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Abstract

G protein-coupled receptors (GPCRs), also known as 7 transmembrane domain receptors, are 

the largest receptor family in the human genome, with approximately 800 members. GPCRs 

regulate nearly every aspect of human physiology and disease, thus serving as important drug 

targets in cardiovascular disease. Sharing a conserved structure comprised of seven transmembrane 

α-helices, GPCRs couple to heterotrimeric G-proteins, GPCR kinases and β-arrestins, promoting 

downstream signaling through second messengers and other intracellular signaling pathways. 

GPCR drug development has led to important cardiovascular therapies, such as antagonists of 

β-adrenergic and angiotensin II receptors for heart failure and hypertension, and agonists of the 

glucagon-like peptide-1 receptor for reducing adverse cardiovascular events and other emerging 

indications. There continues to be a major interest in GPCR drug development in cardiovascular 

and cardiometabolic disease, driven by advances in GPCR mechanistic studies and structure-based 

drug design. This review recounts the rich history of GPCR research, including the current state 

of clinically used GPCR drugs, and highlights newly discovered aspects of GPCR biology and 

promising directions for future investigation. As additional mechanisms for regulating GPCR 

signaling are uncovered, new strategies for targeting these ubiquitous receptors hold tremendous 

promise for the field of cardiovascular medicine.
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Early history of receptor biology

The tantalizing idea that diseases could be treated with specific chemical substances dates 

to ancient times and traditions across multiple continents and cultures, but for much of 

history, the exact mechanism by which these substances acted remained a mystery. In 

the present day, we now know that one large family of over 800 receptors and their 

transducers, G protein-coupled receptors (GPCRs), make up the targets of ~30% of all FDA-

approved drugs.1,2 The discoveries surrounding the family of GPCRs are the culmination of 

pioneering work from countless scientists throughout the 20th century into the modern day, 

which have resulted in multiple, paradigm-defining discoveries, and Nobel Prizes and which 

continue to serve as the foundations for innovative fields of biology research today (Figure 1 

and 2).

Among the hundreds of clinically targeted GPCRs, the discoveries surrounding the 

adrenoreceptors, receptors fundamental to normal cardiovascular physiology, make them 

an excellent case study. The use of naturally existing adrenergic receptor ligands, such 

as the alkaloid ephedrine from the herb Ephedra, can be traced back to ancient Asia.3 

Epinephrine itself, one of the first human hormones to be isolated, was first isolated as 

a pure crystal from adrenal glands in 19014 and initially marketed as a wonder drug.5,6 

Though such naturally occurring adrenergic ligands would see widespread use for centuries, 

an understanding of their mechanism of action, and of the actual adrenergic receptors they 

acted on, would only come much later.

Some of the first inquiries in the study of receptors were made by two scientists at the start 

of the 1900s, Paul Ehrlich and John Langley. Over the course of studying immune responses 

to pathogens and toxins, Ehrlich would develop a theory of “side-chains,” structures on 

the surface of cells capable of binding to certain toxins.7,8 Just a few years later the 

earliest assertion of receptor function was made by John. N. Langley, who coined the term 

“receptive substance” in 1905 while studying the contractions of muscle cells stimulated by 

nicotine. He describes:

“So we may suppose that in all cells two constituents at least are to be 

distinguished. The chief substance which is concerned with the chief function of 

the cell as contraction and secretion and receptive substances which are acted upon 

by chemical bodies and in certain cases by nervous stimuli. The receptive substance 

affects or is capable of affecting the metabolism of the chief substance”9

Though the identities of the “receptive substances” were a mystery to Langley, these early 

ideas led to the initial proposal of the receptor concept. The functions of receptors, Langley 

had clearly postulated, are: first, to interact with external chemical stimuli; and second, 

to relay these responses to effectors within the cell, generating physiological changes in 

response. Despite the later-proven accuracy of this theory, these ideas were initially met with 
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considerable skepticism, and the existence of receptors would remain highly contentious 

for decades. For instance, consider the perspectives of just a few scientists in the following 

decades.

In 1943, Sir Henry Dale, who received the Nobel Prize in 1936 for studies on adrenergic and 

cholinergic neurotransmission and himself a former student of John Langley would say:

“It is a mere statement of fact to say that the action of adrenaline picks out 

certain such effector cells and leaves others unaffected; it is a simple deduction 

that the affected cells have a special affinity of some kind for adrenaline, but I 

doubt whether the attribution to such cells of “adrenaline receptors” does more than 

restate this deduction in another form….”10

In 1973, Raymond Ahlquist, a distinguished pharmacologist, and recipient of the Lasker 

prize for his work on the pharmacological differentiation of α and β adrenoreceptor 

subtypes would remark:

“This would be true if I were so presumptuous as to believe that α and β receptors 

really did exist. There are those that think so and even propose to describe 

their intimate structure. To me they are an abstract concept conceived to explain 

observed responses of tissues produced by chemicals of various structure.”11

The 1955 edition of The Pharmacological Basis of Therapeutics, a standard textbook of 

pharmacology, states: “Years ago, Langley named the differentiating substance the ‘receptive 
substance’; this term is still widely employed, but it must be realized that the ‘receptor’ may 
not be a morphologically demonstrable structure.”12 Taken together, these quotes illustrate 

the dogma in the field at the time.

Despite these limitations to the basic understanding of receptors, an understanding of the 

physicochemical basis of ligand binding to receptors began to emerge after Langley’s initial 

work, leading to the development of “receptor theory.”13,14 Through the work of Hill (who 

worked with Langley),15 Clark,16 and others, physicochemical models for understanding 

ligand binding to receptors emerged by developing quantitative relationships between drug 

action and changes in physiology. Work through the 1950s led by Gaddum,17 Schild,18 

Ariens,19 and Stephenson20 led to the important concepts of affinity, reflecting how tightly a 

drug bound to its receptor, and efficacy, how effectively the drug:receptor complex promoted 

a physiological response. But despite these advances, the molecular mechanisms underlying 

this drug action largely remained a black box.13

Insights into the mechanisms of drug action started to change with the discovery of the 

intracellular signaling pathways regulated by receptors. Research from Earl Sutherland 

Jr.’s lab first showed that the activity of β-adrenoreceptors resulted in the production of a 

“second messenger”, cyclic adenosine monophosphate (cAMP), which was later shown to 

be produced by adenylyl cyclase (AC).21–23 Sutherland’s work on AC would be further built 

upon by the work of Martin Rodbell’s lab which determined that AC activation by hormones 

required the presence of guanosine triphosphate (GTP), presumably through the association 

of an intermediary protein that bound GTP.24–26 These discoveries would be further built 

on by Alfred Gilman’s lab, which successfully identified and isolated the intermediary 
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heterotrimeric G-protein.27,28 For this work, Sutherland received the Nobel Prize in 1971 

and Rodbell and Gilman shared the Nobel Prize in 1994.

β-adrenergic receptors as the prototype for GPCRs

Among the many GPCRs, β-adrenergic receptors were used as the model system in many 

early studies to understand GPCR structure and function. The importance of β-adrenergic 

signaling in cardiovascular physiology led to the development of antagonists of the β-

adrenergic receptor, commonly referred to as “beta-blockers.” With the hypothesis that 

inhibiting adrenergic signaling would diminish the heart’s demand for oxygen in the setting 

of angina, Sir James Black led the development of the first beta-blocker in the 1960s, 

at a time without knowledge of receptor structure or how adrenergic ligands bound to 

the receptor, and when the existence of receptors themselves was still questionable. Black 

ultimately identified the first clinically utilized beta-blocker, propranolol, synthesizing and 

screening numerous derivatives of catecholamines, applying mathematical models of affinity 

and efficacy to identify competitive antagonists for the receptor.29,30

The development of the first small-molecule antagonists paved the way for the use 

of ligands as tools to label, capture, and purify adrenergic receptors themselves, work 

which was pioneered in the Lefkowitz laboratory. Radiolabeling β-adrenergic-specific 

agonists and antagonists provided a highly specific method for detecting receptors.31–

33 The binding of agonists to receptors was found to be biphasic, showing two 

distinct affinity states (high and low) due to the allosteric effects of G-proteins on the 

receptors. Notably, the addition of guanine nucleotides converted high to low-affinity state 

receptors (by promoting heterotrimeric G-protein dissociation).34 This ultimately led to 

the development of the ternary complex model to explain the allostery between receptors, 

agonists, and heterotrimeric G-proteins.35 Concurrently, work on chemical conjugation of 

the beta-blocker, alprenolol, onto gel columns allowed for the development of affinity 

chromatography techniques to capture and purify the β2-adrenergic receptor (β2AR), one of 

the three β-adrenergic receptors expressed in the heart.36 This in turn ultimately facilitated 

the cloning of the β2AR gene.37 Purified receptors were chemically cleaved into short 

peptides, several of whose amino acid sequences were determined, thus permitting the 

design of oligonucleotide probes which were used to clone the receptor gene and cDNA.37 

The cloning of the β2AR was a watershed event, since it revealed the similarity of 

its primary structure and seven transmembrane domain architecture to the retinal “light 

receptor” rhodopsin. In the years after, several additional GPCRs, including the β1AR, 

the predominant β-adrenergic receptor expressed in the heart, would also be cloned using 

a similar strategy. Subsequently, hundreds of receptors would be shown to share these 

features and these insights marked the discovery of the superfamily of seven transmembrane 

receptors that regulate virtually all of human physiology.

