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ABSTRACT: Acetylcholinesterase (AChE) is an important enzyme and target for
human therapeutics, environmental safety, and global food supply. Inhibitors of this
enzyme are also used for pest elimination and can be misused for suicide or chemical
warfare. Adverse effects of AChE pesticides on nontarget organisms, such as fish,
amphibians, and humans, have also occurred as a result of biomagnifications of these
toxic compounds. We have exhaustively curated the public data for AChE inhibition
data and developed machine learning classification models for seven different
species. Each set of models were built using up to nine different algorithms for each
species and Morgan fingerprints (ECFP6) with an activity cutoff of 1 μM. The
human (4075 compounds) and eel (5459 compounds) consensus models predicted
AChE inhibition activity using external test sets from literature data with 81% and
82% accuracy, respectively, while the reciprocal cross (76% and 82% percent
accuracy) was not species-specific. In addition, we also created machine learning
regression models for human and eel AChE inhibition to return a predicted IC50 value for a queried molecule. We did observe an
improved species specificity in the regression models, where a human support vector regression model of human AChE inhibition
(3652 compounds) predicted the IC50s of the human test set to a better extent than the eel regression model (4930 compounds) on
the same test set, based on mean absolute percentage error (MAPE = 9.73% vs 13.4%). The predictive power of these models
certainly benefits from increasing the chemical diversity of the training set, as evidenced by expanding our human classification
model by incorporating data from the Tox21 library of compounds. Of the 10 compounds we tested that were predicted active by
this expanded model, two showed >80% inhibition at 100 μM. This machine learning approach therefore offers the ability to rapidly
score massive libraries of molecules against the models for AChE inhibition that can then be selected for future in vitro testing to
identify potential toxins. It also enabled us to create a public website, MegaAChE, for single-molecule predictions of AChE inhibition
using these models at megaache.collaborationspharma.com.

■ INTRODUCTION
Acetylcholinesterase (AChE) is the primary cholinesterase in
the body and is an enzyme that catalyzes the breakdown of
acetylcholine (ACh) and of some other choline esters that
function as neurotransmitters. AChE is found mainly at
neuromuscular junctions and in chemical synapses of the
cholinergic type, where its activity serves to terminate synaptic
transmission. AChE belongs to the carboxylesterase family of
enzymes and is the primary inhibition target of organo-
phosphorus (OP) pesticides and nerve agents.1 AChE
hydrolyzes choline esters and has a very high catalytic activity,
with each molecule of AChE degrading ∼25,000 molecules of
ACh per second, approaching the limit allowed by diffusion of
the substrate.2,3 OPs irreversibly and noncompetitively inhibit
AChE, causing poisoning by phosphorylating the serine
hydroxyl residue on AChE, which inactivates AChE.4 AChE
has been implicated in a multitude of biological functions,
including, but not limited to, neurite outgrowth, bone
development, and regulation of proliferation and apoptosis in

hematopoietic stem cells and of amyloid fibril formation.5−9

AChE is also critical for nerve function; hence, the inhibition
of this enzyme causes ACh accumulation and results in muscle
overstimulation. Inactivation of AChE in nerve synapses can
therefore be lethal while OP-inhibited AChE can be reactivated
with oximes, provided the OP has not aged.10 Two classes of
ACh receptors are activated differently in the body, namely,
nicotinic receptors and muscarinic receptors. Overstimulation
of nicotinic acetylcholine receptors in the central nervous
system, due to accumulation of ACh, results in anxiety,
headache, convulsions, ataxia, depression of respiration and
circulation, tremor, general weakness, and potentially
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coma.11,12 When there is expression of muscarinic over-
stimulation due to excess ACh at muscarinic acetylcholine
receptors there can be symptoms of visual disturbances,
tightness in the chest, wheezing due to bronchoconstriction,
increased bronchial secretions, increased salivation, lacrima-
tion, sweating, and peristalsis, and urination can occur.13

AChE is also a validated therapeutic target in the
symptomatic treatment of Alzheimer’s disease to treat
cognitive deficiency.14 A number of FDA approved AChE
inhibitor drugs including tacrine, rivastigmine, donepezil, and
galantamine are widely prescribed for this disease. Our
understanding of AChE inhibition has been enhanced by
various crystal structures and the computational design of
drugs addressing this target at both the catalytic and peripheral
anionic site.15 For example, donepezil occupies an anionic
subsite in the active site gorge by engaging in π−π stacking and
cation−π interactions.16 Synthetic efforts employing medicinal
chemistry have been a fertile source of multiple classes of
AChE inhibitors,15 which in turn have been employed to build
a wide array of quantitative structure activity relationship
(QSAR) machine learning models.17−24 Additional modeling
efforts have employed different methodologies such as
molecular docking,25−28 structure-based pharmacophore mod-
eling,29 machine learning,30 2D and 3D similarity searches,31

MIA-QSAR modeling,32 or even combinations of these
strategies.33−35 Based on these and other previously published
studies, such computational methods can be used to help
identify AChE inhibitors that may have deleterious effects on
human or other species health with ultimate impacts on the
environment.
Inhibition of recombinant or purified AChE is often used as

a predictor of toxicity in vitro and appears in off-target safety
panels used by commercial companies for drug discovery.36

The EPA Office of Pesticide Programs uses cholinesterase
inhibition in risk assessments of carbamate and organo-
phosphorus pesticides. The majority of the original 309
compounds compiled by the EPA in the ToxCast Phase 1
chemical library were pesticides or the active ingredients
thereof,37 and a recent screen of the ten-thousand-compound
Tox21 library used three different in vitro HTS assays to
identify AChE inhibitors.38 Despite divergence in primary
sequences, and several duplication events in invertebrates, the
3D structure of the enzyme is mostly shared across
species.39−43 Although the electric eel AChE is regularly
used in the search for human drugs,44−53 some studies have
documented interspecies differences in inhibition for certain
classes of compounds.54−56

In this current study, we have compiled AChE inhibition
data from seven different species using publicly available
information and then used our Assay Central machine learning
software57,58 to build classification and regression models using
15 different algorithms with ECFP6 fingerprints. We have also
explored additional more recently described machine learning
algorithms. These models were validated in most cases using
nested, 5-fold cross-validation, an external data set from the
literature, as well as prospective testing and have resulted in the
production of a public website for the use of these models.

