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Peroxisome proliferator-activated receptors (PPARs) were reported to prevent cells from stress-induced apoptosis and protect
tissues against ischemia-reperfusion injury. The underlying transcriptional mechanism is unclear. Recent reports indicate that the
antiapoptotic actions of ligand-activated PPARδ and PPARγ are mediated through enhanced binding of PPAR to the promoter of
14-3-3ε and upregulation of 14-3-3ε expression. We propose that ligand-activated PPARα exerts its anti-apoptotic actions via the
identical pathway. The PPAR to 14-3-3 transcriptional axis plays an important role in protection of cell and tissue integrity and is
a target for drug discovery.

1. Introduction

Peroxisome proliferator-activated receptors (PPAR) are
nuclear receptors that mediate diverse metabolic and cellular
functions. They comprise three members: PPAR-α, PPAR-
γ, and PPAR-δ (also known as PPAR-β), which have a
high degree of sequence homology and share common
structural characteristics (For review see [1]). In addition to
their well-recognized actions on regulating lipid metabolism
and glucose homeostasis, PPARs are involved in diverse
functions such as cell survival, proliferation, differentiation
and inflammation [2, 3]. There is an increasing evidence that
all three PPAR isoforms are crucial for defending against
apoptosis induced by oxidative and metabolic stresses.
However, the mechanism by which ligand-activated PPARs
defend against apoptosis is largely unknown. Recently, it was
reported that ligand-activated PPARδ and PPARγ exert anti-
apoptotic actions by transcriptional upregulation of 14-3-
3ε [4]. Here, we review the reported data and propose a
common anti-apoptotic mechanism.

2. Prostacyclin Protects Cells from
Stress-Induced Apoptosis

Prostacyclin (PGI2) is a metabolite of arachidonic acid
(AA). Its biosynthesis is requires the coordinated actions of

(1) phospholipase A2 which liberates AA from membrane
phospholipids, (2) cyclooxygenase (COX, also known as
prostaglandin H synthase) which converts AA into PGH2,
and (3) prostacyclin synthase (PGIS) which converts PGH2

into PGI2 [5]. The PGI2 synthetic enzymes are expressed in
several cell types including vascular endothelial and smooth
muscle cells, cardiac cells, renal interstitial cells, and certain
cancer cells. PGI2 possesses multiple biological actions and
plays important roles in important physiological and patho-
logical functions. Extensive investigations have established its
platelet inhibitory and vasodilatory actions and its essential
function in vascular homeostasis [6–8]. The classic actions of
PGI2 on inhibition of platelet aggregation and vasoconstric-
tion are mediated via I-type prostaglandin (IP) membrane
receptor which signals through protein kinase A pathway [9].
Recent studies have reported that PGI2 protects diverse cells
against stress-induced apoptosis; it protects renal interstitial
cells from hypertonicity-induced apoptosis, cardiomyocytes
from doxorubicin-induced apoptosis and megakaryocytes
from nitric oxide-(NO-) induced apoptosis. [10–12]. The
published reports imply that its anti-apoptotic action is
mediated via PPAR. First, synthetic PGI2 analogs including
carbaprostacyclin (cPGI2) and iloprost were reported to
bind PPARδ and PPARα [13]. Second, protection of renal
interstitial cells against hypertonicity-induced apoptosis by
PGI2 was correlated with PPARδ activation [14]. Third,
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PPARδ was reported to protect against apoptosis in ker-
atinocytes [15], cardiomyocyte [16], islet β cell [17], and
smooth muscle cells [18]. To ascertain that authentic PGI2

protects endothelial cells against apoptosis via PPARδ, Liou
et al. transduced human umbilical vein endothelial cells
(HUVECs) with an adenoviral vector containing bicistronic
COX-1 and PGIS cDNA (Ad-COPI), which expresses abun-
dant COX-1 and PGIS and consequently produce a large
quantity of PGI2 by shunting the arachidonate metabolism
through the COX/PGIS pathway [19]. HPLC analysis reveals
a marked elevation of PGI2 without an increase in any
other prostaglandins in Ad-COPI transfected cells. Ad-COPI
transfected cells are highly resistant to apoptosis induced
by H2O2 [4]. Intraventricular infusion of Ad-COPI into
ischemic brain significantly reduces infarct volume induced
by ischemia-reperfusion (I/R) in a rat stroke model [19].
Intraventricular infusion of Ad-COPI in rats is accompanied
by a 4-fold increase in PGI2 and a significant reduction of
other prostaglandins and leukotrienes in the ipsilateral brain
tissues, consistent with a metabolic shift to PGI2 synthesis in
vivo [19]. Administration of Ad-COPI to rats several hours
after I/R injury remains effective in reducing cerebral infarc-
tion volume [19]. These results suggest that authentic PGI2

production via Ad-COPI transfection suppresses apoptosis
and reduces the extent of brain infarction.