Rapid progress in understanding the mechanisms regulating GPCR signaling was made in 

the Lefkowitz lab during the 1980s and 1990s. After heterotrimeric G-proteins are activated 

by GPCRs, the receptors rapidly “desensitize,” preventing uncontrolled signaling acutely, 

and then in the face of prolonged signaling “downregulate,” due to their destruction in 

lysosomes with decreased receptor expression to decrease further signaling and maintain 
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homeostasis. This process was shown to require receptor phosphorylation and through 

analogy with rhodopsin, kinases that we now refer to as GPCR kinases (GRKs).38 

Desensitization further requires the activity of adapter proteins known as β-arrestin-139 

and 240, which share homology with a retinal protein originally known as S-antigen (now 

known as visual arrestin) which had been shown to quench rhodopsin signaling.41 This 

family of 4 proteins consists of arrestins 1 and 4 with expression restricted to the retina, and 

β-arrestin-139 and 240 (aka arrestins 3 and 4) which are expressed ubiquitously. β-arrestins 

were also shown to promote endocytosis and downregulation of most receptors.42,43 

Despite their initial discovery of “arresters” of signaling, β-arrestins were later shown 

to also promote signaling through kinase cascades44 and other mechanisms, displaying 

their multifunctional nature in the regulation of receptor desensitization, trafficking, and 

signaling.

Of the 3 βARs subtypes (β1AR, β2AR, and β3AR) expressed in the heart, β1ARs are 

the most abundant (~75–80%) with some expression of β2ARs (~15–20%) and minimal 

expression of β3AR.45,46 Subsequent discoveries led to additional understanding of their 

roles in the pathophysiology of heart disease, such as the observations of beta-receptor 

downregulation45,47 and altered expression of GRKs48 in heart failure. Studies investigating 

levels of beta receptor ligands found them useful as biomarkers for HF progression, 

ultimately culminating in the landmark paper in 1984 proposing the neurohormonal 

hypothesis of HF: the idea that adverse cardiac remodeling and progression of heart failure 

is dependent on overactivation of the autonomic sympathetic nervous system.49 Subsequent 

work in experimental systems found that transgenic mice with elevated β1AR signaling, 

either through β1AR overexpression50 or Gαs overexpression,51 spontaneously develop 

heart failure while transgenic mice that overexpress β2AR in the heart display enhanced 

cardiac function.52

The increasing understanding of βAR dysfunction in heart failure came at a time when 

there was a long-standing belief that beta-blockers were contraindicated in the setting of 

heart failure due to their negative inotropic properties. Over time, these views became 

increasingly challenged, and several major trials in the 1980s and 1990s conclusively 

demonstrated that beta-blockers substantially improved survival,53–57 although this effect 

was only observed in beta-blockers that did not have weak partial agonist activity, known 

as “intrinsic sympathomimetic activity”.58–60 Beta-blockers would prove to be immensely 

successful in the treatment of heart failure, and the story of these adrenoreceptor ligands 

illustrates the rich history of this family of receptors, the dramatic advances in their 

understanding over the past century, and the immense therapeutic potential that they hold.

Molecular machinery underlying GPCR signaling

GPCRs share a conserved 7 transmembrane domain structure with an extracellular-facing 

ligand binding site and an intracellular pocket for transducer binding. GPCRs also have 3 

intracellular loops and a C-terminal tail which regulate transducer interactions. GPCRs are 

activated by ligand binding to the GPCR, inducing conformational changes that allow for 

the subsequent recruitment of effectors. GPCRs signal through a variety of effectors, most 

prominently heterotrimeric G-proteins, GRKs, and β-arrestins (Figure 3).
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Heterotrimeric G proteins

Heterotrimeric G-proteins, the largest family of GPCR signaling transducers, are composed 

of a complex of G⍺, Gβ, and Gγ subunits. Upon receptor activation, the receptor acts as 

a guanine nucleotide exchange factor for the G⍺ subunit, inducing release of guanosine 

diphosphate (GDP) in exchange for guanosine triphosphate (GTP). This induces dissociation 

of the G⍺-GTP subunit from the Gβγ complex, allowing each of these units to independently 

interact with a wide range of effectors to regulate second messenger levels, protein kinases, 

and other pathways to impact different cellular functions.61

There are sixteen Gα subunits that fall into four main families: Gαs, G⍺i, G⍺q/11, 

G⍺12/13, all of which differentially engage with a variety of effectors. Different receptors 

preferentially activate specific Gα subunits allowing for highly specific signaling pathways 

to occur downstream of receptor activation. G⍺s subunits stimulate AC to convert adenosine 

triphosphate (ATP) to cAMP and lead to the activation of protein kinase A (PKA)62 and 

other targets. In the heart, PKA phosphorylates a wide array of effectors such as troponin 

I, myosin-binding protein-C, phospholamban, the cardiac ryanodine receptor (RYR2), and 

voltage-gated L-type Ca2+ channels.63 βAR stimulation collectively orchestrates these 

subcellular components to enhance myofilament cross-bridge cycling to increase the force 

of contraction (inotropy) and the rate of relaxation (lusitropy). Action potential activated 

L-type Ca2+ channels initiate inward Ca2+ entry and trigger a large release of intracellular 

Ca2+ by the RYR2 through a process known as Ca2+-induced Ca2+ release. This triggered 

Ca2+ release by the RYR2 was defined as a Ca2+ spark64 and is the primary source 

of intracellular Ca2+ available for myofilament cross-bridge formation and contraction. 

βAR stimulation also regulates heart rate (chronotropy) via the Hyperpolarization-activated 

Cyclic Nucleotide-gated channel and other ion channels and transporters in the sinoatrial 

node.65 In contrast, receptors that couple through G⍺i inhibit AC, therefore reducing cAMP 

production and its downstream effects on the heart.

G⍺q/11 activates phospholipase-Cβ to convert membrane-bound phosphatidylinositol 4,5-

bisphosphate (PIP2) to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). IP3 

activates cardiomyocyte IP3 receptors, which are intracellular Ca2+ release channels 

embedded in the sarcoplasmic reticulum (SR) and nuclear envelope. GPCR stimulated IP3 

production elicits local nuclear envelope Ca2+ release via IP3 receptors to activate cardiac 

hypertrophic signaling, in part, through the Ca2+ and calmodulin-dependent serine/threonine 

protein phosphatase calcineurin66 and a nuclear pool of Ca2+-calmodulin–dependent protein 

kinase II.67 IP3 stimulated release of this local Ca2+ pool is distinct from the cytoplasmic 

Ca2+ transient involved in excitation-contraction coupling66,67. DAG and intracellular Ca2+ 

activate protein kinase C-alpha (PKC-a) which regulates cardiac contractility through 

upregulation of type 1 protein phosphatase leading to dephosphorylation of the SR 

