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Abstract: Cardiac development is a complex process that is strictly controlled by various factors,
including PcG protein complexes. Several studies have reported the critical role of PRC2 in car-
diogenesis. However, little is known about the regulation mechanism of PRC1 in embryonic heart
development. To gain more insight into the mechanistic role of PRC1 in cardiogenesis, we generated
a PRC1 loss-of-function zebrafish line by using the CRISPR/Cas9 system targeting rnf2, a gene
encoding the core subunit shared by all PRC1 subfamilies. Our results revealed that Rnf2 is not
involved in cardiomyocyte differentiation and heart tube formation, but that it is crucial to main-
taining regular cardiac contraction. Further analysis suggested that Rnf2 loss-of-function disrupted
cardiac sarcomere assembly through the ectopic activation of non-cardiac sarcomere genes in the
developing heart. Meanwhile, Rnf2 deficiency disrupts the construction of the atrioventricular canal
and the sinoatrial node by modulating the expression of bmp4 and other atrioventricular canal marker
genes, leading to an impaired cardiac conduction system. The disorganized cardiac sarcomere and
defective cardiac conduction system together contribute to defective cardiac contraction. Our results
emphasize the critical role of PRC1 in the cardiac development.

Keywords: Rnf2; PRC1; cardiac contraction; sarcomere assembly; cardiac conduction system

1. Introduction

As the first organ to generate and function in the embryo, heart development is strictly
regulated by various molecules and signal pathways. To become mature and functional,
the embryonic heart undergoes a series of complex processes, including the specification
and differentiation of cardiac lineages, the morphogenesis of the heart tube, looping,
the assembly of cardiac chambers, the constriction of the atrioventricular canal, and the
establishment of proper cardiac functions [1–3]. Errors in any of these processes can cause
congenital heart malformations [4,5].

The main function of the heart is to drive blood circulation with sturdy contractions
triggered by electrical impulses. Defects in cardiac function are often due to abnormalities
in the cardiac contractile apparatus or the cardiac conduction system (CCS) [3]. The cardiac
contractile apparatus, namely the cardiac sarcomere, provides a structural basis for cardiac
contraction [6]. The cardiac sarcomere is mainly composed of two filamentary systems, the
thick and thin filaments. The myosin-based thick filaments constitute the electron-dense A-
bands, whereas the actin-based thin filaments make up the least electron-dense I-bands. The
M-lines, anchoring the bipolar thick filaments, are located in the middle of the A-bands. The
Z-disc, located in the middle of the I-bands and anchoring the end of the thin filaments and
the third filament system in the sarcomere-titin filaments, defines the boundary between
two adjacent sarcomere units [6–8]. The development of a functional cardiac sarcomere
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requires promoting the expression of cardiac sarcomere genes and repressing the expression
of non-cardiac sarcomere genes in the heart. The ectopic activation of non-cardiac myofibril
genes in the developing heart can disrupt cardiac sarcomere formation and cause impaired
cardiac function [9].

The CCS is responsible for initiating and propagating proper electrical impulses to
generate and maintain coordinated cardiac contraction [10]. The sinoatrial node (SAN)
and the atrioventricular canal (AVC) are two critical components of the CCS [10]. The
specialized pacemaker myocyte in SAN initiates the electrical impulse. The AVC, where
the atrioventricular node and the atrioventricular bundle are located, is critical for the
conduction delay and electrical impulse propagation that lead to the coordinated con-
traction of the atrium and ventricle [10]. The specification of the AVC can be defined by
the restricted expression of notch receptor 1b (notch1b), hyaluronan synthase 2 (has2), and
activated leukocyte cell adhesion molecule a (alcama) in the endocardium, as well as T-box
transcription factor 2b (tbx2b), bone morphogenetic protein 4 (bmp4), and versican a (vcana) in the
myocardium [3,11]. Multiple AVC marker genes present a specific change in the expression
region from throughout the anteroposterior extent of the heart to specific cells within
the AVC, such as bmp4, vcana, and notch1b [11,12]. Expanded expression of AVC marker
genes can cause AVC malformation and result in a dysmorphic heart with disordered
cardiac contraction [13,14]. The gene bmp4 is also expressed in pacemaking cells in the
SAN, targeted directly by the homeodomain transcription factor Shox2, which is essential
for sinoatrial valve formation and pacemaking system development [15,16].