■ EXPERIMENTAL PROCEDURES
Data Sets. Data Curation. Data for AChE inhibition (IC50) were

downloaded from ChEMBL 3059 for human (CHEMBL220), eel
(CHEMBL4078), cow (CHEMBL4768), rat (CHEMBL3199), ray
(CHEMBL4780), mosquito (CHEMBL2046266), and mouse

(CHEMBL3198). Additional entries for human AChE inhibition
were obtained from BindingDB,60 but these were limited to those that
did not list ChEMBL as their source. Entries without a numerical
value in the “IC50” value column were removed. Entries for which the
assay description listed an organism other than the one listed under
“Target Organism” were removed. Entries without a species of origin
listed in the assay description were further investigated in the primary
literature, under the listed Document ID. If the species of origin for
the AChE inhibition data in the citation differed from the Target
Organism, or if there was no species of origin given in the primary
literature, these entries were removed. We did not distinguish
between method of assay listed but retained all entries that described
AChE inhibition. Relational IC50 values (i.e., IC50 > 1000 nM) were
retained for the classification but not for regression models. Due to
this, the data set sizes for the classification and regression models were
variant. We next put each data set through our proprietary software
“E-Clean”, which uses open-source RDKit tools, to remove duplicate
compounds and salt as well as neutralize charges. For regression
models, the IC50 values were converted to −log M, and then averaged
for duplicate compounds. For classification models, −log M values
were binarized on a threshold of 1 μM (−log M = 6) and assigned a
binary activity. The binary activities of duplicate compounds were
averaged, and those with an average activity ≥0.5 were assigned an
activity of 1. Both continuous (regression) and binarized (classi-
fication) data sets were then further standardized within the Assay
Central software using the Indigo Toolkit as described previously,58

and final data sets were created for model training (See Supplemental
Datafiles). The “uncurated” human data set is composed of all entries
in ChEMBL 30 with pChEMBL values listed under human AChE
(CHEMBL220), excluding any entries with text in the “Data Validity
Comment” column of the spreadsheet. This includes anything flagged
as “Non standard unit for type”, “Outside typical range”, “Potential
missing data”, or “Potential transcription error”. The entries were then
cleaned using E-Clean and the Indigo Toolkit in Assay Central, as per
the curated data sets. The classification data set was binarized as per
the specifications above.
Data Curation for Human and Eel Test Sets. A search of PubMed

Central was performed searching for novel AChE inhibitors published
between 2017 and 2021 that had not previously been recorded in
ChEMBL. These human and eel test sets were composed of 208 and
203 compounds, respectively, from >20 different papers each
(Supporting Information). The compounds in both test sets were
absent from their respective training data sets based on INCHI key
comparisons.
Incorporating Tox21 Screen Data. Three simultaneous high-

throughput screens of Tox21 compounds were performed recently in
a search to find AChE inhibitors, investigating the inhibition of AChE
in assays using either cells, human liver microsomes, or enzyme-only
conditions.38 We obtained these data from these screens from
PubChem bioassays (1347395, 1347399, and 1347397, respectively)
and also compiled a list of compounds that were scored “inactive” in
all three screens [i.e., assigned them IC50 values of “> 100 μM” (−log
M = 4)]. We then processed this list using “E-Clean” and added these
compounds (6455 postprocessing) to our human ChEMBL and
BindingDB training data. We also included 177 IC50 values from the
enzyme-only follow-up assay in this study. The resulting classification
model consisted of 10,382 unique compounds.
Assay Central. Computing. All computing was conducted with

the same setup as previously described.58

Model Building. The Assay Central software builds classification
models using eight different machine learning algorithms, as described
previously.58 For model internal validation we used nested, 5-fold
internal cross-validation for the AdaBoosted decision trees (ADA),
Bernoulli naiv̈e Bayes (BNB), K-nearest neighbors (kNN), Logisti-
cRegression (LREG), random forest (RF), support vector classi-
fication (SVC), and XGBoost (XGB) algorithms, and a 20% leave-out
set for the deep learning 3 layers (DL) algorithm.
Model Validation. Applicability Domains. Applicability domain

(AD) scores for classification models were calculated using a
reliability-density neighborhood (RDD) algorithm described pre-
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viously.61 Compounds that received an AD score of 1 were in the
model and were retroactively removed from the test set.
t-SNE Visualization. This was performed as previously described.58

Statistical Analysis. Statistical analyses for the internal cross-
validation were performed in Assay Central, and statistical analysis for
external validation was performed in Microsoft Excel. Statistical
analysis for linear regression, nonlinear regression [log(inhibitor) vs
response−variable slope (four parameters), least-squares regression],
Pearson correlation, Welch’s t test, and Kruskal−Wallis ANOVAs
were performed in GraphPad Prism 9.4.1.
Library Scoring. We downloaded several libraries from the EPA

