.05.

RESULTS

Early Expression of foxl2 and cyp19a1a
Both genes related to sex differentiation, foxl2 and cyp19a1a, were
expressed as early as 7 dph (at 5.5 mm total length, Figure 2).

Temporal Expression of foxl2 and
Temperature Effects
The RT-qPCR standard curves exhibited a significant linear
relationship between the values of threshold cycle (CT) and
the gene copy number in both foxl2 and 18S rRNA genes
(Supplementary Figure S1). The PCR efficiencies of both genes
were high (104.048 and 106.331%), indicating the reliability of
primers for quantification of these genes.

Expression of foxl2 increased dramatically from 7 to 17 dph,
stabilized from 17 to 27 dph, and then started to decrease
significantly at 37 dph (Figure 3). Remarkable effects of
temperature on foxl2 expression were observed at 27 dph, where
foxl2 expression was the highest in 17◦C treatment and the
lowest in 24◦C treatment. No dph–temperature interaction on

FIGURE 2 | Expression of sex differentiation-related gene foxl2 and cyp19a1a
at 7 and 17 days posthatching (dph) in bluegill L. macrochirus. The leftmost
sample in sample group of each gene was from 7 dph individual, and the rest
two or three were from 17 dph individuals. The leftmost column was molecular
size marker.

foxl2 expression was observed. Furthermore, the expression of
foxl2 of four individuals at 37 dph in 32◦C treatment was
dramatically lower than other groups, even significantly lower
than the samples at 7 dph.

Gonadal Histology
Gonadal histology of bluegill larvae at different rearing
temperatures was investigated from 57 to 97 dph in the
present work (Figure 4). Sex could be distinguished in
the 24◦C (Figures 4D,E) and 32◦C treatment groups
(Figures 4H,I), but not in the 17◦C group (Figure 4A) at
57 dph. Ovaries differentiated earlier, in which primordial germ
cells overnumbered on 57 dph in comparison with presumptive
testis of larvae reared at 24 and 32◦C. In addition, ovaries
developed dramatically from 57 to 97 dph in light of which the
perinucleolus stage oocytes had been observed at 97 dph both in
the 24 and 32◦C groups (Figures 4F,J). In contrast, testes did not
display obvious changes from 57 to 97 dph (Figures 4G,K) in any
treatment group, other than size increase. Ovarian development
was inhibited by low temperature because sex could not be
identified up to 97 dph in the 17◦C group (Figures 4B,C).

DISCUSSION

The foxl2 and cyp19a1a Play a Role
Before the Onset of Morphological
Ovarian Differentiation
In this study, we showed that the expression of the two sex
differentiation-related genes, foxl2 and cyp19a1a, were detected
in bluegill larvae at 7 dph (Figure 2), which is much earlier
than morphological gonadal differentiation (Gao et al., 2009).
The foxl2 gene is a regulator of the aromatase gene (Pannetier
et al., 2006; Wang et al., 2007). In tilapia, alteration of the
expression of foxl2 could cause sex reversal of XX females to
males, while overexpression of foxl2 leads to degeneration of
the testicular structure and a stimulation of estrogen production
(Wang et al., 2007). Estrogen or aromatase inhibitor treatment
during the labile period of sex differentiation suggested that
foxl2 is regulated through a positive feedback mechanism
(Baron et al., 2004; Liu et al., 2007): foxl2–aromatase gene–
aromatase–estrogen–foxl2 (Figure 1). The expression of foxl2
was detected before morphological gonadal differentiation in all
investigated species except medaka, indicating its role prior to sex
differentiation. Furthermore, expression of foxl2 is significantly
increased just at the onset of or during sex differentiation,
strongly supporting the notion that foxl2 plays an essential role
in ovarian differentiation.