As well-known epigenetic regulators [17], the Polycomb Group (PcG) proteins are
involved in a plethora of biological processes, including epigenetic inheritance [18], X-
chromosome inactivation [19,20], stem cell self-renewal [21], senescence [22], and tumori-
genesis [23–25]. The PcG proteins primarily form two principal complexes, Polycomb-
repressive complex 1 (PRC1) and Polycomb-repressive complex 2 (PRC2). PRC2 is re-
sponsible for the trimethylation of Lys27 on histone H3 (H3K27me3) via the EZH2 or
EZH1 protein subunit, while PRC1 catalyzes the ubiquitination of Lys119 on histone H2A
(H2AK119ub) through E3 ligase RING1 [26,27]. Although PRC1 complexes show high
complexity in their composition, RING1 is shared by all PRC1 subfamilies [28]. Two RING1
homologues (Ring1a and Ring1b/Rnf2) located in the mice genomes, and both of them
can assemble into PRC1 [28]. Ablating RING1A and RNF2 simultaneously lead to lethal
aplasia in mice [26]. Only one RING1 ortholog, namely rnf2, exists in the zebrafish genomes.
The rnf2 mRNA distribution was not spatially restricted during development, with ob-
vious expression in the brain and pectoral fin [29]. The deletion of Rnf2 induces severe
developmental defects in zebrafish embryos, including craniofacial abnormality and the
absence of pectoral fins [29,30]. A recent study has shown that Rnf2 may regulate cardiac
looping by repressing tbx2/3 expression [31]. However, the conclusion was mainly drawn
from 3 dpf embryos. The mechanism through which Rnf2 regulates early cardiogenesis
remains elusive.

To obtain further insight into the role of PRC1 in early cardiogenesis, we generated
zebrafish Rnf2 mutants by using the CRISPR/Cas9 system. We found that Rnf2 is cru-
cial to maintaining regular cardiac contraction. Rnf2 loss-of-function disrupts cardiac
sarcomere assembly and CCS construction by dysregulating specific transcription pro-
grams. Our results emphasized the critical role of PRC1 in the development of zebrafish
embryonic hearts.

2. Results
2.1. Loss of Rnf2 Caused Embryonic Lethality with Severe Cardiac Defects

To investigate the role of PRC1 in embryonic development, we generated an Rnf2
mutant zebrafish line using the CRISPR/Cas9 system. The exon 3 of rnf2 was targeted
and two mutant alleles (rnf2f5 and rnf2f8) were generated, as revealed by genotyping
(Figure 1A,B). The two mutant alleles were predicted to encode the truncated proteins
lacking both the RING and RAWUL domains (Figure 1C). No obvious difference was found
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between the control and mutant embryos at 24 hpf, suggesting that Rnf2 is not required
for the formation of a basic body structure in zebrafish. However, rnf2−/− embryos can
be separated from their rnf2+/+ and rnf2+/− siblings morphologically as early as 36 hpf,
as the mobility of rnf2−/− embryos is reduced [29]. At 72 hpf, rnf2−/− embryos exhibited
pleiotropic phenotypes, including defective craniofacial structures, small eyes, missing pec-
toral fins and clear pericardial edema encompassing a stringy heart with weak contractility
(Figures 1D,E and S1), which was consistent with previous reports [29–31]. The rnf2−/−

larvae usually die within a week, most likely of severe heart failure.
To gain a more detailed view of the cardiac defects in rnf2−/− embryos, we performed

histological analyses on the hearts of 4 dpf embryos. The results showed that the heart
in the rnf2−/− embryos was spindly, with fusiform atriums and ventricles. Unlike the
heart of the wild-type embryos, which displayed a constrictive AVC between the atrial
and ventricular chambers and protruded well-formed primitive valve leaflets, the AVCs of
the rnf2−/− embryos were less constricted and the primitive valve leaflets were missing
(Figure 1F). These results suggested that the formation of the AVC and primitive valves are
severely disrupted in rnf2−/− embryos.

To verify that the cardiac defects resulted from the functional deficiency of Rnf2, we
first collected the assumptive rnf2−/− embryos with pericardial edema and stringy hearts
and investigated their Rnf2 protein levels through western blotting. As we expected,
unlike the wild-type embryos showing high Rnf2 levels, no Rnf2 was detected in the as-
sumptive rnf2−/− embryos, and H2AK119ub1 enrichment was also decreased to an almost
undetectable level (Figure 1G). The residual H2AK119ubi might have been contributed
by maternal Rnf2. We also performed rescue assays by microinjecting exogenous rnf2
mRNA into the 1-cell-stage embryos from rnf2+/− self-cross and counted the embryos with
and without pericardial edema at 72 hpf. The results showed that the overexpression of
rnf2 reduced the percentage of embryos with edema from 32% to 17% (Figure 1H). As
expected, the percentage of embryos with the stringy heart phenotype was also reduced to
a similar extent. These data strongly suggested that the observed heart defects were caused
specifically by Rnf2 loss-of-function.