CompTox Chemicals Dashboard for scoring with our AChE
inhibition models including the KEMI Market List (30,418
compounds), the HBM4 EU CEC Screen (70,000 compounds and
300,000 predicted metabolites), and the 62,000 compound NOR-
MAN SusDat list. We also scored 11,000 PFAS compounds compiled
from 37 individual chemical lists on the CompTox dashboard as well
as 12 additional chemical lists.62 We did not screen the predicted
metabolites of the CEC list due to the inability to purchase
compounds for verification.
In Vitro Validation. We performed AChE inhibition studies using

the Abcam Acetylcholinesterase Inhibitor Screening Kit [ab283363,
previously BioVision K197-100 (Colorimetric)] with modifications, as
described previously.57 Briefly, compounds were evaluated for their
ability to inhibit the AChE hydrolysis of acetylthiocholine to
thiocholine in the presence of 5,5′-dithiobis-2-nitrobenzoic acid
(DNTB), which forms the colorimetric 5-thio-2-nitrobenzoic acid
(TNB) anion.63 Kinetic assays were performed, measuring the change
in absorbance at 412 nM over time (slope), and percent inhibition
was calculated in regard to the solvent control (SC) of 1% DMSO. %
Inhibition = (slope of SC − slope of (C))/slope of SC × 100.
Reported percent inhibition is the average of at least two technical
replicates ± standard deviation. Dose−response curves were
performed in technical triplicate.

■ RESULTS
Data Curation. After significant pruning of the AChE data

sets for each species, we had curated training sets which varied
substantially in size by species (Table 1). Human and eel data
sets were the largest with the final sets having 4075 and 5459,
respectively. With the exception of a subset of compounds for
human AChE inhibition found in BindingDB, all of the
compound IC50 data for the initial models were downloaded
from ChEMBL. Close to two thousand entries were removed
from the human data set based on filter criteria, with the
overwhelming majority being removed due to them having an
undisclosed species in their primary source material. During
this curation step we also found instances where the species
was mislabeled in the ChEMBL data set, and at multiple stages
during the model building and validation stages we returned to

the source data to find that data was mislabeled or
mistranscribed from the source material. Due to a trans-
position error in the human data set which we discovered, this
heavily skewed the range of the data set; we therefore carefully
investigated the original source material for every entry flagged
by ChEMBL “outside normal values”, and we corrected or
discarded those that were incorrect. We supplemented the
ChEMBL data for the human data set with unique entries for
human AChE inhibition from BindingDB.
Machine Learning Model Building: Classification

Models. We built classification models for each of the seven
species with AChE data listed in Table 2 using 8 different
machine learning algorithms ADA, BNB, kNN, LREG, RF,
SVC, XGB, and DL. We also performed a comparison of our
descriptor-based models against a more recent machine
learning algorithm called AttentiveFP64 using the larger eel
and human data sets. AttentiveFP is a graph-based model
which has showed improved results over descriptor-based
models in a number of tasks. We used the DeepChem65

Library for the AttentiveFP implementation, keeping the
hyperparameters default except for dropout, which we set to
0.2 based on model performance in the original paper. Internal
cross-validation of the models was performed using nested, 5-
fold cross-validation with the exception of DL, which used a
20% leave-out set, and AttentiveFP, which used 5-fold cross-
validation (Table 2). These 5-fold cross-validation statistics
looked very good overall, with most AUC and F1 scores >0.9
across algorithms for each organism except mosquito, which
were created from the data set with the fewest number of
compounds The AttentiveFP models did not outperform our
descriptor-based models. This is not surprising, as more
complex models often require larger amounts of data than
what we typically have, which is often <10,000 data points, in
order to outperform descriptor-based models.66

External Model Validation of Classification Models.
External validation for the human and eel models was
performed using test sets manually curated from the literature
for inhibitors of human and eel AChE. We predicted these test
sets against consensus models composed of all eight
classification models for each species, and we saw that the
human and eel consensus models were able to predict activity
in the human and eel test sets with 81% and 82% accuracy,
respectively (Table 3). While this indicated an excellent
predictive power of these models, the reciprocal crosses (e.g.,
eel model vs human test set and vice versa) showed accuracies
just as high. This demonstrates that while these models are

Table 1. Curation of ChEMBL IC50 Data for Classification Models of Species-Specific Inhibition of AChE

organism
number of IC50 entries

downloaded from ChEMBL
number remaining after entries�

manual curation
number of remaining

compounds after cleaning
number remaining of actives/
inactives at 1 μM threshold

Human (Homo
sapiens)

8205(plus 706 from BindingDB) 4749(plus 200 from BindingDB) 4075 1813/2262

Eel (Electrophorus
electricus)

6534 6265 5459 2084/3375

Rat (Rattus
norvegicus)

1764 1653 1406 687/719

Mouse (Mus
musculus)

529 429 368 145/223

Cow (Bos taurus) 616 599 457 239/218
Ray (Torpedo

californica)
430 385 307 156/151

Mosquito
(Anopheles
gambiae)

139 102 72 27/45
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Table 2. Nested, 5-Fold Cross-Validation Statistics of Classification Models of AChE Inhibition at 1 μM Threshold for Seven
Speciesa

Human AChE Training Set: 1813 Active/4075 Total Compounds

model AUC F1 score precision recall accuracy specificity Cohen’s kappa MCC

DLb 0.93 0.84 0.84 0.83 0.85 0.87 0.70 0.70
ADA 0.91 0.80 0.81 0.80 0.82 0.85 0.64 0.64
BNB 0.84 0.73 0.71 0.75 0.75 0.76 0.51 0.51
kNN 0.92 0.84 0.81 0.87 0.85 0.84 0.71 0.71
LREG 0.91 0.82 0.82 0.81 0.84 0.86 0.67 0.67
RF 0.94 0.84 0.86 0.81 0.86 0.90 0.71 0.72
SVC 0.94 0.86 0.86 0.85 0.87 0.89 0.74 0.74
XGB 0.93 0.85 0.85 0.85 0.87 0.88 0.73 0.73
AttentiveFPc 0.75 0.76 0.72 0.83 0.75 0.74 0.43 0.43