The cyp19a1a and estrogens are key players during the
ovarian differentiation in fish (Piferrer and Blázquez, 2005;
Guiguen et al., 2010; Shen and Wang, 2014). Expression of
cyp19a1a has been detected prior to sex differentiation (Shen
and Wang, 2014). The present work showed that cyp19a1a is
expressed prior to sex differentiation, suggesting its essential
role in ovarian differentiation. However, future studies are
warranted to focus on the underlying mechanism connecting
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FIGURE 3 | Temporal expression of foxl2 and temperature effects in the early life stage of bluegill L. macrochirus normalized against 18S rRNA measured by
real-time RT-PCR. Results are mean ± SE. Different letters in 27 days posthatching (dph) sampling point indicate significant difference among temperature
treatments. Asterisks denote significant difference between 17 and 37 dph groups or 17 and 57 dph groups; NS, no significance between 17 and 27 dph group
when pooling different temperature treatments together. Gray shadow area indicates that histological sex differentiation occurs between 30 to 60 dph according to
our previous study (Gao et al., 2009).

environmental factors (e.g., water temperature) and cyp19a1a
expression.

Expression of foxl2 Was
Thermo-Sensitive
The expression of foxl2 was thermo-sensitive and significant
differences were found between temperature treatments at
27 dph prior to the onset of morphological sex differentiation
(Figure 3). However, no significant differences have been
detected in sex ratio among the three temperature treatments.
The present study shows that the low temperature treatment
(17◦C) suppressed the growth and inhibited gonad development
as well (Figures 4A–C). The progress of sex differentiation
is more dependent on length than on age (Piferrer et al.,
2005; Gao et al., 2009). Furthermore, the growth is related
to phenotypic sex in European sea bass (Saillant et al.,
2001) and assigned as growth-dependent sex differentiation
(Ospina-Álvarez and Piferrer, 2008). The so-called growth-
dependent sex differentiation was observed in southern
brook lamprey (Ichthyomyzon gagei), American eel (Anguilla
rostrata), and olive flounder (Kraak and De Looze, 1992;
Ospina-Álvarez and Piferrer, 2008). This study suggests that
bluegill from different geographic locations might have different
genotypes and sensitivity to environmental temperatures.
Therefore, sex differentiation of bluegill could be more

complicated and mysterious because of growth-dependent sex
differentiation or TSD.

Thermosensitivity of foxl2 has been reported in Japanese
flounder (Paralichthys olivaceus) in which temperature treatment
(18 or 27◦C) could result in 100% sex reversal. The expression
of foxl2 also varied with rearing temperatures in Pacific oyster
(Santerre et al., 2013). Therefore, foxl2 is the key regulator
for the sex differentiation. In species with TSD, no consistent
genetic differences exist between female and male (Valenzuela
et al., 2003; Conover, 2004; Ospina-Álvarez and Piferrer, 2008;
Shen and Wang, 2014). Moreover, in TSD species, the ambient
temperatures trigger the gonadal differentiation (Shoemaker and
Crews, 2009). In species with GSD (or with GSD+TE), the
initiation of sex differentiation is activated by sex-determining
gene(s). Therefore, the comparative analysis of the expression
profile of foxl2 and other sex differentiation-related genes will
further enhance the understanding of the evolution of sex-
determination mechanisms.

Thermal Stress on foxl2 Expression and
Ovarian Development
Temperature has an extensive influence on an organism,
including a series of physiological and biochemical processes,
which results in a specific phenotype (Mccue, 2004). The water
temperature influences developmental, behavioral, physiological,
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FIGURE 4 | Gonadal histology of bluegill L. macrochirus in three
temperature-treatment groups (17, 24, and 32◦C) at 57 and 97 days
posthatching (dph). Solid triangles indicate gonads. Five-pointed stars denote
the place of swim bladder. 17◦C group: (A) undistinguishable gonad at
57 dph. (B,C) undistinguishable gonad at 97 dph. 24◦C group: (D)
presumptive ovary at 57 dph, arrows indicate several germ cells.
(E) presumptive testes at 57 dph, arrow indicates germ cell. (F) ovary at
97 dph, arrow points to peri-nucleolus oocyte. (G) testes at 97 dph. 32◦C
group: (H) presumptive ovaries at 57 dph, arrow indicates germ cell.
(I) presumptive testis at 57 dph. (J) ovary at 97 dph, arrows point to
peri-nucleolus oocytes. (K) testes at 97 dph, arrow indicates germ cell.