2.2. The Cardiac Contraction Was Disrupted in the Rnf2-Null Embryos

It was observed that the hearts of the rnf2−/− embryos contracted much slower than
those of the wild-type at 72 hpf. To determine when the cardiac contractions began to be
affected, we measured the heart rates of the rnf2−/− and wild-type embryos at different
developmental stages. In the wild-type embryos, the heart started to contract by about
20 hpf and sped up with development (Figure 2). The hearts of the rnf2−/− embryos
started to contract by about 20 hpf as well, but the heart rates increased more slowly,
leading to a reduced heart rate at 24 hpf (Figure 2). Furthermore, the heart rates of the
rnf2−/− embryos even decreased at 84 hpf (Figure 2). These data showed that the cardiac
contraction of rnf2−/− embryos was affected as early as 24 hpf, indicating that defects in
cardiac development began no later than 24 hpf.
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Figure 1. Rnf2-null zebrafish mutant displayed severe cardiac defects. (A) The target site (sequence highlighted in blue) is
located in exon 3. The PAM site is underlined and highlighted in red; (B) DNA sequencing identified that two mutant alleles
carried a 5 bp (rnf2f5) and 8 bp (rnf2f8) deletion respectively. The deletion sites are indicated by red arrows; (C) Schematic
diagram of the wild-type and mutant Rnf2 proteins. Zebrafish wild-type Rnf2 contained an N-terminal Ring-finger domain
(yellow) and a C-terminal RAWUL domain. The two mutant proteins were truncated before the RING-finger domain; (D)
The rnf2−/− larvae displayed severe pericardia edema. The hearts are indicated by white arrows, the stringy heart in rnf2−/−

is depicted by white dotted lines, scale bar: 0.2 mm; (E) Scatter plot showing the sectional area of edema in wild-type
(black) and rnf2−/− (red). (F) Histological sections of 4 dpf heart, boxes in yellow indicate the AVC and valves, white boxes
indicate the bulbous arteriosus, scale bar: 50 µm, n(WT) = 2, n (rnf2−/−) = 3; (G) Western blot verified the deletion of Rnf2
protein. Gapdh was set as internal reference; (H) Bar graph showing the percentage of embryos with edema. **, p < 0.01;
***, p < 0.001; n, sample number.
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Figure 2. The cardiac contraction was disrupted in Rnf2-null zebrafish embryos. Scatter plot showing
the heart rates of wild-type (blue) and rnf2−/− (red) embryos at different developmental stages.
Numbers in the bottoms of the bars indicate the sample number of each group. ***, p < 0.001.

2.3. The Mesoderm Formed Normally in the Rnf2-Null Zebrafish Embryos

During the cardiogenesis process, both cardiomyocytes and endocardial cells originate
in the mesoderm [32–34]. Since the cardiac contractions of the rnf2−/− embryos were
affected just as the hearts started beating, we wondered whether the cardiac development
became defective even earlier. To investigate whether the cardiac defects resulted from
aberrant mesoderm formation, we examined the expression of the representative mesoderm
markers eve1 (ventral mesoderm), flh (axial mesoderm), and foxc1a (paraxial mesoderm) at
8 hpf by using WISH. The WISH results showed that these mesoderm markers expressed
normally in the absence of Rnf2 (Figure 3), indicating that mesoderm formation was not
affected in the rnf2−/− embryos.

Figure 3. The mesoderm formed normally in Rnf2-null zebrafish embryos. WISH results showing
expression of mesoderm markers eve1 (ventral mesoderm), flh (axial mesoderm), and foxc1a (paraxial
mesoderm). The expression regions are indicated by white arrows. Scale bar: 0.2 mm.