Ca2+ATPase pump regulating protein phospholamban.68

G⍺12/13 are known to activate the small GTPase RhoA,69,70 which can activate downstream 

kinases, regulating vascular smooth muscle tone.71–73 Beyond these canonical signaling 

pathways, each of these G⍺ subunit families can regulate a wide array of relatively poorly 

characterized signaling pathways. Furthermore, in addition to the G⍺ subunits, there are 5 
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Gβ subunits and 12 Gγ subunits, which also regulate a wide range of signaling pathways 

with distinct spatial and temporal profiles.74,75

Heterotrimeric G protein signaling is essential for normal cardiac function but chronic 

sustained stimulation, particularly of G⍺s and G⍺q/11, can lead to deleterious adverse 

ventricular remodeling and depressed cardiac function. In the setting of the heart, 

the negative consequences of overactive G-protein signaling include tachycardia and 

progression of heart failure.76 In contrast, activation of G⍺i can play an inhibitory role 

on AC activity and may be beneficial for opposing G⍺s signaling. Thus, negative feedback 

loops are crucial in maintaining cellular homeostasis after GPCR stimulation. Active G⍺-

GTP is turned off by regulators of G protein signaling (RGS) proteins, which act as 

GTPase activating proteins (GAPs) that promote hydrolysis of GTP to G⍺-GDP.77 This, 

in turn, leads to the termination of G⍺-protein-mediated signaling and reassociation of the 

heterotrimeric G-protein complex. Complex mechanisms promote the process of receptor 

desensitization, in which the ability of active receptors to signal is diminished, otherwise 

signaling would proceed unabated.

GRKs and Other Kinases

Desensitization is promoted through receptor phosphorylation by kinases that phosphorylate 

serine/ threonine motifs in the receptor’s intracellular loops and C-tail. These 

phosphorylation patterns either directly interfere with the receptor’s normal signaling 

functions or lead to the recruitment of β-arrestins that sterically interfere with G-protein 

coupling and induce receptor internalization.

There are two types of processes by which kinases regulate receptor desensitization: 

homologous desensitization, in which kinases are recruited to and phosphorylate an 

agonist-activated receptor, or heterologous desensitization, in which kinases phosphorylate 

specific motifs on receptors regardless of their activation state. Homologous desensitization 

is promoted primarily by GRKs, which are recruited through an interaction with the 

core of the active receptor, and which phosphorylate the receptor intracellular loops 

and C-terminal tail.78,79 Heterologous desensitization is mediated primarily by second 

messenger-dependent kinases such as PKA and PKC, which recognize specific motifs 

in receptor intracellular domains. Thus, even in the absence of its cognate ligand, a 

receptor can undergo heterologous desensitization. For example, cAMP or cAMP analogs 

promote phosphorylation of the β2AR through the activity of PKA, thereby reducing the 

receptor’s ability to signal through G⍺s
80. A related phenomenon is class switching, where 

phosphorylation changes the coupling specificity of a receptor. Examples include the β2AR, 

where PKA phosphorylation leads to the receptor changing its preferential coupling from 

G⍺s to G⍺i,81 further inhibiting signaling through AC. Similarly, for the glucagon-like 

peptide-1 receptor (GLP-1R), PKC modulates a signaling switch from G⍺s to G⍺q.82

Regulation of receptor phosphorylation is highly dependent on cellular context. There are 

7 GRKs in humans, all of which share a common tripartite structure: a GPCR binding 

domain, a kinase domain, and a regulatory domain.83 Based on structural and sequence 

homology, they are further subdivided into three subfamilies: the GRK1 family(GRK1 and 

7); the GRK2 family (GRK2 and 3); and the GRK4 family (GRK4, 5, and 6). GRK1 
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and 7 are primarily found in retinal rod and cone cells respectively.84 GRK2 and 3 both 

contain a C-terminal pleckstrin homology (PH) domain, which promotes their localization 

to the plasma membrane via Gβγ binding.85 GRKs 4 and 6 carry palmitoylation sites, 

and GRK 5 contains a positively charged lipid binding element. As a result, GRK 4, 5, 

and 6 do not require interaction with Gβγ to localize to the plasma membrane. Adding to 

the context-dependent activity of these kinases, different GRKs and PKA/PKC also induce 

different phosphorylation patterns at the receptor, with distinct impacts on receptor signaling 

and recruitment of other proteins to the receptor.86–88 Taken together, the function of these 

protein kinases is to fine-tune GPCR signaling responses.

In addition to the GPCRs a number of nonreceptor substrates have been shown to 

be phosphorylated by or interact with these kinases such as receptor tyrosine kinases, 

cytoskeletal proteins,89 and phosphoinositide 3-kinase (PI3K).90,91 PKA and GRK5 can also 

serve as adapter proteins and translocate to the nucleus,92–95 where they can regulate gene 

expression.

β-arrestins: Canonical GPCR transducers

Arrestins are a family of four multifunctional adaptor proteins with three main functions at 

the receptor: desensitization, trafficking, and signaling. There are four arrestins that share 

high sequence and structural homology, containing an N-terminal domain, a central core 

domain, and a C-terminal tail. Arrestin 1 (aka visual arrestin) and 4 (aka x-arrestin) are 

found exclusively in rod and cone cells while β-arrestins 1 and 2 (aka arrestins 2 and 3) 

are found ubiquitously.96 While β-arrestins 1 and 2 share many structural and functional 

similarities, they also have their own distinct cellular functions. For example, β-arrestin 1 

and −2 both have nuclear localization sequences on the N-terminus, but β-arrestin 2 has 

a nuclear export sequence on the C-terminus resulting in differential nucleocytoplasmic 

shuttling of the β-arrestins.97

Upon receptor phosphorylation, β-arrestins are recruited to the receptor through an 

interaction with the receptor’s phosphorylated tail. Additional interactions with the 

intracellular loops and core of activated receptors permit a range of conformational states of 

β-arrestin:receptor complexes.98,99 This recruitment of β-arrestins sterically interferes with 

receptor interactions with the Gα subunit, desensitizing the receptor by restricting further 

signaling by G-proteins.

Simultaneously, binding of β-arrestin to a receptor induces conformational changes in β-

arrestin, which allow it to interact with hundreds of proteins involved in a wide range of 

functions.100,101 β-arrestin then promotes the process of receptor internalization, decreasing 

receptor expression at the plasma membrane by serving as an adaptor for the endocytotic 

machinery through AP2 and clathrin binding motifs found on its C-tail.43,102,103 This 

promotes the translocation of the receptor to intracellular compartments for recycling or 

degradation.79 Receptor:β-arrestin interactions play an important role in specifying the 

specific targeting of receptors to intracellular compartments. For example, receptors that 

have high-affinity for β-arrestin, such as the vasopressin 2 receptor (V2R) and angiotensin II 

receptor type 1 (AT1R), experience sustained internalization, often proceeding to lysosomes 
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for degradation. In contrast, receptors such as the β2AR, which have a relatively low affinity 

for β-arrestin, are recycled rapidly back to the cell surface after internalization.102

Receptor-activated β-arrestin also serves as a scaffold and allosteric activator for protein 

kinase signaling cascades, amplifying the activity of these pathways within cells. These 

include mitogen-activated protein kinases (MAPK), PI3K, AKT, and Src44,90,104–107 in 

addition to a wide range of other pathways.108 G-protein and β-arrestin-mediated signaling 

display different spatial and temporal profiles,109 although this can vary significantly 

among receptors. Even when activating the same distal effector, they often mediate 

different cellular sequelae due to differential subcellular compartmentalization of the 

activated effectors. For example, the AT1R, an important receptor with key roles in 

blood pressure regulation, vascular function, and cell remodeling signals to ERK through 

both G protein and β-arrestin transducers. In response to stimulation by the endogenous 

ligand, angiotensin II (AngII), AT1R G⍺q-activated ERK translocates to the nucleus, 

where it activates transcriptional networks. In contrast, β-arrestin sequesters ERK in the 

cytosol resulting in the phosphorylation of cytosolic proteins resulting in activation of 

different cellular responses.109 In the heart, signaling via β1AR-mediated Epidermal Growth 

Factor Receptor (EGFR) transactivation is cardioprotective against chronic catecholamine 

stimulation110 through a β-arrestin dependent mechanism mediated, in part, through 

differential intracellular trafficking of ERK1/2.111 At the molecular level, there appears 

to be functional specialization between β-arrestin isoforms. At the AT1R, recruitment of 

β-arrestin 1 and 2 are similar, but siRNA knockdown of β-arrestin 1 results in increased 

ERK signaling, whereas knockdown of β-arrestin 2 results in decreased ERK signaling. 