The anti-apoptotic effect of Ad-COPI in HUVECs is
abrogated by cotransfection with a selective PPARδ small
interference RNA (siRNA) but not a control RNA. It is
estimated that the authentic PGI2 generated by gene transfer
is effective in protecting against apoptosis and I/R-induced
damage at nM concentrations. In contrast, PGI2 analog,
cPGI2, inhibits H2O2-induced HUVEC apoptosis at 10–
50 μM. L-164051, a synthetic PPARδ ligand, is as effectively
as cPGI2 in blocking H2O2-induced apoptosis, and the anti-
apoptotic effects of cPGI2 and L-165041 are abrogated by
PPARδ siRNA. Western blot analysis shows that HUVECs
express abundant PPARδ proteins. Ad-COPI as well as
cPGI2 and L-165041 activates the expression of luciferase in
cells transfected with a PPAR promoter-luciferase construct,
consistent with expression of functional PPARδ in HUVEC.
These results indicate that the authentic PGI2 generated
endogenously by gene transfer or its synthetic analogs such as
cPGI2 protect endothelial cells against oxidant-induced cell
death via PPARδ.

3. Ligand-Activated PPARδ Binds and
Upregulates 14-3-3ε Promoter

14-3-3 is identified as a target of ligand-activated PPARδ
through candidate gene screening. 14-3-3 proteins function
as a scaffold to regulate the activities of kinases, facilitate
intracellular translocation of diverse proteins, and control
apoptosis [20]. Human 14-3-3 comprises seven members,
all of which are constitutively expressed in HUVECs. cPGI2

and L-165041 increase the expression primarily of 14-
3-3ε proteins [4]. PPARδ ligands stimulate the 14-3-3ε
promoter activity to an extent comparable to 14-3-3 protein.
14-3-3ε promoter does not have TATA-box but harbors

three PPAR response elements (PPRE) [4]. Deletion of
the PPRE elements from the promoter construct abolishes
the promoter stimulating effect of cPGI2 or L-165041.
Analysis of PPARδ binding to the PPRE region by chromatin
immunoprecipitation reveals that PPARδ ligands enhance
binding of PPARδ to the PPRE-containing fragment but not
to a distal segment that does not contain PPRE motifs. Thus,
ligand-activated PPARδ binds directly to its binding sites on
14-3-3ε promoter and upregulates 14-3-3ε expression.

4. PPARδ-Mediated 14-3-3ε Upregulation
Enhances Bad Sequestration

The constitutively expressed 14-3-3ε proteins serve as a
gatekeeper to defend against apoptosis via the mitochon-
drial death pathway by sequestering Bad, Bax, and Foxo
[21]. However, the basal 14-3-3 levels are inadequate for
controlling apoptosis when the cells are challenged with
excessive stresses. The ligand-activated PPARδ plays an
important role in conferring the anti-apoptotic defense by
upregulating 14-3-3ε expression. An increase of 14-3-3ε
proteins by PGI2- or L-165041-activated PPARδ enhances
significantly Bad sequestration. Results from immunoprecip-
itation experiments confirm enhanced Bad binding by 14-3-
3ε in cells treated with PPARδ ligands. Analysis of subcellular
localization of Bad shows reduced Bad translocation to mito-
chondria and a reciprocal accumulation of Bad in cytosolic
fractions of cells treated with PPARδ ligands compared to
control. Consistent with reduced Bad translocation to mito-
chondria, mitochondrial membrane potential is restored and
release of cytochrome C and Diablo is suppressed in H2O2-
treated cells supplemented with PPARδ ligands [22]. Taken
together, these results indicate that 14-3-3ε upregulation
by PPARδ ligands has an important functional impact on
controlling oxidant-induced apoptosis.