2.4. The Heart Tube Structure Appeared Normal in the rnf2−/− Embryos

Given the normal mesoderm formation, we wondered whether the cardiac progenitor
specification, migration, and heart tube generation were affected in the rnf2−/− embryos.
We first examined the expression of pan-myocardial gene cardiac myosin light chain 2 (cmlc2)
at different developmental stages. The results showed that at 24 hpf and 36 hpf, the
expression of cmlc2 in the rnf2−/− embryos displayed no obvious difference from that of
the wild-types (Figure 4A). At 48 hpf and 72 hpf, except for the alteration in the shape
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of the expression region, which may have been due to variations of the heart shape, the
transcription level of cmlc2 still showed no obvious difference (Figure 4A). We then detected
the expression of the atrial and ventricular myocardium-specific genes atrial myosin heavy
chain (amhc) and ventricular myosin heavy chain (vmhc). The expression of amhc and vmhc
showed no significant anomalies (Figure 4B). The expression of the cardiac regulation
genes tbx20 and natriuretic peptide A (nppa) was normal as well (Figure 4C,D). These results
indicated that the myocardial specification and migration were largely normal in the
rnf2−/− embryos.

Figure 4. Expression of cardiomyocyte markers examined by in situ hybridization. (A) cmlc2 at different developmental
stages; (B) Atrial (amhc) and ventricle (vmhc) cardiomyocyte markers at 24 hpf and 36 hpf; (C) Growth factor nppa at 24 hpf,
30 hpf, and 36 hpf; (D) tbx20 at 24 hpf; (E) Expression of endocardial precursor marker gene has2 and endothelial marker
gene kdrl in the heart and blood vessels, white arrows indicate the heart tube; (F) Expression of endothelial marker gene
cdh5 in the heart. The expression of genes in the heart is indicated by white arrows. Scale bar: 0.2 mm.

The heart tube is composed of an outer myocardial layer and an inner endothelial layer
at early stages. We also examined the expression of the endothelial marker has2 at 6-somite
stage, as well as kinase insert domain receptor-like (kdrl) at 24 hpf and cadherin 5 (cdh5) at
52 hpf. The results showed the normal expression of all these three genes, indicating that the
endocardium largely formed normally in the rnf2−/− embryos (Figure 4E,F). These results
suggested that cardiac progenitor specification and migration are not strictly dependent on
Rnf2, and that the heart tube formation appeared normal in the rnf2−/− embryos.

2.5. Rnf2 Deficiency Disorganized the Sarcomere Assembly in Zebrafish Hearts

Cardiac contraction deficiency is often due to abnormalities in the cardiac contractile
apparatus or the CCS [3]. The cardiac sarcomere is the contractile unit of the heart, provid-
ing a structural basis for cardiac contraction [6]. To verify whether the cardiac sarcomere
assembly was disrupted in the rnf2−/− embryos, we first detected the transcription of genes
associated with non-cardiac myofiber, including skeletal and smooth muscle myofibers,
in the embryonic hearts. Compared with the controls (wild-type or sibling embryos), the
expression of skeletal and smooth muscle genes was dysregulated in the hearts of the
rnf2−/− embryos (Figure 5A). At 24 hpf, the expression of the skeletal muscle genes acta1a,
myl1, tnni2b, and tnnt3a was significantly upregulated, while the expression of the cardiac
sarcomere gene acta1b and the smooth muscle genes myl6, myl9b, and ppp1r12 was not
affected (Figure 5A). Later on, the transcription levels of cardiac acta1b and the smooth
muscle genes acta2, myl9b, ppp1r12, and myh11a were elevated gradually and all were up-
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regulated significantly at 48 hpf, while the expression of skeletal muscle genes was reduced
gradually and downregulated significantly at 48 hpf (Figure 5A). These results prompted
us to deduce that the cardiac sarcomere of the rnf2−/− embryos may have been defective.
To verify this deduction, we further examined the cardiac structure of the wild-type and
mutant embryos by using TEM. The results showed that the cardiac sarcomere structure of
the rnf2−/− embryos was different from that of the wild-types (Figure 5B). The myofibril
fibers in the rnf2−/− embryos were arranged more tightly. The I-band and Z-disc in the
rnf2−/− hearts were significantly wider than in those of the wild-type embryos (Figure 5C).
Thus, we propose that the loss of Rnf2 may trigger defective cardiac sarcomere alignment
via the ectopic transcription activation of non-cardiac sarcomere genes in the developing
heart, contributing to severe cardiac contractile defects in rnf2−/− embryos.