Eel AChE Training Set: 2084 Active/5459 Total Compounds

model AUC F1 score precision recall accuracy specificity Cohen’s kappa MCC

DLb 0.90 0.79 0.76 0.82 0.83 0.84 0.65 0.66
ADA 0.91 0.78 0.81 0.76 0.84 0.89 0.66 0.66
BNB 0.85 0.71 0.74 0.69 0.79 0.85 0.55 0.55
kNN 0.93 0.84 0.82 0.85 0.87 0.89 0.73 0.73
LREG 0.91 0.80 0.81 0.80 0.85 0.88 0.68 0.68
RF 0.94 0.84 0.86 0.81 0.88 0.92 0.74 0.74
SVC 0.93 0.84 0.83 0.84 0.87 0.89 0.73 0.73
XGB 0.93 0.83 0.84 0.82 0.87 0.90 0.73 0.73
AttentiveFPc 0.86 0.82 0.83 0.82 0.87 0.76 0.53 0.53

Rat AChE Training Set: 687 Active/1406 Total Compounds

model AUC F1 score precision recall accuracy specificity Cohen’s kappa MCC

DLb 0.95 0.87 0.85 0.90 0.87 0.85 0.74 0.75
ADA 0.92 0.84 0.86 0.82 0.85 0.87 0.69 0.69
BNB 0.87 0.80 0.82 0.78 0.81 0.84 0.62 0.62
kNN 0.93 0.86 0.83 0.89 0.86 0.83 0.72 0.72
LREG 0.94 0.86 0.86 0.86 0.86 0.87 0.72 0.72
RF 0.94 0.87 0.87 0.87 0.87 0.87 0.74 0.74
SVC 0.93 0.87 0.85 0.88 0.87 0.86 0.73 0.73
XGB 0.94 0.87 0.87 0.87 0.87 0.87 0.74 0.74

Mouse AChE Training Set: 145 Active/368 Total Compounds

model AUC F1 score precision recall accuracy specificity Cohen’s kappa MCC

DLb 0.95 0.89 0.96 0.83 0.92 0.98 0.83 0.83
ADA 0.93 0.84 0.86 0.83 0.88 0.91 0.74 0.75
BNB 0.89 0.79 0.82 0.78 0.84 0.88 0.66 0.67
kNN 0.90 0.85 0.82 0.90 0.88 0.86 0.75 0.76
LREG 0.94 0.86 0.84 0.88 0.88 0.89 0.76 0.76
RF 0.95 0.86 0.87 0.86 0.89 0.91 0.77 0.77
SVC 0.93 0.87 0.84 0.91 0.89 0.88 0.78 0.78
XGB 0.93 0.87 0.87 0.87 0.89 0.91 0.78 0.78

Cow AChE Training Set: 239 Active/457 Total Compounds

model AUC F1 score precision recall accuracy specificity Cohen’s kappa MCC

DLb 0.94 0.85 0.89 0.81 0.85 0.89 0.70 0.70
ADA 0.92 0.87 0.88 0.86 0.87 0.87 0.73 0.73
BNB 0.93 0.87 0.89 0.85 0.87 0.89 0.73 0.74
kNN 0.92 0.88 0.86 0.90 0.87 0.84 0.74 0.74
LREG 0.94 0.89 0.90 0.88 0.89 0.89 0.77 0.77
RF 0.94 0.88 0.91 0.85 0.88 0.90 0.76 0.76
SVC 0.94 0.89 0.90 0.88 0.89 0.89 0.77 0.77
XGB 0.93 0.88 0.89 0.88 0.88 0.88 0.75 0.76

Ray AChE Training Set: 156 Active/307 Total Compounds

model AUC F1 score precision recall accuracy specificity Cohen’s kappa MCC

DLb 0.95 0.89 0.88 0.91 0.89 0.87 0.77 0.77
ADA 0.93 0.87 0.92 0.83 0.88 0.93 0.75 0.76
BNB 0.89 0.83 0.81 0.85 0.82 0.80 0.65 0.65
kNN 0.92 0.88 0.92 0.85 0.89 0.92 0.77 0.78
LREG 0.94 0.89 0.91 0.87 0.89 0.91 0.78 0.78
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good at predicting general AChE inhibition accurately, there is
no appreciable species specificity between these models. This
would suggest that either species could be used to predict the
classification of a molecule for the other species.

These results are unsurprising, given what we know about
AChE; the enzyme is highly conserved in vertebrates, and
while some differences in IC50 values between eel and human
have been reported,39,54−56 it has usually been a matter of

Table 2. continued

Ray AChE Training Set: 156 Active/307 Total Compounds

model AUC F1 score precision recall accuracy specificity Cohen’s kappa MCC

RF 0.94 0.87 0.94 0.82 0.88 0.95 0.77 0.78
SVC 0.95 0.89 0.92 0.86 0.89 0.93 0.79 0.79
XGB 0.94 0.90 0.91 0.88 0.90 0.91 0.79 0.79

Mosquito AChE Training Set: 27 Active/72 Total Compounds

model AUC F1 score precision recall accuracy specificity Cohen’s kappa MCC

DLb 1 0.67 1 0.50 0.80 1 0.55 0.61
ADA 0.83 0.73 0.79 0.71 0.81 0.87 0.59 0.60
BNB 0.85 0.56 0.61 0.55 0.71 0.78 0.33 0.35
kNN 0.88 0.80 0.85 0.82 0.85 0.87 0.69 0.71
LREG 0.86 0.77 0.86 0.75 0.82 0.89 0.65 0.67
RF 0.88 0.81 0.88 0.78 0.85 0.91 0.70 0.72
SVC 0.87 0.75 0.71 0.82 0.81 0.80 0.60 0.61
XGB 0.82 0.70 0.83 0.64 0.79 0.89 0.55 0.58

aDL = deep learning; ADA = AdaBoosted decision trees; BNB = Bernoulli naıv̈e Bayes; kNN = K-nearest neighbors; LREG = LogisticRegression;
RF = random forest; SVC = support vector classification; XGB = XGBoost. bStatistics for a 20% leave-out set. cStatistics for 5-fold cross-validation.