5. Nonsteroidal Anti-Inflammatory
Drugs Induce Apoptosis by
Suppressing PPARδ/14-3-3ε

A number of nonsteroidal anti-inflammatory drugs
(NSAIDs) induce normal and cancer cell apoptosis in a
cyclooxygenase-2-(COX-2-) dependent or independent
manner [23–25]. The exact mechanisms by which NSAIDs
induce apoptosis are not entirely clear. One potential
mechanism involves the PPARδ transcriptional pathway.
It was reported that PPARδ in colorectal cancer cells
promotes cell proliferation [26, 27] and NSAIDs induce
colon cancer cell apoptosis by suppressing PPARδ [28].
Results from our laboratories have shown that sulindac
sulfide and indomethacin suppress PPARδ expression with
corresponding inhibition of 14-3-3ε promoter activity
and protein expression [29]. Downregulation of 14-3-3ε is
accompanied by reduced Bad sequestration by 14-3-3ε and
increased translocation of Bad to mitochondria leading to
apoptosis via the mitochondrial death pathway. NSAID-
induced apoptosis is attenuated by 14-3-3ε overexpression.
The proapoptotic effect of NSAIDs is not restricted to cancer
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cells. Sulindac and indomethacin induce HUVEC apoptosis
by suppressing PPARδ/14-3-3ε and thereby enhancing Bad-
mediated cell death via mitochondrial damage [30]. Thus,
suppression of PPARδ/14-3-3ε transcriptional pathway
represents a major mechanism by which NSAIDs induce cell
death.

6. Conflicting Effects of PPARγ Agonists on
Cell Survival

PPARγ agonists such as thiazolidinediones (for exam-
ple, rosiglitazone, and pioglitazone) and prostaglandin D2

metabolites (15-deoxy-Δ12,14-PGJ2) regulate cell survival but
the results are conflicting. PPARγ agonists were reported
to induce apoptosis in different types of cells including
endothelial cells, vascular smooth muscle cells, and cancer
cells [31, 32]. On the other hand, rosiglitazone was reported
to protect cardiomyocytes, β islet cells, and neurons against
apoptosis [33–35]. The reasons for the conflicting results
in those reports are unclear but may be explained by use
of different concentrations of PPARγ agonists, different cell
types, and/or PPARγ-independent actions of the agonists
[36]. It was reported that thiazolidinediones at concen-
trations that activate the PPARγ transcriptional activity
protect cell survival while at higher concentrations they
induce apoptosis [37]. We have evaluated concentration-
dependent effects of rosiglitazone on neuronal apoptosis
and I/R brain damage. Rosiglitazone exerts a biphasic effect
on hypoxia/reoxygenation-induced neuronal apoptosis and
I/R-induced brain damage. At low in vitro concentrations
(<5 μM) and low in vivo doses (<50 ng) in a rat stroke model,
rosiglitazone protects against neuronal apoptosis and atten-
uates cerebral infarct volume while at high concentrations
and doses, rosiglitazone does not have any protective effect
and may aggravate the hypoxia and ischemia-induced cell
and tissue damage [35]. The mechanism by which thiazo-
lidinedione and 15d-PGJ2 exert a biphasic concentration-
dependent effect on cell and tissue protection is unclear and
requires further investigations.

7. Rosiglitazone Protects against
Ischemia/Reperfusion-Induced Cerebral
Infarction via PPARγ-Mediated
14-3-3ε Upregulation

In order to understand how PPAR-γ agonists reduce brain
tissue damage by I/R, we have evaluated the effect of 15d-
PGJ2 (10 pg) or rosiglitazone (50 ng) on I/R-induced infarc-
tion volume by intraventricular infusion. At the relatively
low doses used, the PPAR-γ agonists reduced the infarct
volume to a similar extent [35, 38]. Further investigations
reveal that rosiglitazone is effective in reducing the infarct
volume when it is infused 2 hours after I/R [35]. The
protective effect of rosiglitazone is abrogated by GW9662,
a PPARγ antagonist as well as by PPARγ siRNA. On the
other hand, cerebral infarction is rescued by overexpression
of PPARγ. Results from those studies indicate that PPARγ
agonists at appropriate “therapeutic” doses protect brain

tissues from I/R damage in a PPARγ-dependent manner.
15d-PGJ2 and rosiglitazone administration is accompanied
by a significant reduction of apoptotic markers in the I/R
damaged brain [35, 38]. The in vitro cellular studies have
revealed that rosiglitazone protects neurons from apoptosis
induced by hypoxia/reoxygenation [35]. Taken together,
these data suggest that rosiglitazone protects neurons from
apoptosis in the brain tissues damaged by I/R.