Figure 5. Rnf2 deficiency disorganized sarcomere assembly in zebrafish hearts. (A) Real-time PCR tested the expression
of skeletal and smooth muscle genes at 36 hpf (left) and 48 hpf (right). The fold changes of relative mRNA levels are
presented as mean ± SEM. The expression in wild-types was normalized to 1. The experiment was repeated on three
separate occasions. n = 159, 111, and 161 for rnf2−/− group at 24 hpf, 36 hpf, and 48 hpf, respectively; n = 145, 113, and
164 for WT group at 24 hpf, 36 hpf, and 48 hpf, respectively. (B) Cardiac TEM revealed the sarcomere of cardiac muscle was
abnormal in rnf2−/− hearts. A, A-band; I, I-band; H, H-zone; Z, Z-disc. Scale bar: 1.0 µm. n = 3. (C) Bar graph showing
the width of A-band, I-band, Z-disc, and H-zone in wild-type and rnf2−/− cardiac sarcomeres. *, p < 0.05; **, p < 0.01;
***, p < 0.001; NS, no significant.

2.6. Rnf2 Deficiency Caused Defects in the Cardiac Conduction System

As well as abnormalities in the contractile apparatus, the deficiency in the CCS
can cause contraction defects. Histological analysis showed that the AVC in the rnf2−/−

embryos was not as constrictive as in the wild-type embryos. The AVC is a core component
of the CCS; this prompted us to speculate that the CCS in the rnf2−/− embryos may be
defective. To confirm this speculation, we first examined the AVC patterning by detecting
the expression of vcana and alcama in rnf2−/− embryos by using WISH (Figure 6A). In the
control embryos, the AVC was well formed between the atrial and ventricular chambers,
and the expression of alcama and vcana was restricted to the AVC region. By contrast,
the rnf2−/− embryos lacked a clear AVC ring, and the mRNA distribution of alcama and
vcana was diffused and extended into the flanking chambers, instead of being restricted
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to the AVC (Figure 6A). These results indicated that the AVC constriction was disrupted
in the hearts of the rnf2−/− embryos. Furthermore, we detected the expression of bmp4
at 48 hpf and 56 hpf in the rnf2−/− embryos (Figure 6B). With a shorter staining time of
48 hpf embryos, the expression of bmp4 at the AVC was expanded in the rnf2−/− embryos,
as was that of alcama and vcana (Figure 6B). Furthermore, at 56 hpf, with a longer staining
time, the expression of bmp4 at SAN was clearly reduced (Figure 6B), indicating that the
specialized pacemaker myocytes in SAN were decreased. These data suggested that the
CCS was disrupted in the rnf2−/− embryos.

Figure 6. Rnf2 deficiency caused defects in the cardiac conduction system. (A) Expression of AVC myocardial markers vcana
and alcama; (B) Expression of AVC endocardial and SAN marker bmp4. Red arrows indicate AVC; (C) Fluo-4 staining detects
calcium signal intensity in the hearts of rnf2−/− or wild-type embryos; V, ventricle; A, Atrium; #1/#2, sample number; n = 2.
(D) Quantification of fluorescence intensity in Figure 6C. *, p < 0.05; Scale bar: 0.2 mm.

Calcium signaling is a crucial indicator of CCS function. To map the cardiac conduction
optically, we monitored the calcium signal intensity in individual embryonic hearts using a
calcium-sensitive dye, fluo-4 AM [35]. Our results showed that the calcium signal intensity
in the hearts of the rnf2−/− embryos was dramatically reduced when compared with that of
the wild-types (Figure 6C,D), which further supported the argument that Rnf2 deficiency
disrupted the CCS in the embryonic hearts, indicating the crucial role of Rnf2 in zebrafish
CCS construction.

Taken together, our results suggested that Rnf2 helps to generate proper cardiac con-
traction by regulating the expression of genes associated with cardiac sarcomere assembly
and the cardiac conduction system.