This suggests that β-arrestin 2, but not β-arrestin 1, mediates ERK1/2 activation at the 

AT1R.112,113 On the other hand, at the β2AR, knockdown of either β-arrestin 1 or 2 results 

in diminished ERK signaling, suggesting that β-arrestins mediate different responses at 

different receptors.106 While β-arrestin-mediated responses are thought to be distinct from 

those mediated by G-protein, more recently, it has also been appreciated that β-arrestins 

can promote G-protein signaling from internalized GPCRs.114,115 While β-arrestins were 

originally identified for their role in desensitizing G protein signaling by GPCRs at the 

plasma membrane, they can actually promote signaling from internalized receptors. These 

contrasting functions further highlight the diversity of cellular responses mediated by β-

arrestins.

Other GPCR-binding Proteins

Individual GPCRs are also capable of interacting with a wide range of proteins depending 

on the presence of specific motifs in their intracellular domains.116 These GPCR-interacting 

partners can sometimes directly mediate receptor signaling or act as scaffolds to modulate 

signaling. These include the AKAPs, Homer, JAK2, and NHERF1 (reviewed in116). 

One important family of GPCR-interacting proteins is the receptor activity modifying 

proteins (RAMPs).117 The activity of RAMPs greatly modifies the behavior of GPCRs. 

For the calcitonin-like receptor (CLR), association with RAMP1 results in a receptor for 

the calcitonin gene-related peptide (CGRP), promoting vasodilation in diseases such as 

migraine.118 This is in contrast to the properties of CLR in association with RAMP2, which 

generates an adrenomedullin 1 receptor where adrenomedullin has the highest potency for 
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vasodilation, and association with RAMP3, which generates an adrenomedullin 2 receptor 

where adrenomedullin 2 and adrenomedullin have similar potency.117 Originally thought 

to only interact with a limited number of family B receptors, recent studies have now 

demonstrated that RAMPs interact with a much wider range of GPCRs.119,120 This likely 

is the tip of the iceberg, as other receptor-interacting proteins likely play additional roles in 

GPCR biology.

Biased Agonism

As GPCRs can signal through multiple pathways promoted by different G proteins, GRKs, 

β-arrestins, and other interacting proteins, it has been appreciated that in different contexts, 

the same receptor can promote distinct patterns of signaling outcomes through selectively 

activating subsets of transducers (Figure 4).121 The ability of a GPCR to selectively or 

preferentially couple to distinct transducers is now referred to as biased agonism,121 and 

can be induced through a variety of mechanisms. The first discovered form of bias was 

ligand bias, referring to the phenomenon whereby different ligands for a GPCR were found 

to have different efficacies for activating downstream transducers, such as preferentially 

recruiting β-arrestins, leading to a biased response compared to the reference endogenous 

agonist.122 Ligand bias is thought to be due to the ability of different agonists to promote 

distinct conformational states of the receptor that have different efficacies for engaging with 

different transducers and initiating signaling through different signaling pathways.123 It is 

now appreciated that all agonists lie on a spectrum of bias through their stabilization of 

different receptor conformations.122

There are additional mechanisms that may underlie a biased cellular response, such as 

receptor, system, and location bias. Receptor bias (Figure 4) refers to bias at the level of 

the receptor itself, where a receptor inherently couples more effectively to one transducer 

or another compared to a reference. The existence of such receptors can be demonstrated 

by experimentally generated receptors where important residues for receptor activation 

and transducer coupling have been mutated such as the AT1R “AAY” or β2AR “TYY” 

mutant receptors which show biased coupling preferences compared to their unmodified 

wild-type receptors.106,112 Additionally, naturally existing receptor variants that lead to 

biased signaling profiles have also been identified in a number of disease states.124 System 
bias (Figure 4), refers to the differential expression of individual signaling components, such 

as G proteins, β-arrestins, and GRKs, which can lead to tissue/cell type-specific differences 

in signaling by the same agonist:receptor complex.121 Such situations can occur in disease 

states where there is differential expression of receptors, transducers, and effectors.125,126 A 

related concept is that of location bias (Figure 4), where different ligands promote receptor 

activation in different subcellular locations, resulting in distinct cellular and physiological 

effects.127

As bias allows for the selection of signaling pathways to be activated downstream of a 

receptor, biased ligands have the potential to activate beneficial signaling pathways while 

limiting off-target effects at a given GPCR. Thus, drug development of biased agonists 

is a very active area of research. For example, activation of the AT1R by its endogenous 

ligand AngII in rats initiates signaling through both G-protein and β-arrestin dependent 
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pathways, enhancing cardiac contractility while inducing cardiac hypertrophy. In constrast 

the synthetic, β-arrestin biased AT1R agonist TRV027 enhances contractility but does not 

induce cardiac hypertrophy.128 Bias is also highly pertinent to the elucidation of GPCR 

function in their endogenous context, particularly location bias and system bias. For example 

in cardiomyocytes, numerous receptors are expressed, such as βAR, ⍺1AR, and AT1R, in 

various cellular compartments and the nucleus, where this spatial localization contributes 

to their unique signaling functions.129–131 These topics will be further explored in the 

Emerging Directions section at the end of the review.

Important GPCR Targets in Cardiovascular Medicine

There are more than 200 GPCRs expressed in the heart,132 and drugs targeting many of 

these GPCRs expressed in the cardiovascular system are mainstays of clinical treatment for 

a wide range of pathologies. Here we highlight three families of GPCRs with historical, 

clinical, and emerging importance in cardiovascular medicine: βARs, AT1Rs, and incretin 

receptors (Table 1).

β-Adrenergic Receptors

The β1AR and β2AR are the predominant adrenergic receptor subtypes expressed in the 

heart, while the β3AR is primarily expressed in adipose tissue. In the normal heart, the 

β1:β2 ratio is 80:20,45 while in heart failure, the β1:β2 ratio is reduced to 60:40, due to the 

downregulation of the β1AR.47 In cardiac myocytes, β1ARs predominate with β2 and β3ARs 

mostly found in nonmyocytes.46 Upon stimulation with its endogenous ligands epinephrine 

and norepinephrine, the β1AR couples to G⍺s, the β2AR to G⍺s and G⍺i, and the β3AR 

to G⍺s. Activation of βARs generally initiates a Gs-AC-cAMP-PKA signaling cascade, 

increasing myocardial contraction and heart rate. However, long-term activation of G⍺s 

signaling by βARs in heart failure can lead to pathological remodeling of heart tissue and 

their downregulation.133

As noted earlier, beta-blockers are one of the most widely used therapeutics for 

numerous diseases including hypertension, coronary artery disease, heart failure, and 

arrhythmias.54,134 However, initially, the use of beta-blockers for heart failure was 

seen as a contraindication, and it took nearly 30 years from the discovery of beta-

blockers to the first clinical trials for use in heart failure. In the 1990’s, some of the 

earliest beta-blocker clinical trials of metoprolol were associated with lower mortality 

rates135 (Table 1). This reinvigorated interest in beta-blockers, and a third-generation beta-

blocker, carvedilol, was shown to reduce cardiovascular-related hospitalization and death.54 

Although carvedilol is an FDA-approved beta-blocker, the complexities of its pharmacology 

are still being uncovered. At the β2AR, carvedilol is a β-arrestin-biased agonist with 

inverse agonism for G⍺s signaling.136 At the β1AR, carvedilol displays β-arrestin-biased 

signaling dependent on G⍺i, regulates microRNA processing, activates ERK signaling,137–

139 and provides cardioprotection in response to ischemia-reperfusion.140 β1AR mediated 

β-arrestin transactivation of the epithelial growth factor receptor (EGFR), requires β-

arrestin, GRK5 and/or 6.110 Activation of this transactivation pathway is cardioprotective 

against catecholamine toxicity.110 Though it has been reported that carvedilol can activate 
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G⍺s,141 such findings have not been observed in most physiologically-relevant systems 

and run counter to numerous clinical studies showing that beta-blockers with intrinsic 

sympathomimetic activity are associated with negative outcomes in heart failure.58–60 

Furthermore, carvedilol also has additional α1 adrenergic blockade and antioxidant 

properties, which have all been theorized to contribute to its unique cardioprotective 

properties.142,143 At the moment, the question of what specific properties will result in 

the development of “better” beta-blockers is still under investigation, though research in 

our laboratories has focused on evaluating and enhancing the effects of β-arrestin-biased 

signaling of beta-blockers.140,144

The Type 1 Angiotensin II Receptor

The renin-angiotensin-aldosterone system (RAAS) plays a central role in regulating blood 

pressure and volume status through its effects on the cardiovascular system and kidneys.145 

Renin cleaves angiotensinogen into angiotensin I, which is further processed by angiotensin-

converting enzyme in the lungs into AngII. The angiotensin II receptor type 1 (AT1R) 

and type 2 (AT2R) appear to have contrasting physiological roles. In the cardiovascular 

system, the AT1R promotes vasoconstriction, and vascular smooth muscle cell proliferation, 

while AT2Rs promote vasodilatation and inhibit proliferation. In heart failure, AT1R mRNA 

expression is downregulated, whereas there is no change for AT2R.146 AT1R signaling also 

promotes the secretion of aldosterone by the adrenal cortex and promotes sodium retention 

in the kidney.