and morphological traits in many kinds of animals, especially
in reptiles and fish (Mccue, 2004; Rhen and Lang, 2004; Booth,
2006). However, there is poor understanding of how temperature
transduces molecular signals into the body and affects sex
differentiation-related genes (Shen and Wang, 2014, 2018a).
The present study exhibits that low temperature increased the
expression of foxl2 at 27 dph, while low-temperature treatment
suppressed ovarian development as revealed by histological
examination (Figure 3). In Pacific oyster, the best growth
performance was observed between 27 and 32◦C (Rico-Villa et al.,
2009). However, low temperature (18◦C) suppressed gonadal
differentiation and increased expression of foxl2, while high
temperature promoted gonadal differentiation and decreased
expression of foxl2 (Santerre et al., 2013). Bluegill has better
growth performance at water temperature of 28 and 32◦C
(Beitinger and Magnuson, 1979). The inconsistency in the

current findings can be explained by that foxl2 is only thermo-
sensitive during the critical period of sex differentiation (around
27 dph). Moreover, foxl2 is not involved in TSD in bluegill
because its elevated expression did not affect sex ratio in
the low-temperature group. Therefore, the expression changes
of foxl2 might be a result of physiological development.
Temperature effects on foxl2 expression during critical period
of sex differentiation or its effects on germ cells have been
investigated (Lee et al., 2009; Pandit et al., 2015). However, the
effects of foxl2 on both of them have not been reported yet.
Further studies are required to address the expression difference
of sex differentiation-related genes, e.g., foxl2, cyp19a1a, dmrt1,
and amh, in species with both GSD and TSD and the roles of these
genes in the transition of sex-determining mechanisms.

Thermal Stress on Primordial Germ Cells
and Sex Differentiation
Mitotic proliferation of primordial germ cells and formation of
the ovarian cavity are acceptable indictors of the initialization
of ovarian differentiation in teleost (Nakamura et al., 1998).
This study shows that the germ cells of bluegill in putative
ovaries outnumbered those in putative testes (Figures 4D,E,H,I).
This study shows delayed proliferation and reduced numbers
of germ cells in the low-temperature treatment (17◦C) and
morphological sex differentiation had not been detected up
to 97 dph (Figure 4). In pufferfish (Takifugu rubripes),
high-temperature treatment during early gonadal development
induced germ cell degeneration and masculinization of ovarian
somatic cells (Lee et al., 2009). In Nile tilapia, high temperature
treatment (37◦C) also resulted in a permanent depletion of germ
cells indicating the involvement of germ cells in temperature-
induced sex reversal (Pandit et al., 2015). Furthermore, germ
cell ablations have confirmed the involvement of germ cells
in sex differentiation in zebrafish (Danio rerio) and medaka
(Slanchev et al., 2005; Kurokawa et al., 2007; Siegfried and
Nüsslein-Volhard, 2008) and no involvement in loach (Misgurnus
anguillicaudatus) and goldfish (Carassius auratus) (Fujimoto
et al., 2010; Goto et al., 2012). Germ-cell-deficient genotypic
female in zebrafish developed as sterile males, which are able to
mate with normal females and induce them to lay eggs (Slanchev
et al., 2005). These findings may be of practical importance
for fish population control or fisheries management through
production of genetically modified male (even YY super-male)
and/or disturbing the germ cells, which may cause rapid decrease
in population.

CONCLUSION

The present work investigated the molecular and physiological
response to thermal stress throughout the early development
stage of sex differentiation in bluegill. Our results suggest that
the two ovarian differentiation-related genes, foxl2 and cyp19a1a,
play a role prior to sex differentiation of bluegill. The foxl2 may
be involved in TSD in some species, but not in others. Further
studies will focus on the comparative analysis of molecular
network of sex differentiation.
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