3. Discussion

Cardiac development is a complex process strictly controlled by various factors, in-
cluding the PcG protein complexes. Cardiac-conditional EZH2 deficiency causes severe
cardiac defects, including persistent hypertrabeculation, right ventricular hypoplasia, atrial
and ventricular septal defects, myocardial fibrosis, and moderately impaired left ven-
tricular systolic function [36]. Zebrafish ezh2 mutant embryos also displayed cardiac
differentiation defects, leading to stringy hearts [37]. Reducing embryonic ectoderm devel-
opment protein (EED), a crucial component of PRC2, in developing cardiomyocytes leads
to lethal cardiogenesis defects [36]. These works indicated the critical role of epigenetic
repression established by PRC2 in cardiogenesis. Similarly, PRC1 subunits, such as Ring1b,
Bmi1/Pcgf4, and Rae28/Phc1, were also reported as playing crucial roles in cardiac de-
velopment [38–41]. The simultaneous deletion of RNF2 and RING1A results in the loss
of function of the entire PRC1 family. However, the functional ablation of mouse Rnf2
causes gastrulation arrest and results in embryonic lethality [42], which prevented us from
investigating the function of PRC1 in cardiogenesis. Rnf2I53A/I53A mouse embryos, which
ablate the E3 ligase activity but retain the ability to incorporate RNF2 complexes into PRC1,
exhibit pericardial edema at E15.5, suggesting defects in the developing cardiovascular
system [43,44]. Zebrafish Rnf2 was reported to regulate cardiac looping by repressing the
transcription of tbx genes [31]. Through single-heart RNA-seq analysis, Chrispijn et al.
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showed that tbx2/3 were upregulated in the hearts of Rnf2 mutants at 2 dpf and/or 3 dpf
(but not 1 dpf) [31]. However, we found that the heart rates of rnf2−/− embryos were
reduced significantly as early as 24 hpf, indicating that cardiac contraction was disrupted
at no later than 24 hpf. Our data suggest that Rnf2 may be involved in different processes
of zebrafish cardiogenesis through the epigenetic regulation of different transcriptional
programs. This inference is consistent with the consensus repression mechanisms by which
PcG complexes control the transcription of target genes through chromatin compaction
and genome-wide histone modification [45–47], and is substantiated by our finding that
Rnf2 regulates zebrafish cardiac contraction by stabilizing proper transcription programs
of sarcomere genes and CCS associated genes in the heart.

1. PRC1 maintains regular cardiac sarcomere assembly by orchestrating the sarcomere
gene transcription program.

The patterning of the embryonic heart requires proper cardiomyocyte differentiation
and the assembly of specific cell types into a functional apparatus. The cardiac sarcomere is
the basic contractile unit of myofibrils in the heart [48], forming the structural foundation
of cardiac contraction. Disturbance of the cardiac sarcomere structure disrupts contrac-
tile activity and causes heart failure phenotypes [36,49,50]. The correct generation of a
functional cardiac sarcomere requires the activation of cardiac myofibril structural genes
and, simultaneously, repression of the expression of non-cardiac sarcomere paralogs in
the developing heart. Such extensive orchestration of transcription coincides with the
mechanisms of epigenetic transcription control. Indeed, nucleosome remodeling and the
deacetylase (NuRD) and PRC2 complexes were both reported as being involved in this
transcriptional control, directly or indirectly [9,36,50]. CHD4, the catalytic core of the NuRD
complex, regulates skeletal- and smooth-muscle-specific transcription programs by directly
binding to their promoters. The cardiac conditional null of CHD4 disrupted the cardiac sar-
comere structure by inducing the ectopic expression of non-cardiac sarcomere genes in the
developing heart [9]. EZH2, the core catalytic subunit of PRC2, represses the transcription
of non-cardiac muscle genes in the developing heart by repressing the expression of Six1,
which serves to activate the transcription of skeletal muscle genes [36,50]. However, the
role of PRC1, another crucial repressive epigenetic regulator, in this transcription control
has not been reported. We propose here that the PRC1 complex also plays a critical role in
stabilizing the transcription program of sarcomere genes in the developing heart. A group
of non-cardiac muscle genes were misexpressed in the developing hearts of Rnf2 mutants.
At 24 hpf, the skeletal sarcomere structural genes acta1a, myl1, tnni2b, and tnnt3a were all
upregulated. The ectopic activation of skeletal muscle genes in the early heart disrupts
the cardiac sarcomere, as revealed by TEM, leading to cardiac contraction deficiency. We
conclude that PRC1 regulates cardiac sarcomere assembly by repressing the expression of
non-cardiac sarcomere genes in the developing heart.