AT1Rs can signal through a wide range of pathways.147–150 Upon activation by its 

endogenous ligand, AngII, the AT1R signals through G⍺q, but can also couple to other 

G proteins, such as G⍺12/13 and G⍺i/o. In addition, the AT1R can signal via β-arrestins 

to multiple effectors, such as MAP kinases. Furthermore, the AT1R is also capable of 

promoting signaling through other transmembrane receptors, such as the EGFR through 

β-arrestin-dependent and -independent mechanisms.151–153

FDA-approved RAAS inhibitors include direct renin inhibitors, angiotensin-converting 

enzyme inhibitors (ACEIs), AT1R antagonists (ARBs), and mineralocorticoid receptor 

antagonists. ACEIs and ARBs are central to the treatment of hypertension, heart failure 

with reduced ejection fraction, and chronic kidney disease.154,155 One advantage of ARBs 

over ACEIs is the lower risk of side effects such as cough and angioedema, the latter of 

which can be life-threatening due to swelling and obstruction of the airway.156 In 1987, 

there was great optimism surrounding ACEIs for their use in congestive heart failure 

following the CONSENSUS trial.157 (Table 1). This study showed that adding enalapril to 

a conventional heart failure regimen that at the time was typically furosemide and digoxin, 

reduced mortality by 40% at 6 months and 27% compared to the end of the 12-month 

study. Following the positive studies and enthusiasm for ACEIs, there was interest that 

ARBs could block RAAS more effectively compared to ACEIs. In 1997 the ELITE trial, 

compared the ARB losartan, with the ACEI captopril. There was a 32% reduction in death 

and hospital admissions for heart failure treated with losartan compared with those treated 

with captopril.158 In addition, losartan was better tolerated compared to captopril, with fewer 

patients discontinuing therapy. More recently, the combination of the ARB valsartan with a 
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neprilysin inhibitor (sacubitril) has demonstrated superiority to enalapril in the treatment of 

heart failure with reduced ejection fraction in the PARADIGM-HF trial.159

Although ACEIs and ARBs are currently mainstays in the treatment of hypertension and 

heart failure, AT1R β-arrestin biased agonists have a theoretical advantage over ARBs 

that block both G proteins and β-arrestins.160,161 G⍺q appears to mediate the majority 

of pathological actions of chronic AT1R activation in the setting of heart failure and 

is the primary mechanism that drives the hypertrophic response to pressure overload.162 

Studies in animal models have documented the positive effects of AT1R β-arrestin-biased 

agonists including improved cardiac output, hemodynamic profile, and preserved renal 

function while retaining the antihypertensive effects of traditional angiotensin receptor 

blockers.163,164 β-arrestin biased AT1R signaling has been shown to increase isolated 

myocyte contractility and in vivo cardiac contractility,160,165 and be necessary for the 

Frank-Starling law of the heart.166 There has been a single clinical trial of the β-arrestin 

biased ligand TRV0027 in the setting of acute systolic heart failure, where the drug failed 

to show evidence of a beneficial effect.167 However, a range of factors, including the study 

design and the short duration of treatment could have explained the observed lack of efficacy 

in acute HF. Additionally, a later post-hoc analysis found TRV027 treatment was associated 

with reduced all-cause and cardiovascular death168. Therefore, the question as to whether 

β-arrestin biased AT1R agonists will live up to their therapeutic promise for chronic HF 

remains open.169

Incretin hormone receptors

Glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP), 

are two peptide hormones released by the gut that are responsible for mediating increased 

insulin secretion by the pancreas in response to an oral glucose load. Their receptors 

are expressed on the beta cells in pancreatic islets and are also expressed in the heart, 

vasculature, intestines, kidney, and brain.170,171 The GLP-1 receptor (GLP-1R) is G⍺s- and 

G⍺q-coupled while the GIP receptor (GIPR) only signals through G⍺s. The relative ability 

of both receptors to signal through G⍺s may be altered during diabetes.82 Both receptors can 

also signal through β-arrestin.170

Though GLP-1R agonists were originally developed and approved for glycemic control 

in the setting of diabetes, incretin receptor agonists have been found to improve a much 

wider range of health outcomes. A recent meta-analysis focusing on cardiovascular and 

kidney outcomes in diabetics found that use of GLP-1R agonists improved a number 

of cardiovascular biomarkers and reduce all-cause major adverse cardiovascular events, 

a composite outcome including nonfatal myocardial infarction, stroke, and cardiovascular 

death.172 Additionally, in the more recent SELECT173 and STEP-HFpEF174 clinical trials, 

the GLP-1R agonist semaglutide improved cardiovascular outcomes in patients with obesity 

in the absence of diabetes. In the wake of these promising findings, GLP-1 receptor agonists 

have been recognized as “the breakthrough of the year 2023”.175

The mechanism by which GLP-1R agonists promote beneficial cardiovascular outcomes is 

multifactorial. The treatment of obesity, which increases cardiovascular disease risk through 

the development of dyslipidemia, type two diabetes (T2D), and hypertension, likely plays 
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a role.176,177 Additionally, some of their activities appear to be mediated through direct 

actions on receptors expressed in the cardiovascular system. For example, GLP-1Rs appear 

to regulate platelet activation178,179, vasodilation180, and inflammation.181 However, the 

relative contributions of these mechanisms to cardiovascular outcomes are unclear.171

Currently under development and in clinical trials are additional incretin receptor agonists. 

Here the focus has been on three fronts. First, is the development of small molecule agonists 

of incretin receptors that have improved oral bioavailability compared to currently existing 

peptide-based agonists.182,183 Second, is the development of triple agonists that have the 

ability to activate GLP, GIP, and glucagon receptors, and which appear to have greater 

efficacy for glycemic control and weight loss.184,185 Finally is the investigation of the role 

biased agonism plays in the physiological response to these ligands186,187. Physiologically, 

insulin secretion in pancreatic beta cells in response to incretin stimulation is mediated by 

G⍺s, G⍺q, and β-arrestin.82,188,189 Recent structural studies have provided some insight into 

the mechanisms underlying ligand bias at the GLP-1R.190 Further research is needed to 

identify the benefits of biased signaling with respect to the mechanisims of these drugs and 

their relation to cardiovascular outcomes.

Emerging Paradigms in GPCR Biology and Human Health

The past century has seen dramatic advancements in our understanding of GPCR 

biology across multiple scales of biological organization. Current and emerging research 

paradigms include 1) the structural mechanisms underlying GPCR activation and transducer 

engagement; 2) the use of these data in approaches to structure-based drug discovery; and 

3) location/context-dependent mechanisms underlying GPCR signaling. Here we highlight 

exciting developments in each of these areas and discuss their future directions.

Structural features underlying GPCR activation and transducer engagement

GPCR Structural Biology—The first structure of a GPCR bound to a diffusible ligand to 

be solved was the β2AR in 2007 by a group led by Brian Kobilka.191,192 Four years later, 

researchers led by the same group achieved an even more substantial accomplishment, a 

crystal structure of the β2AR bound to G⍺s transducer.193 This first snapshot of a GPCR 

bound to a transducer provided tremendous insights into the structural basis of GPCR 

transmembrane signaling, identifying broad structural rearrangements of both receptor and 

transducer, and the specific amino acid interactions between the receptor and transducer 

stabilizing these interactions.