To identify the effector protein that mediates the anti-
apoptotic action of PPAR-γ agonists, we analyzed brain
tissues by proteomics [35]. Ischemic brain tissues from rats
treated with or without rosiglitazone are collected and pro-
cessed, and the lysate proteins from the tissues are analyzed
by two-dimensional electrophoresis. A number of protein
spots are enhanced in rosiglitazone-treated brain tissues. The
spot that exhibits the highest increase (>5 fold) is removed
and analyzed by tandem mass spectrometry. This protein
spot matches 14-3-3ε. Western blot analysis of brain tissues
confirms elevation of 14-3-3ε proteins in rosiglitazone-
treated brain tissues. 14-3-3ε elevation in rosiglitazone-
treated tissues is abrogated by concurrent administration of
PPARγ siRNA. Rosiglitazone-induced 14-3-3ε upregulation
plays an important role in protecting against I/R-induced
cerebral infarction. Silencing of brain 14-3-3ε with 14-3-
3ε siRNA administration abrogates the anti-infarct effect of
rosiglitazone while administration of 14-3-3ε attenuates I/R-
induced infarction. Results from the in vivo experiments
suggest that rosiglitazone at the concentrations used in our
experiments protects brain tissues against I/R-induced dam-
age via PPARγ/14-3-3ε. It is unclear whether the negative
effect of rosiglitazone at higher concentrations is related to
14-3-3ε suppression.

8. Rosiglitazone Enhances PPARγ Binding to
and Activation of 14-3-3ε Promoter

Ligand-activated PPARγ exerts its biological actions by sup-
pressing the expression of proinflammatory genes through
NF-κB-dependent transcriptional mechanism [39, 40]. It
stimulates the expression of a small number of genes and
little is known about its transcriptional mechanism. Our
studies show that rosiglitazone induces PPARγ binding to
the PPREs of 14-3-3ε promoter/enhancer and activates 14-
3-3ε transcription. In a neuronal cell model, rosiglitazone
increases 14-3-3ε promoter activity and its effect is abrogated
when the PPRE region is deleted from the 14-3-3ε promoter
construct. Chromatin immunoprecipitation analysis reveals
that rosiglitazone induces PPARγ binding to the region
harboring PPAR response elements. Corresponding to 14-
3-3ε promoter activation, rosiglitazone increases 14-3-3ε
protein expression which is abrogated by GW9662, a PPARγ
antagonist, and by PPARγ siRNA.

Rosiglitazone-induced 14-3-3ε plays a crucial role in
protecting neuronal cells from apoptosis induced by hypoxia
and reoxygenation [35]. Knockdown of 14-3-3ε with 14-3-
3ε siRNA abrogated the protective effect of rosiglitazone,
while 14-3-3ε overexpression attenuates hypoxia-induced
apoptosis. The protective effect of PPARγ overexpression is
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also abrogated by 14-3-3ε siRNA. Taken together, the find-
ings indicate that the PPARγ-mediated 14-3-3ε upregulation
represents an important mechanism by which PPARγ ligands
protect cells and tissues from I/R damage.

Several reports have shown that rosiglitazone and
other glitazones protect neuronal survival accompanied
by increased Bcl-2 expression [41]. We have shown that
rosiglitazone rescues Bcl-2 but not Bcl-XL in neurons from
hypoxia/reoxygenation-induced repression [42]. As 14-3-3ε
upregulation increases Bad sequestration, and, therefore,
reduces Bad translocation to mitochondria to interfere with
the protective action of Bcl-2, an enhanced Bcl-2 expression
should further strengthen the protection of mitochondrial
membrane potential and reduction of apoptosis.

9. PPARα Ligands Protect against I/R Tissue
Damage and Cell Death

PPARα is activated by fatty acids, eicosanoids, and syn-
thetic ligand such as fibrates, which are clinically used in
treating dyslipidemia [43, 44]. In addition to their effects
on glucose homeostasis and lipid metabolism [43], PPARα
ligands inhibit NF-κB and AP-1 transactivation resulting in
suppressing the expression of proinflammatory genes such as
cyclooxygenase-2 (COX-2), inducible nitric oxide synthase
(iNOS), and adhesive molecules ICAM-1 and VCAM-1
[45–48]. Ligand-activated PPARα induces the expression of
antioxidant enzymes including superoxide dismutase and
catalase [49, 50]. Thus, ligand-activated PPARα possesses
anti-inflammatory and antioxidation properties.