2. PRC1 represses sarcomere genes indirectly.

In another manuscript, which is currently under preparation, we performed a ChIP-
seq analysis of Rnf2 in 15 hpf zebrafish embryos. No Rnf2 binding was detected on
the promoters of these skeletal muscle genes (data not shown). The same result was
shown in the 3 dpf Rnf2 ChIP-seq analysis reported by Chrispijn [31]. These data indicate
that PRC1 represses the transcription of non-cardiac sarcomere genes in nascent hearts
indirectly. PcG complexes attain transcription repression through histone modifications
and chromatin compaction [45–47]. Different chromatin recruitment models of PRC1
and PRC2 have been shown in specific tissues and cells or biological processes. The
classic model proposes that the recruitment of PRC1 depends on the prior presence of
PRC2. PRC2 is first recruited to specific genomic loci and catalyzes H3K27me3. The
H3K27me3 marks are recognized by the CBX component and then PRC1 is recruited via
the chromodomain of CBX proteins [46,51,52]. Recently, an alternative recruitment model,
proposing that PRC1 is targeted to chromatin without pre-existing PRC2 and H3K27me3,
was proposed in X chromosome inactivation and mouse embryonic stem cells [20,25,53,54].
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Conversely, the H2AK119ub deposited by PRC1 facilitates the subsequent recruitment of
PRC2 [54]. The recruitment model of PRC complexes in the cardiac sarcomere assembly
is still unclear. PRC2/EZH2 was reported to repress the transcription of skeletal muscle
genes in developing heart by repressing the expression of Six1 [36,50]. We consulted the
ChIP-seq data reported by Chrispijn and found low-level Rnf2 binding at the promoter
region of six1 [31], suggesting that Rnf2 may also restrain the expression of skeletal muscle
genes in the heart by repressing six1 transcripts. We also found high-level H3K27me3
enrichment at six1 promoters, and the H3K27me3 enrichment was retained with Rnf2
deletion [31]. These indicated that both PRC1 and PRC2 complexes are targeted to the
promoter region of six1, whereas the recruitment of PRC2 here is independent of PRC1.
However, much more evidence is needed to confirm this speculation and to determine
whether the recruitment of PRC1 depends on the pre-recruitment of PRC2, or whether each
are targeted to chromatin independently.

3. PRC1 is involved in the construction of the zebrafish cardiac conduction system.

The main function of the CCS is to generate and conduct cardiac impulses to initiate
and maintain rhythmic contractions. The impaired formation or malfunction of CCS
components, including SAN dysfunction and AV blockage, can cause cardiac conduction
disease (CCD), accompanied by severe arrhythmias [55]. The mammal CCS is mainly
composed of pacemaker cardiomyocytes in SAN, AVN, and the ventricular conduction
system (VCS) [10]. Although the zebrafish CCS features no AVN or VCS, it does feature
slow-conducting AVC cardiomyocytes, which act as functional alternatives to mammalian
AVN cardiomyocytes [10,56]. A better understanding of the development of the CCS’s
components can help to illuminate the pathological and molecular mechanisms leading to
CCD. Although knowledge related to the electrophysiological properties of CCS structures
and functions has increased steadily since the anatomy of the CCS was identified 100 years
ago, the molecular and genetic foundation of CCS specification and formation remain
unclear [57]. Here, we demonstrated that Rnf2/PRC1 plays a critical role in the construction
of the zebrafish CCS. The AVC formation was disrupted and the expression of AVC-specific
markers, including bmp4, vcana and alcama, was expanded into flanked chambers instead of
constricting in the AVC ring with loss of Rnf2 function. This indicates that PRC1 is required
for the correct formation of CCS through the restriction of the AVC-specific transcriptional
program. The CCS fulfills its function by propagating electrical impulses. The malformation
of CCS components can induce changes of electrical signaling [58]. The decreased calcium
signaling intensity in the hearts of Rnf2 mutants further confirms our conclusion. Our data
provide more information on the genetic regulation of CCS construction and may facilitate
the development of new treatment strategies for CCD.

Collectively, we generated a PRC1-null zebrafish line by knocking out the core PRC1
subunit, Rnf2. Our data indicate that PRC1 modulates cardiac sarcomere assembly by
stabilizing sarcomere gene transcription programs, and regulates the specification of basic
structures in the CCS by regulating the expression of AVC- and SAN-specific genes in
the developing heart, which helps to maintain regular cardiac contraction. It is the first
time that PRC1 has been reported to function in cardiac sarcomere assembly and cardiac
conduction system construction during embryonic heart development. Our data offer
a more detailed image of the function of PRC1 in vertebrate cardiac development. This
may provide some new insights into the pathology of cardiac diseases caused by PRC1
loss-of-function.

4. Materials and Methods
4.1. Zebrafish Lines and Maintenance

AB line zebrafish were used in this study. The zebrafish were raised and maintained
according to standard laboratory procedures as stated in the zebrafish book [59].
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4.2. Generation of Rnf2 Mutants

The zebrafish Rnf2 mutants were generated using the CRISPR/Cas9 system. The
guide RNA (gRNA) was designed by targeting the exon 3 of the rnf2 gene. Embryos at the 1-
cell stage were co-injected with 200 ng/µL Cas9 mRNA and 80 ng/µL gRNA. The genomic
DNA of 20 injected embryos at 24 hpf was extracted and subjected to PCR amplification.
A DNA fragment containing the rnf2 target site was amplified by PCR using the primers
5′-TTGAGGTAGTTGCTCCCAAAG-3′ and 5′-GGCATTCCTTGGTGGTCATA-3′, and the
genotype was confirmed by DNA sequencing.