Since the structural determination of the β2AR in 2007, the number of solved structures of 

GPCRs available in the protein data bank (PDB) has increased dramatically. Within a year of 

solving the β2AR, three additional structures of other GPCRs had been solved. By the end of 

2023, the number has increased to 180 unique receptors. In all, of the 180 unique receptors, 

there are over 1,000 structures of GPCRs in varying conformations occupied by different 

ligands, or coupled to different transducers.194,195 Furthermore, computer prediction models 

such as AlphaFold have the potential to produce models of the over 600 receptors whose 

structures have not yet been solved experimentally.196
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Improvements in the structural determination of GPCRs have been driven by several 

methodological advances. They range from improved detergent systems, stabilizing 

mutations or fusion proteins, conformation-specific nanobodies, and technical improvements 

in X-ray crystallography and cryo-EM.197 For example, methodological advances necessary 

for solving the structure of the human β2AR included sufficient expression of the β2AR 

through virus-based expression methods and further stabilization by the addition of either 

a receptor-specific fragment antigen-binding region (Fab) or receptor modifications, such 

as an engineered T4L lysozyme.191,192 Advancements in cryo-EM have sparked a further 

GPCR structural revolution,197 with an increasing number of receptor:transducer complex 

structures stabilized by nanobodies or Fabs.

Towards an understanding of GPCR dynamics—Though techniques for obtaining 

GPCR structures have advanced considerably, a key limitation of these methods is that 

they can only provide singular snapshots of a GPCR - ones that are highly influenced 

by the particular crystallization/cryo-EM conditions, and by the artificial presence of 

stabilizing mutations or antibodies (Figure 5A). Furthermore, as opposed to static structures, 

receptors are highly dynamic and adopt multiple conformations, with distinct conformations 

mediating specific signaling outcomes.121 As a result, the study of these conformations and 

their dynamics is essential to our understanding of GPCR biology. Therefore, the ability to 

characterize the structural differences and dynamics of receptor conformations is paramount. 

Two methods have come to the fore: nuclear magnetic resonance (NMR) spectroscopy and 

site-directed spin labeling electron paramagnetic resonance (EPR) spectroscopy (Figure 

5B–C).198,199 These methods rely on labeling specific residues within receptors and 

measuring changes in their chemical environment (NMR) or changes in distances from 

other labeled residues (EPR). The concept of conformational heterogeneity is especially 

important in the study of biased agonism, as the presence of multiple conformations explains 

the ability of receptors to interact with distinct transducers with different efficiencies. 

For example, NMR studies of the β2AR occupied by ligands with varying biases have 

provided evidence of unique conformational states in helix VII associated with β-arrestin-

biased states.200 Similar conformational studies have been performed on the μ opioid and 

adenosine receptors.201,202 In a landmark study of a panel of AT1R-biased agonists, distinct 

populations of AT1R conformations stabilized by biased ligands were uncovered with EPR 

using a specific EPR technique known as Pulsed EPR double electron–electron resonance 

(DEER) spectroscopy.123

New Approaches to GPCR Drug Discovery

Structure-based Drug Design—The wealth of structural information on GPCR has 

ushered in a “golden” age of structure-based drug design for GPCRs. The increasing 

availability of high-quality receptor structures combined with advancements in virtual 

drug screening have played key roles in this process, and have already been applied 

to design ligands for numerous receptors.203,204 Facilitating this boon of structure-based 

drug design have been improvements in computational hardware, refined screening/docking 

algorithms, and optimizations of virtual libraries for screening. For example, a recent virtual 

screening campaign at the melanocortin 1 receptor was able to screen more than 150 

million compounds; the top 300,000 compounds were further sorted and forty representative 
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compounds from the top 0.1% were synthesized.205,206 Surprisingly, of the synthesized 

compounds, 15 compounds showed activity, with a final hit rate of close to 40% using 

this screening strategy. Novel approaches such as synthon-based ligand discovery allow 

the virtual screening of billions of compounds.207 Despite the success of such screens, 

there still is room for refinements in pose prediction programs and the ability to evaluate 

compound binding from the perspective of receptor dynamics.203,204 Further challenges of 

structure-based drug discovery are to tackle the potential binding at multiple allosteric sites 

and screening for biased agonists (Figure 5D).208

Allosteric Modulators—Traditional GPCR-targeted drug development has focused 

primarily on ligands that bind to the receptor’s extracellular facing orthosteric ligand 

binding site. However, receptor activation is linked to conformational changes across the 

entire receptor, with the existence of multiple conformationally distinct inactive and active 

states209 (Figure 6A). As a result, the receptor surface contains additional sites that can 

be targeted by allosteric modulators. These allosteric modulators often bind nearby key 

activation switches on the receptor surface such as the conserved aspartic acid-arginine-

tyrosine (DRY) motif, and stabilize specific interactions, promoting particular conformations 

of the receptor.210,211 Allosteric modulators also frequently display complex pharmacology. 

Because allosteric modulators bind at distinct sites from orthosteric ligands, they can affect 

the potency of orthosteric ligands as well as their signaling efficacy. Additionally, they 

may display “probe dependence,” where the effects of an allosteric modulator may differ 

depending on the specific orthosteric ligand bound to the receptor.140 Allosteric modulators 

can be defined as positive (enhance orthosteric agonist binding/activity), negative (diminish 

it), silent (no effect on the orthosteric agonist), or biased (promote a biased response to an 

orthosteric agonist).212

At the β2AR, allosteric modulators have been found to bind to at least three separate 

sites and promote distinct active or inactive conformations of the receptor, showcasing 

the druggability of diverse allosteric sites and the manifold modulatory effects associated 

with them210,211,213 For example, the negative allosteric modulator AS408 binds between 

transmembrane helix 3 and 5 of the β2AR, stabilizing key residues in an inactive 

conformation.211 On the other hand, the negative allosteric modulator CMPD-15 binds to an 

allosteric site in the intracellular surface of the β2AR. There, in addition to stabilizing an 

inactive conformation of the receptor, it also physically interferes with transducer binding, 

resulting in a dual mechanism of receptor inhibition.213

There is also one solved structure of a positive allosteric modulator bound to the β2AR 

stabilizing an active conformation capable of signaling through both G-protein and β-

arrestin.210 CMPD-6 binds to the base of transmembrane helix 3 and 5 and promotes an 

active conformation by stabilizing key activation switches, including the formation of a 

helix within intracellular loop 2, and stabilizing a conserved DRY motif found in many 

GPCRs.210 Interestingly, CMPD-6 also displays unique cooperativity with the arrestin 

biased ligand carvedilol, suggesting that analogs selectively biased towards potentiating 

β-arrestin signaling could be developed for this site as well.140 Besides CMPD-6, 

additional allosteric modulators with biased properties have been identified for the β2AR. 

These include DFPQ derivatives, isolated from high throughput screening in cells, and 
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CMPD-36, 37, and 42, isolated from computational screening of allosteric ligands for the 

β2AR.214,215 In general these compounds inhibit β-arrestin signaling by orthosteric ligands 

while permitting G-protein signaling, thus biasing receptor signaling towards G-protein. 

Computational docking and mutagenesis studies suggest that these compounds bind to a 

range of allosteric sites on the β2AR. However, their structures have not yet been solved, so 

the key molecular switches they stabilize are yet to be determined (Figure 6B).

In contrast to the orthosteric site, which is well-defined with respect to its location and 

ligand binding, allosteric sites across the receptor surface vary greatly. Due to their diversity, 

allosteric modulators offer several advantages over traditional orthosteric drugs. First, 

allosteric sites often have the opportunity to encode greater receptor subtype specificity. 