Table 3. Truth Tables for Human and Eel AChE Test Sets Predicted against Human and Eel Consensus Modelsa

aBlue squares in the truth tables indicate correct predictions. Colors in the statistic squares represent a color range from worse (red) to better
(green).
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degree instead of a stark activity difference. A comparison of
the −log M IC50 values of the 664 compounds found in
common between the human and eel continuous data sets
shows a strong correlation between the activity of the
compounds in both species (Spearman r = 0.83, Figure 1A).
An even stronger correlation was seen between human and rat,
although only 127 compounds were shared between the two
data sets (Figure 1B), so this difference may be based on
sample size. This contrasts sharply with the mosquito data,
which showed the weakest correlation between the two species
(Figure 1C). This is not entirely surprising, as the mosquito is
the furthest away evolutionarily, and this difference is the basis
for the validity of mosquito AChE being a viable druggable
target for OP pesticides.
Comparison of Data Set Overlap for Classification

Models. In our literature search for AChE inhibitors that were
not yet deposited into ChEMBL, less than ten percent of the
papers we encountered were focused on organisms other than
human or eel. Therefore, finding external test sets for those
species-specific models was challenging. Lacking external test
sets and given the results of the human and eel test sets, we
were keen to see if there was anything chemically distinguish-
able to be found in the data sets compiled for the other,
underrepresented species. We undertook this by comparing the
chemical property space, using ECFP6 descriptors of the data
sets for each species-specific data set using a t-SNE plot. A t-
SNE plot is a method that has been used previously to visualize
library differences. The ECFP6 fingerprints of these molecules
are condensed into a two-dimensional vector that can be
plotted, and the resulting plot is a two-dimensional
representation of a given chemical space.58 Figure S1
demonstrates that the chemical property spaces of the rat,
mouse, cow, ray, and mosquito training sets are, with a few
exceptions, largely encapsulated by the chemical property
space of the eel and or human training sets, and these models
are likely useful surrogates for the individual models built for
each vertebrate species.
Given the often-small variation between species-specific

activity, any differences are unlikely to be easily captured by a
classification model. However, given the modest difference in
correlation between the human and eel log IC50’s (Figure 1A),
we were keen to see if we could model the degree of separation
between human and eel activity. We therefore also investigated
the ability of regression models to distinguish between species-
specific differences in the test sets.

Machine Learning Model Building: Regression Mod-
els. We created regression models for the human and eel data
sets using ADAR, BayesianRidge (BR), ElasticNet regression
(ENR), kNN regression (kNNR), random forest regression
(RFR), support vector regression (SVR), and XGB regression
(XGBR). We also implemented AttentiveFP, as described in
the classification models section above, to compare against
descriptor-based models. The data sets for the regression
models were smaller than those for the classification models
(human = 3652, eel = 4930) as we excluded compounds with
relational IC50 values. The SVR algorithm outperformed all the
other algorithms for both human and eel with R2 values of 0.81
and 0.75, respectively (Table 4). While not the best-
performing algorithm, AttentiveFP outperformed some of the

Figure 1. Comparison between IC50 values of human against three other species (eel, rat, and mosquito). Each point represents the −log IC50 (M)
value of a single molecule tested in human AChE, plotted against the value of the same molecule tested in a different species. Red lines represent a
simple linear regression. Dotted lines represent 95% confidence bands. P value <0.0001. (A) Eel, (B) rat, and (C) mosquito.

Table 4. Nested, 5-Fold Cross-Validation Statistics for
Human and Eel Regression Models for AChE Inhibitiona

Human: 3652 Compounds (1.06−11.22 −log M)

model MAE RMSE R2 MPD MGD

ADAR 0.96 1.17 0.42 0.24 0.04
BR 0.68 0.88 0.67 0.14 0.03
ENR 0.88 1.13 0.46 0.22 0.04
kNNR 0.53 0.75 0.76 0.10 0.02
RFR 0.55 0.75 0.76 0.10 0.02
SVR 0.50 0.67 0.81 0.08 0.02
XGBR 0.62 0.86 0.68 0.13 0.03
AttentiveFPb 0.55 0.58 0.74 0.10 0.03

Eel: 4930 Compounds (0.62−10.42 −log M)

model MAE RMSE R2 MPD MGD

ADAR 0.79 0.98 0.34 0.17 0.03
BR 0.57 0.75 0.61 0.10 0.02
ENR 0.73 0.92 0.42 0.15 0.03
kNNR 0.47 0.66 0.70 0.08 0.01
RFR 0.46 0.64 0.72 0.07 0.01
SVR 0.43 0.60 0.75 0.06 0.01
XGBR 0.53 0.75 0.61 0.10 0.02
AttentiveFPb 0.50 0.46 0.69 0.09 0.02

aADAR = AdaBoosted decision trees; BR = BayesianRidge; ENR =
ElasticNet regression; kNNR = K-nearest neighbors regression; RFR
= random forest regression; SVR = support vector regression; XBGR
= XGBoost regression; R2 = coefficient of determination; MAE =
mean of absolute value of errors; RMSE = root-mean-squared error;
MPD = mean Poisson deviance; MGD = mean gamma deviance.
bStatistics from 5-fold cross-validation
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descriptor-based models, suggesting it is a competitive model
and may outperform some descriptor-based models for
regression with larger data sets.
External Model Validation of Regression Models. We