4.3. Western Blotting Experiments

The Western blot analysis was performed as previously described [60]. About 50 em-
bryos were collected and dechorionated, and cell lysates were prepared using a TNE buffer
(50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate,
5 mM EDTA, 1× DTT) with the cOmplete proteinase inhibitor (Roche, Switzerland). The
lysates were resolved on 15% SDS polyacrylamide gels and immunoblotted with primary
antibody anti-Rnf2 (A302-869A, Bethyl). The images were captured with an Image Quant
LAS 4000mini (GE Healthcare Life Sciences, Chicago, IL, USA).

4.4. Whole Mount In Situ Hybridization (WISH)

The WISH was performed as previously described [61]. The DIG-labeled anti-sense
probes were generated using a DIG RNA Labeling Kit (SP6/T7) (Roche, Switzerland). The
DNA templates used to generate the probes were amplified by PCR and the primers used
are listed in Supplementary Table S1. For embryos at or after 36 hpf, the homozygotes
were separated from their siblings according to their mobility and pectoral fin phenotype.
For embryos before 36 hpf, as it was difficult to separate homozygous mutants from the
heterozygous and wild-type siblings, WISH was performed for all self-cross progenies of
rnf2+/− parents. After the WISH, each embryo was photographed and genotyped separately.
The photographs were taken under a stereomicroscope (Leica Z16 APO) with a digital
camera (Leica DFC450).

4.5. Histological Analysis

The zebrafish embryos at 4 dpf were fixed with Bouin’s solution at room temperature
for 24 h. The fixed embryos were embedded in 1% agarose, dehydrated with gradient
ethanol, hyalinized with xylene, and then embedded in paraffin. The paraffin-embedded
embryos were sectioned, and the sections were stained with standard hematoxylin and
eosin staining.

4.6. Quantitative Real-Time PCR

The relative mRNA levels of the genes in the rnf2−/− and control hearts were de-
tected by using quantitative real-time PCR (qRT-PCR). The primers used are listed in
Supplementary Table S2. Individual hearts from embryos were isolated for qRT-PCR anal-
ysis, as described below. To collect the individual hearts, the transgenic zebrafish strain
Tg (myl7: EGFP) was used. The homozygous mutants were separated from their siblings
according to their mobility and pectoral fin phenotype. The embryos were disrupted by
pipetting up and down several times (depending on the developmental stages) with a
10 µL pipette. Next, the individual hearts were picked up by pipettes under a fluorescence
stereomicroscope. The individual hearts were pooled into the same tube, and the total
RNA was extracted using TransZol Up Plus RNA kit (Transgen, China). The cDNA was
reverse-transcribed from the total RNA and used for qRT-PCR analysis.

4.7. Calcium Signaling Detection Using Fluo-4 AM

The calcium signal was detected according to the kit manual (Molecular Probes).
Briefly, the hearts isolated from the 48 hpf rnf2−/− and wild-type embryos were transferred
to a 20 mm glass-bottom cell culture dish containing external control solution (ECS, con-
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taining 140 mM NaCl, 4 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 10 mM glucose, and 10 mM
HEPES (pH 7.4)). Next, the embryos were incubated in an ECS medium containing 5 µM
Fluo-4 AM, 10 µM blebbistatin, and 0.35 mM probenecid (Molecular Probes) for 30 min.
The blebbistatin was added to uncouple the excitation-contraction process in the zebrafish
embryonic hearts [62]. After being rinsed twice with ECS containing 0.35 mM probenecid,
the hearts were transferred into ECS containing 0.35 mM probenecid. Images were taken
with a confocal laser scanning microscope (Leica SP8 DLS).

4.8. Imaging, Quantification and Statistical Analysis

The area of pericardial edema of 72 hpf embryos was measured by marking the edema
region on photos using ImageJ. The heart rates were counted manually under a dissecting
microscope (WPI). The heart beating frequency in one minute per embryo was calculated
manually. For the transmission electron microscopy of the cardiac muscle structure, the
80 hpf rnf2−/− and wild-type embryos were fixed, embedded in the Spur resin, and then
sectioned. The sections were stained with uranyl acetate and lead citrate. The images were
taken with a Hitachi TEM system (Japan). The data were analyzed with the GraphPad
Prism 7.0 software. The values are presented as mean ± SEM. The p-values were calculated
using two-tailed Student’s test, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222111368/s1.
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