Many receptors for the same agonist, e.g., adrenergic receptors, have tight evolutionary 

constraints on the orthosteric site, so drugs targeting that site will likely bind to multiple 

receptor subtypes. As a result of the reduced evolutionary constraints at allosteric sites, 

which do not need to maintain specificity for binding to the endogenous orthosteric 

ligand, allosteric modulators may be designed to yield subtype-specific drugs. Additionally, 

allosteric modulators can regulate the binding and signaling efficacy of orthosteric ligands 

in multiple ways, achieving signaling outcomes that would not be possible by targeting the 

orthosteric site alone. This last point is particularly important: as a consequence of binding 

to sites on the receptor distinct from the orthosteric site, allosteric modulators may be able 

to stabilize biased receptor signaling conformations that may be difficult or impossible to 

achieve with an orthosteric ligand.208 For example, a β-arrestin-biased allosteric modulator 

for the neurotensin receptor, ML314, and its derivative, SBI-553, selectively antagonize 

G-protein signaling while attenuating addictive behaviors via β-arrestin-dependent signaling 

processes.216 This relies on its ability to sterically interfere with G⍺q-protein coupling, but 

not coupling to GRK or β-arrestin.217,218

Signaling from Subcellular Compartments

Nanodomains—There is increasing evidence that signals generated by receptors are 

confined to nanometer-sized domains, referred to as nanodomains (Figure 7).219 For 

example, functionally divergent pools of βARs contribute to cAMP compartmentalization 

to fine-tune physiological cardiac functions such as contractility. Early work in the 1980s 

proposed that cAMP microdomains are regulated by tethered PKA in cardiomyocytes 

(Figure 7C).220 With the development of cAMP and EPAC fluorescence resonance energy 

transfer (FRET)-based biosensors, monitoring second messengers in subcellular locations 

became possible. Cardiac myocytes transfected with PKA FRET biosensors localized to 

the sarcoplasmic reticular and myofilament sites revealed heterogeneity in kinetics and 

amplitude of cAMP signaling.221 cAMP microdomains have been shown to influence 

cardiac contractility and dysregulation of these domains has been implicated in heart failure 

(Figure 7D).222 Recently, engineered nanoruler FRET biosensors have identified cAMP 

nanodomains at the GLP-1R and β2AR, suggesting that these domains are the fundamental 

units of signaling in the cell.223 These cAMP domains are dynamic entities, localized to 

specific subcellular regions with tight regulation of cAMP levels that are distinct from bulk 

cytosolic cAMP. In general, these domains are regulated by AC, phosphodiesterases (which 
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break down cAMP), and scaffold proteins such as A-kinase anchoring proteins (AKAP), 

which contribute to this localization.

Location bias—Not long after the discovery that GPCRs could signal from distinct 

nanodomains, it was realized that this signaling could differ between subcellular 

compartments, a phenomenon now commonly referred to as location bias. It is now 

appreciated that many receptors, such as β1AR, β2AR, and AT1R, display location bias 

from different subcellular locations such as the nucleus, endosomes, and Golgi, which 

result in physiologically distinct outcomes.224–226 In 1998, the first evidence of receptor 

internalization being required for MAPK activation was demonstrated at the β2AR in 

the Lefkowitz Lab. In that study, it was shown that expressing β-arrestin or dynamin 

dominant negative mutants in HEK293 cells inhibited MAPK activation but did not limit 

the receptor’s ability to couple to G proteins.227 Subsequent work supported that receptor 

internalization did not simply terminate signaling, but promoted signaling by G-proteins 

from endosomes.228 In 2009, three independent groups showed that thyroid stimulating 

hormone, parathyroid hormone, and the sphingosine-1 phosphate receptors continue to 

signal after their internalization.229–231 Inhibition of internalization resulted in the ablation 

of cAMP signaling, demonstrating that G protein signaling can occur from endosomes. 

Subsequent work showed that other G⍺s-coupled receptors, such as internalized β2ARs, 

increase intracellular cAMP levels, which was subsequently shown to promote CREB-

dependent transcription.224,232

A few studies have probed the consequences of location-biased signaling in physiologically 

relevant cell types, such as cardiomyocytes, in health and disease.222 β1ARs are found 

throughout the cardiomyocyte, while the β2AR and β3AR subtypes are solely expressed 

in the T-tubules,233 and cAMP generation from receptors at T-tubules activates a subset 

of PKA anchored in their vicinity234 (Figure 7A). Receptors are localized to other 

subcellular compartments such as the nuclear membrane, where α1ARs,235,236 AT1Rs,237 

ETARs,238 and βARs129 are present in cardiomyocytes. Nuclear α1AR translocates from 

the nucleus to the caveolae to induce ERK signaling 129,235 and AT1Rs in the nucleus 

has been observed to regulate N-κB transcription.237 β1ARs and β2ARs are also found 

on nuclear membranes of cardiomyocytes where they activate Gαs and other signaling 

partners, which alter transcriptional networks upon receptor activation.129 Another important 

subcellular compartment is the Golgi/sarcoplasmic reticulum, where a pool of β1ARs 

resides.225 The accessibility of different ligands to this pool of receptors depends on their 

membrane permeability, which can result in distinct physiological responses. The organic 

cation transporter subtype 3 (OCT3), has been shown to facilitate the uptake of membrane-

impermeable catecholamines across the plasma membrane to the nucleus and Golgi.235 

For example, OCT3-mediated transported ligands can regulate the sarcoplasmic reticulum 

localized β1AR and regulate contractility through local PKA-mediated phosphorylation of 

phospholamban (Figure 7E). The function of β1AR localization has been further elucidated 

in intact zebrafish hearts, where Golgi-localized β1AR cAMP production promotes 

lusitropy (through PLB/SERCA), while plasma membrane-localized β1AR mediates PKA 

phosphorylation of RyR2 and troponin I to promote inotropy.239 Further work with drugs 
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with different membrane permeability may aid in uncovering the physiological significance 

of subcellular signaling in cardiomyocytes.240

Conclusions

Our understanding of cardiovascular GPCRs has had a profound impact on the development 

of modern-day cardiovascular therapies. Over the past century, researchers have made many 

key discoveries on the nature of GPCR signaling, elucidating multiple mechanisms of drug 

action. With the substantial growth and excitement around cardiovascular GPCRs, these 

receptors are still some of the top targets in drug discovery. Additional understanding of 

receptor structures and receptor dynamics, will improve screening approaches, including 

those that target new allosteric sites on receptors and incorporate novel computational and 

artificial intelligence approaches. These could also be used to guide the development of 

drugs that have bias between heterotrimeric G-proteins and β-arrestins as well as having 

specific patterns of location bias. With new data sets, such as those from single-cell 

sequencing and other approaches, it should also be possible to identify novel therapeutic 

targets for cardiovascular disease. Combining these approaches, across pharmacology, 

physiology, structure, and computational biology, should lead to an exciting century-to-come 

of new GPCR-targeting therapies in cardiovascular disease.
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Non-standard Abbreviations and Acronyms

GPCR G protein-coupled receptor

cAMP cyclic adenosine monophosphate

AC adenylyl cyclase

GTP guanosine triphosphate

GDP guanosine diphosphate

βAR β-adrenergic receptor

GRK GPCR kinases

AT1R angiotensin II type 1 receptor

HF heart failure

ATP adenosine triphosphate
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PKA protein kinase A

PIP2 phosphatidylinositol 4,5-bisphosphate

IP3 inositol 1,4,5-trisphosphate

DAG diacylglycerol

SR sarcoplasmic reticulum

PKC protein kinase C

RGS regulators of G protein signaling

GAPs GTPase activating proteins

GLP-1 Glucagon-like peptide-1

GLP-1R The GLP-1 receptor

GIP glucose-dependent insulinotropic polypeptide

GIPR GIP receptor

PDB protein data bank

Fab fragment antigen-binding

NMR nuclear magnetic resonance

EPR electron paramagnetic resonance

DEER double electron–electron resonance

DRY aspartic acid-arginine-tyrosine

FRET fluorescence resonance energy transfer

OCT3 organic cation transporter subtype 3

PLC- β phospholipase C- β

ERK extracellular signaling-related kinases

AKAP A-kinase anchoring protein

PDE phosphodiesterase

PLB hospholamban

SERCA Sarcoendoplasmic Reticulum Calcium ATPase
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Figure 1: Notable Ligand, Receptor, and Transducer Discoveries.
Over the past century, there have been many discoveries from ligands to transducers. 

Here we have highlighted key studies that have contributed to our knowledge of GPCRs. 