also used these regression models to predict the potency of the
compounds in the human and eel external test sets. The best
agreement between measured and predicted values was
demonstrated with the human test set predicted with the
human regression SVR model (Figure 2A). The predicted
−log(M) IC50 values had the highest correlation (Pearson’s r =
0.76) and the lowest mean absolute percentage error (MAPE =
9.73%) as compared to the measured values of any of the four
tested model/test set pairings (Figure 2B−H). The differences
in absolute error and MAPE between the human and eel
models for the human test set were statistically significant
(Figure 2C,D). Despite the less accurate predictions for the eel
test set on both the eel and human SVR models (Figure 2E,F),
the MAPE for the eel test set predicted by the eel model was
statistically significantly lower than for the human model
(Figure 2F), suggesting some species specificity. This outcome
was surprising, given the lack of species specificity found with
our classification models (Table 3). This discrepancy illustrates
one of the differences in regression and classification models as
information is likely lost in assigning classification based on
IC50 values to very closely related compounds that lie on the
activity threshold cutoff.
Following further analysis, we also found that the eel test set

showed two distinct clusters of molecules that were either

over- or underpredicted in potency by both models (Figure
S2A). These molecules are from three different publications
exploring AChE inhibition of hybrid molecules. Conjugates of
the well-known AChE inhibitor tacrine67 (IC50 = 159 nM)
were predicted by the model to be 4−30 times more potent
than their measured IC50 values, while conjugates of
coumarin68 (IC50 = 38,500 nM) and ligustrazine69 (not active)
were predicted by the model to be 4−90,000 times less potent
than their measured submicromolar, or subnanomolar, IC50
values. It is not surprising that hybrid molecules would not
easily be distinguishable from their origin molecules using
ECFP6 fingerprints. Interestingly, if these molecules are
removed from the test set, the correlation and R2 of the
remaining set improve dramatically and are on par with the
human test set on the human model (Figure S2B), although
the MAPE improves only slightly (Figure S2C).
Exploration of Data Curation on Results. Due to the

expense of manual curation that went into building these data
sets, we were also interested to learn if our extensive pruning
strategies produced a measurable result. The human data set
required extensive correction. Retrospectively, we were
interested to see how models built from “uncurated” ChEMBL
data performed with internal and external validation. The
uncurated human data set is composed of all entries under
human AChE in ChEMBL30, minus those entries with a
warning under the “Data Validity Comment” section in
ChEMBL. The internal cross-validation statistics for the
uncurated human classification models were still good (Table

Figure 2. SVR models for the prediction of AChE inhibition in human and eel test sets. (A) The human test set predicted with the human SVR
model. MAPE = 9.73%, MAE = 0.55 ± 0.48 (SD), RMSE = 0.73, Pearson’s r = 0.76, R2 = 0.58, two-tailed P value <0.0001. The line shows a simple
linear regression with 90% prediction bands. (B) The human test set predicted with the eel SVR model. MAPE = 13.4%, MAE = 0.79 ± 0.60,
RMSE = 0.99, Pearson’s r = 0.61, R2 = 0.38, two-tailed P value <0.0001. (C) Comparison of absolute error for real vs predicted value of the human
test set using the human or the eel SVR model (−log M). Unpaired t test with Welch’s correction, P < 0.0001. (D) Comparison of absolute
percentage errors for real vs predicted value of the human test set using the human or the eel SVR model. Unpaired t test with Welch’s correction, P
< 0.0001. (E) The eel test set predicted with the eel SVR model. MAPE = 19.4%, MAE = 0.99 ± 0.71, RMSE = 1.22, Pearson’s r = 0.60, R2 = 0.36,
two-tailed P value <0.0001 F) The eel test set predicted with the human SVR model. MAPE = 23.9%, MAE = 1.16 ± 0.77, RMSE = 1.39, Pearson’s
r = 0.52, R2 = 0.27, two-tailed P value <0.0001. (G) Comparison of absolute error for real vs predicted value of the eel test set using the human or
the eel SVR model, in −log(M). Unpaired t test with Welch’s correction, P = 0.0226. (H) Comparison of absolute percentage errors for real vs
predicted value of the eel test set using the human or the eel SVR model. Unpaired t test with Welch’s correction, P = 0.0033. (MAPE = mean
absolute percentage error, MAE = mean absolute error, R2 = coefficient of determination; RMSE = root-mean-squared error.)
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5), as was the predictive power of the uncurated consensus
model against our external test set (Table 6).
Similar to the regression models created with the curated

human data set, the uncurated human SVR had the best
internal cross-validation statistics (Table 7). However, unlike
the classification models, the accuracy of the curated SVR

model (Figure 3A) surpassed the accuracy of the uncurated
SVR model (Figure 3B), and this difference was statistically
significant (Figure 3C,D). This illustrates how data-centric
curation improves regression model results, suggesting that a
stronger focus on data curation is likely required for accurate
regression models as compared to classification models.
Machine Learning Model Building: Expanded Human

Classification Model. While our models were initially
assessed by predicting activity of test sets extracted from a
literature search for new AChE inhibitors, we also predicted
the activity of additional compounds. The data sets that were
used to train the human and eel classification models are
mostly nonoverlapping (they share only 771 compounds in
common), and both occupy a similar chemical property space
that encapsulates the test sets (Figure S3). This is likely
because the compounds found in searches of PubChem,
BindingDB, and PubMed largely represent AChE inhibitor-like
molecules, or compounds derived from known inhibitors. The
KEMI Market List (Stellan Fischer, KEMI) is a list of ∼30,000
compounds compiled from different regulatory agencies that
are expected to appear in the EU market. Unlike the data in the
aforementioned public databases, the market list is not drug-
centric, nor has it been selected for AChE inhibition.
Predictably, it occupies a very different chemical property
space from our predictive models (Figure S4A). We were able
to increase the chemical property space of our human