Based on their potent anti-inflammatory and antioxida-
tion actions, the synthetic PPARα ligands, fibrates, have been
used to control I/R-induced tissue injury. Chronic fenofi-
brate administration was shown to reduce infarct volume in
a mouse middle cerebral artery occlusion model [51]. PGI2

overproduction via Ad-COPI gene transfer was shown to
reduce renal I/R injury through PPARα nuclear translocation
[52]. WY14643 was reported to ameliorate cisplatin-induced
renal damage [53]. Although the protective effects of PPARα
ligands on diverse I/R-induced tissue injuries are attributed
to control of inflammatory and oxidative tissue damage,
a number of reports indicate that ligand-activated PPARα
protects against apoptosis. For example, it was reported that
PGI2 or docosahexaenoic acid protects renal cells from toxin-
induced apoptosis [54, 55]; fenofibrate inhibits aldosterone-
induced myocardiocyte apoptosis [56] and WY14643 pre-
vents neonatal cardiomyocyte apoptosis induced by glucose
and fatty acids [57]. The anti-apoptotic actions of ligand-
activated PPARα are likely to make significant contributions
to protect tissues from I/R damage.

The mechanism by which PPARα protects against apop-
tosis remains to be elucidated. We postulate that ligand-
activated PPARα confers anti-apoptotic protection also
through binding to 14-3-3ε promoter and upregulating 14-
3-3ε expression. The rationale for the proposed hypothesis is
based on (1) high-sequence homology and structural simi-
larity of PPARα DNA binding domain with its counterparts
in PPARγ and PPARδ, (2) identical cis-regulatory element
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Figure 1: Schematic illustration of proposed signaling pathway by
which all three PPAR isoforms exert anti-apoptotic actions via 14-
3-3ε upregulation.

motif that is recognized by PPARα, PPARγ, and PPARδ, and
(3) requirement of identical heterodimer partner, RXR for
DNA binding. Work is in progress to test this hypothesis.

10. PPARs Defend against Mitochondrial
Death Pathway by a Coordinated
Common Mechanism

Based on findings reported by several laboratories including
ours, we propose a common mechanism by which all three
PPAR isoforms protect cells from oxidative mitochondrial
damage and thereby defend against apoptosis via the intrin-
sic death pathway. As illustrated in Figure 1, PPARα, γ, or δ
activated by their respective ligands forms heterodimers with
RXR which binds to the PPRE sites on the 14-3-3ε promoter
and upregulates the transcription of 14-3-3ε. Enhanced
14-3-3ε augments binding and sequestration of Bad, and
thereby reduces interference of Bcl-2 and Bcl-xl protective
actions by Bad [58–61]. Mitochondrial membrane potential
is maintained, and release of pro-apoptotic cofactors such
as cytochrome C and Diablo is blocked when cells are
challenged by oxidative stress and cytotoxic insults [58].
This results in reduction of caspase activation and caspase-
induced apoptotic changes.

Reported data indicate that ligand-activated PPARγ acti-
vates Akt which phosphorylates Bad and enhances Bad bind-
ing by 14-3-3 [15, 33, 62]. Furthermore, ligand-activated
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PPARγ stimulates Bcl-2 generation which enforces the
mitochondrial protection [21, 42]. It is unclear whether
ligand-activated PPARα and PPARδ have similar actions as
PPARγ on Akt activation and/or Bcl-2 upregulation.

11. Therapeutic Implications

Ischemia-reperfusion tissue damage is one of the most
important pathophysiological processes that cause major
human diseases such as myocardial infarction (MI), stroke,
and kidney diseases. Since PPARα and PPARδ ligands
are unequivocally effective in preventing and interrupting
I/R-induced infarction in experimental animals, they have
potentials for therapeutic use in early treatment of MI,
renal diseases, and stroke. Some of the synthetic agonists of
PPARα (the fibrates) and PPARδ (PGI2 analogs) are already
in use clinically for treating lipid and vascular disorders,
respectively, and new compounds are undergoing clinical
trials. Those drugs should be good candidates for therapy
of MI, stroke, and other tissue infarctions. PPARα and
PPARδ may be used individually or in combination. Some
compounds such as carbaprostacyclin bind and activate
PPARδ and PPARα and are well suited for therapeutic
purposes.

The effects of PPARγ agonists on controlling I/R dam-
age are complex and dose-dependent because of their
pleiotropic actions, some of which are independent of
PPARγ-transcriptional activities. Hence, despite beneficial
effects reported by a majority of studies, PPARγ agonists may
be associated with adverse effects. Further studies are needed
to unravel the mechanisms by which PPARγ agonists exert a
biphasic effects on cytoprotection.

PPARs/14-3-3ε axis may serve as targets for new drug
discovery. Compounds that selectively activate this transcrip-
tional pathway will be more specific and more potent in cell
and tissue protection and possess less adverse effects.
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