Below are the corresponding publications for each discovery. Images were reproduced with 

permission from reference #’s

1. 1897–1901: Epinephrine is characterized and isolated from adrenal glands.4,241 2. 
1900: The term “side chains” is coined when studying immune receptors.7 3. 1905: 

The term “receptive substance” is coined when studying neural signal transmission.9 

4. 1909+: Pharmacological studies of agonist affinity and efficacy in tissue models.15–

18 5. 1948: Pharmacological categorization of α and β adrenoreceptors.242 6. 1950s: 

Studies on the mechanism of hormone action through cAMP and Adenylyl Cyclase 

(AC). 21,23,243 7. 1950s: Concept of receptor affinity and efficacy.19,20 8. 1971: GTP 

dependence of hormone-stimulated AC discovered.24–26 9. 1974: Radioligand binding of 

β adrenergic receptors.31–33 10. 1979: Purification of the β2AR.36 11. 1980: Purification of 

heterotrimeric G-proteins.27,28 12.1980: Ternary complex proposed.35 13. 1986–8: β1AR 

and β2AR cloned.37,244,245 14. 1986: βARK (GRK2) discovered.38 15. 1990–1992: β-

arrestins discovered.39,40 16. 2000: X-ray crystal structure of Rhodopsin.246 17. 2007: 

First crystal structures of a non-rhodopsin GPCR, the human β2AR.191,192 18. 2011: 

First crystal structure of a GPCR in complex with heterotrimeric G-protein.193 19. 2015–

2020: Structures of GPCRs in complex with visual and β-arrestins.247–249 20. 2016–2019: 

Structural studies of a GPCR, G-protein, and arrestin megaplex. 250,251
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Figure 2: History of Nobel Prize winning GPCR Discoveries
The discoveries of components of the GPCR signaling system, ranging from ligands, 

receptors, and transducers have resulted in numerous Nobel Prizes being awarded. 

These include the development of clinically important agonists and antagonists, and 

basic discoveries related to the signaling mechanisms of GPCRs and their transducers. 

Names and Nobel Prizes were collected from the Nobel Foundation website (https://

www.nobelprize.org/prizes/lists/all-nobel-prizes/)
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Figure 3: GPCR signaling via G proteins, GRKs and β-arrestins.
Upon agonist stimulation, heterotrimeric G-proteins (Gα, Gβ, and Gγ) are recruited to the 

receptor and there is guanine nucleotide exchange of GTP for GDP. The Gα-GTP subunit 

dissociates from the Gβγ transducer, and both signal to diverse downstream effectors. Gα 
has four distinctive families (Gαs, Gαi, Gαq, Gα12/13). GRKs phosphorylate the intracellular 

domains of the GPCR, which promote tight binding of β-arrestins. β-arrestins have three 

canonical functions: receptor desensitization, internalization, and signaling. In addition, 

there is intracellular signaling of β-arrestins from endosomes. GRK, G-protein receptor 

kinase; GDP, Guanosine diphosphate; GTP, Guanosine triphosphate; AC, adenyl cyclase; 

ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; PKA; Protein kinase 

A; PLC- β, phospholipase C- β; IP3, inositol trisphosphate; PIP2 phosphatidylinositol 4,5-

bisphosphate; DAG, diacylglycerol; PKC, Protein kinase C; ERK, extracellular signaling-

related kinases
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Figure 4: Biased Signaling of GPCRs.
(A) Reference/endogenous agonists binding to receptors can signal through two different 

pathways, G-proteins and β-arrestin. (B) Ligand bias promotes the receptor:transducer 

complex to adopt certain conformations that bias the signaling through (B) G-proteins or 

(C) β-arrestin. (D) Biased receptors may have altered phosphorylation sites on their C-tail or 

other mutations that may bias signaling toward β-arrestin instead of G-proteins despite being 

stimulated with an endogenous agonist. (E) System bias occurs when there is a differential 

expression of signaling components. For example, some cells express different isoforms of 

GRK and β-arrestin and may bias signaling through β-arrestin. (F) Location bias refers to 

receptors promoting signaling from distinct intracellular locations, such as from endosomes, 

the nucleus, or the plasma membrane.
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Figure 5: Structural studies of GPCRs.
(A) X-ray crystallography and CryoEM provide static structures of GPCRs. With 

improvements in cryoEM technology and workflow, cryoEM can now provide high-

resolution data on both receptor-ligand and receptor-transducer interactions, making it 

particularly well-suited to the study of GPCRs. (B) NMR Spectroscopy with probes 

such as 19F can provide information on dynamics and conformational ensembles by 

measuring changes in the local environment of individually labeled probes. (C) EPR 

spectroscopy techniques such as DEER spectroscopy with two spin-label probes can provide 

information on distances, conformations, and their relative populations. (D) Structure-Based 

Drug Discovery techniques use receptor structures to allow molecular docking and other 

approaches to screen compounds that bind to a desired receptor conformation.
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Figure 6: Allosteric Modulation of GPCRs.
(A) GPCR Conformational States. Receptors in the Apo (no ligands bound) state are largely 

in inactive conformations but can be stabilized by orthosteric agonists and antagonists in a 

variety of different active or inactive states. Active states are characterized by an opening 

of the transducer binding pocket. This pocket is closed to different degrees in inactive 

states. Orthosteric agonists can activate both G-protein and β-arrestin pathways or be biased 

towards one pathway. (B) Allosteric modulators bind to topographically distinct sites from 

the orthosteric site that can modulate receptor conformation. Allosteric modulators can 

either enhance agonist affinity and/or efficacy (positive allosteric modulators) or diminish 

the agonist affinity and/or efficacy (negative allosteric modulators). In addition, positive 

allosteric modulators can stabilize specific receptor conformations that promote bias towards 

G-protein or β-arrestin. Illustrated are the binding sites of allosteric modulators at the 

β2AR and the conformations they promote. The negative allosteric modulators of the β2AR, 

CMPD-15, and AS408, bind to distinct sites on the β2AR. CMPD-6, a balanced positive 

allosteric modulator, binds to another distinct site. Allosteric modulators can also display 

biased properties such as difluorophenyl quinazoline derivatives (DFPQ) which biases the 

β2AR towards G-protein signaling. The binding pose of DFPQ compounds has not been 

experimentally solved, but they are believed to bind close to the CMPD-6 binding site. β-

arrestin biased analogs of CMPD-6 have also been proposed due to CMPD-6’s interactions 

with the β-arrestin biased orthosteric ligand carvedilol. Compound structures obtained from 

the Protein Data Bank (PDB) : CMPD-15: 5X7D, AS408: 60BA, CMPD-6: 6N48.
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Figure 7: Location Bias in Cardiac Myocytes.
(A) In healthy cardiac tissue, βARs are found in T-tubules, which when stimulated 

with epinephrine/norepinephrine activate βAR-AC-PKA. PKA is tethered to intracellular 

compartments by AKAPs. PKA phosphorylates the RyR, inducing calcium release and 

resulting in increased cardiac contractility. (B) βARs at the plasma membrane enhance 

contractility through βAR-AC-PKA activation. (C) Recent work has evaluated cAMP 

nanodomains with different Gαs-mediated receptors. Nanodomains are membraneless 

compartments that enhance or sequester signaling molecules. For example, PDE is involved 

in regulating the size and shape of cAMP nanodomains, whereas AKAP (AKAP not 

pictured) serves as a PKA scaffolding protein to sequester cAMP signaling. (D) Contractility 

is promoted by Ca2+ binding to troponin C in addition to PKA mediated-phosphorylation 

of contractile proteins such as troponin I (E) OCT3 is found on the plasma membrane 

and the Golgi and facilitates the transportation of norepinephrine/epinephrine into the 

cell to promote Golgi-βARs-AC-PKA signaling. Unlike the pool of PKA found at 

the plasma membrane and T-tubules, Golgi PKA activates phospholamban and forms 

an inhibitory complex with SERCA. This reduces available Ca2+ and increases the 

rate of relaxation. βARs, β-adrenergic receptor; AC, adenyl cyclase; ATP, adenosine 

triphosphate; cAMP, cyclic adenosine monophosphate; PKA; Protein kinase A; AKAP; 

A-kinase anchoring protein; PDE, phosphodiesterase; PLB, phospholamban; SERCA, 

Sarcoendoplasmic Reticulum Calcium ATPase; OCT3, monoamine transporter; RyR, 

Ryanodine Receptor
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