Table 5. Internal 5-Fold Cross-Validation Statistics of Uncurated Human Classification Models

Uncurated Human AChE Training Set: 2315 Active/5035 Total Compounds

modela AUC F1 score precision recall accuracy specificity Cohen’s kappa MCC

DL 0.91 0.82 0.81 0.84 0.83 0.83 0.67 0.67
ADA 0.88 0.77 0.79 0.75 0.79 0.83 0.58 0.58
BNB 0.82 0.72 0.72 0.73 0.74 0.75 0.48 0.48
kNN 0.91 0.84 0.81 0.86 0.85 0.83 0.69 0.69
LREG 0.89 0.79 0.80 0.78 0.81 0.83 0.62 0.62
RF 0.92 0.82 0.86 0.78 0.84 0.89 0.68 0.69
SVC 0.92 0.84 0.84 0.85 0.86 0.86 0.71 0.71
XGB 0.92 0.83 0.83 0.83 0.84 0.86 0.68 0.68

aDL = Deep learning; ADA = AdaBoosted decision trees; BNB = Bernoulli naıv̈e Bayes; kNN = K-nearest neighbors; LREG = LogisticRegression;
RF = random forest; SVC = support vector classification; XGB = XGBoost.

Table 6. Truth Tables for Human AChE Test Set Predicted against Human Curated (Left) and Human Uncurated Consensus
(Right) Modelsa

aBlue squares in the truth tables indicate correct predictions. Colors in the statistic squares represent a color range from worse (red) to better
(green).

Table 7. Nested, 5-Fold Cross-Validation Statistics for
Uncurated Human Regression Models for AChE Inhibitiona

Uncurated Human: 4511 Compounds (3.76−10.96 −log M)

model MAE RMSE R2 MPD MGD

ADAR 0.93 1.11 0.27 0.20 0.03
BR 0.65 0.85 0.57 0.12 0.02
ENR 0.81 1.02 0.38 0.17 0.03
kNNR 0.54 0.77 0.65 0.09 0.02
RFR 0.55 0.74 0.68 0.09 0.01
SVR 0.49 0.68 0.73 0.07 0.01
XGBR 0.61 0.83 0.59 0.11 0.02

aADAR = AdaBoosted decision trees; BR = BayesianRidge; ENR =
ElasticNet regression; kNNR = K-nearest neighbors regression; RFR
= random forest regression; SVR = support vector regression; XBGR
= XGBoost regression; R2 = coefficient of determination; MAE =
mean of absolute value of errors; RMSE = root-mean-squared error;
MPD = mean Poisson deviance; MGD = mean gamma deviance.
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classification models using data from a recent screen for
inhibition of human AChE in three different assays against the
Tox21 10,000 compound library.38 Most of the IC50 values
reported from the follow-up studies from this screen qualified
as inactive in our original human classification models based on
the 1 μM activity cutoff. We therefore rebuilt these models
with an activity cutoff of 100 μM and after incorporation of the
Tox21 compounds added 177 additional active compounds
(enzyme-only assay). We chose the enzyme-only assay for this
as it represents most of our in vitro data from ChEMBL and
BindingDB. We then added any compounds that scored
“inactive” for all three AChE screens (enzyme-only, enzyme
with human liver microsomes, and cell-based; ∼6400
compounds) to our classification models as inactive. Between
the combined inactives of three AChE screens, the 177 new
active compounds, and our reclassified ChEMBL and Bind-
ingDB data, the resulting human AChE classification models
are composed of 10,382 compounds and now overlap much
more chemical property space when compared with the KEMI
library (Figure S4B).
These new models performed well with internal cross-

validation (Table S1), so we used them to score the KEMI
market list, the 70,000-compound HBM4 EU CEC Screen list,
as well as 50 other additional chemical lists from the CompTox
Dashboard. Of the >195,000 compounds scored by our 100
μM human AChE model, there were 111 compounds
predicted to be active with an applicability domain score
≥0.8 (Table S2). The applicability domain score was used as a
metric as it is an indirect measure of the confidence of the
prediction score, calculated using the RDD algorithm.61 While
many of the top scoring compounds were unavailable
(prohibitively expensive, or already known AChE inhibitors
not in the model), we tested ten compounds for potential
AChE inhibitory activity, picking those with the highest AD
score that were readily available for purchase (Table 8, Figure
S5).
Eight of the ten selected compounds displayed modest

inhibition of AChE at 100 μM, with six of the ten displaying
>10% activity at this concentration and two of those IC50s of
between 7 and 14 μM (Figure S5). While this is below the
predicted ≥50% activity at 100 μM, as defined by the model,
the fact that most display at least partial dose−response curves
(Figure S5) suggests that this model is able to identify some
newly described AChE inhibitors.

■ DISCUSSION
To date there have been several examples of other research
groups using machine learning to create models for AChE
inhibition,30,70−78 including recent papers using ChEMBL or
BindingDB as sources for their training sets.72,76,79 Many of the
studies used 3D-QSAR and a docking step for scoring. Our
models in contrast use only ECFP6 fingerprints, which do not
require 3D information on the target. Additionally, these prior
examples tend to focus on a single organism to model, while in
contrast we have carefully curated data sets and created
machine learning models for AChE inhibition in seven
different species. Given the disparity between numbers of
unique compounds from public databases in some of these
recent papers, and the number we arrived at after our extensive
pruning and cleaning of data from these same databases, it
suggests that this curation process was more selective in
ensuring the human AChE models were composed of human-
only data. This extra curation step also improved the predictive
power of our regression models.
We have generated and validated our AChE inhibition

classification models using internal and additional external
methodologies. The excellent internal validation statistics in all
of these models also led us to use consensus models for
predictions of external test sets. We have shown that the
consensus classification models for human and eel AChE
inhibition can predict activity in external test sets with 81% and
82% accuracy, respectively (Table 3). We have also generated
an SVR model for human AChE inhibition that predicted −log
M IC50 values of a test set well (MAE = 0.55, RMSE = 0.73,
Figure 2). External test sets created from the literature may
also avoid bias that may arise from the partitioning of the data
set in leave-out cross-validation, in the case that similar
compounds from the same paper might appear in both the
model and the external test set. When comparing the accuracy
of the eel and human models against the species-specific test
sets, we did not observe any species selectivity in our
classification models. This reinforces our assertion that either
the human or eel consensus classification model could be a
good proxy for vertebrate AChE, as the structural similarities
are higher among the vertebrates.39 Our human SVR model
demonstrated species specificity and was the best model/test
set pair for predicting the potency of the compounds against
AChE. This represents a useful tool for evaluating which
compounds may be worth pursuing when looking for new

Figure 3. Comparison of the predictive power of the curated and uncurated human SVR models. (A) The human test set predicted with the human
SVR model. MAPE = 9.73%, MAE = 0.55 ± 0.48 (SD), RMSE = 0.73, Pearson’s r = 0.76, R2 = 0.58, two-tailed P value <0.0001. The line shows a
simple linear regression with 90% prediction bands. (B) The human test set predicted with the uncurated human SVR model. MAPE = 13.7%,
MAE = 0.73 ± 0.55, RMSE = 0.93, Pearson’s r = 0.66, R2 = 0.44, two-tailed P value <0.0001. (C) Comparison of absolute error for real vs predicted
values (−log M) of the human test set using the human curated or uncurated SVR models. Unpaired t test with Welch’s correction, P value =
0.0002. (D) Comparison of absolute percentage errors for the real vs predicted value of the human test set using the human curated or uncurated
SVR models. Unpaired t test with Welch’s correction, P value <0.0001.
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AChE inhibitors as therapeutics (for humans or as pesticides)
or by scoring molecules that may have an impact on the
environment via nontarget species. Our further exploration of
the value of curation efforts on the human AChE inhibition
data sets showed a marked improvement in the predictive
power of these human regression models.
There are many potential machine learning algorithms that

could be utilized, and as we have shown previously there is

minimal difference between their performance.80 More
recently described approaches such as transformer-based
models are thought to improve over more classical machine
learning models for tasks such as lipophilicity predictions;
however, they tend to perform worse at bioactivity/IC50

prediction tasks. For example, it has been shown that
Chemformer performs substantially worse than SVM models
trained on 2048-bit ECFP4 feature inputs.81 Another recently

Table 8. Inhibition of AChE by Compounds Predicted Active by the Expanded Human Classification Model
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described method, AttentiveFP, was also outperformed on the
Beta-Secretase 1 (BACE) bioactivity IC50 data set by a random
forest model.64 These results can be explained as more
complex models require more training data in order to
outperform their classical algorithm counterparts, and
bioactivity data sets are often small, with our data sets having
under 10,000 data points.66 To show whether these results
hold true with our largest data sets, we trained an AttentiveFP
model to compare against our other machine learning methods
using the implementation from the DeepChem library. We
found that AttentiveFP did not outperform our best models for
regression or classification for either the eel or human AChE
data sets using cross-validation. As additional algorithms come
to our attention they can be benchmarked with these data sets.
The expanded human classification model has potential uses

outside of the therapeutic space. Compounds that inhibit
AChE may also pose potential health risks. Over 50 chemical
lists from the CompTox dashboard62 that have implications for
human and environmental safety have been evaluated. We have
shown that there are over 100 compounds predicted to be
active against AChE, with a high degree of confidence based on
our predictions and applicability domain score. Future
investigations of additional libraries of such compounds for
potential AChE inhibition would help to further diversify and
strengthen this model. However, these do not necessarily
reflect available physical libraries, and we have encountered
challenges acquiring several of our top-scoring compounds,
either because the compounds are restricted, or the
compounds are simply not available from chemical vendors.
Machine learning models were also created for other species

but consisted of much smaller data sets. The mosquito AChE
model being the smallest did not perform as well on internal
cross-validation as the other species. It is also the only
invertebrate data set that we modeled, as well as the only
organism that is classified as a pest. As such, it potentially
deserves more attention, as the majority of AChE inhibitors
found in the environment are in the form of OP or carbamate
pesticides. Using machine learning models to predict
compounds that could target the invertebrate forms of
AChE, without targeting the vertebrate forms, is a compelling
option for future investigation, as well as exploring compounds
specific to butyrylcholinesterase without inhibiting the closely
related AChE.82,83

Finally, to make all our AChE models more widely available
to the scientific community we have created MegaAChE: a
website that can be used for predictions of a limited number of
molecules from a molecule structure (megaache.
collaborationspharma.com, Figure S6). We have also recently
pointed out that such machine learning methods have a
potential for dual use which we need to guard against and
ensure valid use of the data sets.84,85
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■ ABBREVIATIONS
AChE, acetylcholinesterase; Ach, acetylcholine; OP, organo-
phosphorus; QSAR, quantitative structure activity relationship;
ECFP6, Extended Connectivity Fingerprints Diameter 6; AD,
applicability domain; RDD, reliability-density neighborhood;
SVR, support vector regression
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