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Abstract: Diboron reagents have been traditionally regarded as “Lewis acids”, which can react with
simple Lewis base to create a significant nucleophilic character in one of boryl moieties. In particular,
bis(pinacolato)diboron (B2pin2) reacts with simple Lewis bases, such as N-heterocyclic carbenes
(NHCs), phosphines and alkoxides. This review focuses on the application of trivalent nucleophilic
boryl synthon in the selective preparation of organoboron compounds, mainly through metal-free
catalytic diboration and the β-boration reactions of alkynes and alkenes.
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1. Introduction

Organoboron compounds play an important role in organic chemistry as they can be converted
into a wide variety of functional groups [1–13]. Thus, the synthesis of different types of organoboron
compounds continues to be an important research field [14–20]. Conventional methods for their
preparation are based on either reactive organometallic reagents or transition-metal-mediated
processes [21–37]. Recently, great effort has been made towards the development of
transition-metal-free methods with high chemoselectivity or regioselectivity and environmental
sustainability [38–48]. The transition-metal-free catalyzed borylation reaction of alkynes and alkenes
offers an attractive method for generating valuable organoboron compounds. The interaction of
a diboron reagent, in particular bis(pinacolato)diboron (B2pin2), with a simple Lewis base, such
as N-heterocyclic carbenes (NHCs), phosphines and alkoxides, generates Lewis acid-base adducts,
in which the formally intact sp2 boryl moiety becomes the important source of nucleophilic boryl
species, resulting in an appropriate approache towards transition-metal-free selective preparation
of organoboron compounds. This review focuses on the application of trivalent nucleophilic boryl
synthon in the selective preparation of organoboron compounds, mainly through diboration and
β-boration reactions of alkynes and alkenes.

2. Organoboron Compounds via Transition-Metal-Free Catalytic Diboration of
Unsaturated Hydrocarbons

In recent years, the preparation of 1,2-diborated or 1,1-diborated products has rapidly grown
due to the addition of diboryl compounds to unsaturated organic compounds in the transition
metal-free catalysis. The first diboration reaction of non-activated alkenes in the absence of transition
metal complexes was reported by Fernández and coworkers (Scheme 1a) [49]. The diboration of
non-activated olefins, such as terminal and internal alkenes, allenes and vinylarenes, can be produced
via the formation of a 1,2-diborated product in a tetrahydrofuran (THF) solvent at 70 ◦C for ~6–16 h.
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The interaction of B2pin2 (1) and a methoxide anion, derived from the combination of Cs2CO3 and
MeOH, can generate in situ the adduct [B2pin2OMe]−. This adduct reacts with the unsubstituted
carbon atom (C1) of the C=C double bond via the transition state (TS1), which is the overlap between
the strongly polarized B-B σ orbital of the activated diboron reagent and the C–C π* orbital of the
olefin. When the B–B bond weakens, the negative charge density on the C2 of the C=C double bond
increases. The negatively charged olefin-boryl olefin-B(pin) fragment attacks the boron atom with
an electrophilic character to form the second transition state (TS2), which then protonates to form
the diborated product (Scheme 2). The adduct [B2pin2OMe]− has been fully characterized by both
11B-NMR spectroscopy and ESI-MS. A later report extended the methodology using unsymmetrical
Bpin–Bdan (dan represents 1,8-diaminonaphthalene) (2) as the diboron reagents, where the methoxide
selectively interacted with the stronger Lewis acid Bpin moiety. The Bdan moiety appears in the
internal position (Scheme 1b) [50].
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Scheme 1. (a) Transition-metal-free diboration reaction of non-activated olefins; (b) Mixed 
organocatalytic diboration of non-activated olefins. 
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Scheme 2. Suggested catalytic cycle for the diboration of non-activated olefins. 

Scheme 1. (a) Transition-metal-free diboration reaction of non-activated olefins; (b) Mixed organocatalytic
diboration of non-activated olefins.
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In 2015, Sawamura reported the formation of α,β-diboryl acrylates through trialkylphosphine
catalyzed anti-selective diboration of the C≡C triple bond (Scheme 3a) [51]. Through cross-coupling
reaction of the differentiated heteroatom substituents of the α,β-diboryl acrylates in a stepwise
manner, a diverse array of unsymmetrical tetrasubstituted alkenes can be accessed. Very recently,
Santos employed an unsymmetrical Bpin–Bdan 2 as a diboron reagent for the direct diboration of
alkynamides, which display broad functional group tolerance. The transition-metal-free catalyzed
diboration of alkynamides with Bpin–Bdan, where the Bdan and Bpin moiety install α- and β-carbon
atoms respectively. (Scheme 3b) [52].
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In 2014, Uchiyama and coworkers reported that the diboration of propargylic alcohols with
diboron reagents in the presence of a stoichiometric amount of n-BuLi enables the trans-diboration
of alkynes through aqueous workup. The present trans-diborylation gave oxaborole moieties which
are key structural platforms and potent pharmacophores in material and pharmaceutical sciences
(Scheme 4) [53]. Very recently, the direct diboration of alkynes using a more reactive unsymmetrical
pinB-Bmes2 (3) as the diboron reagent was reported by Yamashita’s group. The mixture of two
cis-isomers and one trans-isomer was obtained when the base-catalyzed diboration reaction of the
terminal alkynes was conducted in the system consisting of n-BuLi and 1,2-dimethoxyethane in toluene
(Scheme 5) [54].
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In 2015, Sawamura revealed a new method for the synthesis of 1,1-diborylalkenes through
a Brönsted base catalyzed reaction between bis(pinacolato)diboron and various terminal alkynes
containing propiolates, propiolamides and 2-ethynylazoles (Scheme 6a) [55]. In 2018, the Brönsted
base catalyzed diboration of strong electron deficient alkynes, including various propiolates, ynones
and propiolamides, was developed by Song’s group (Scheme 6b) [56]. The terminal and internal
alkynes were allowed to react under the “optimal” conditions, and good to excellent yields of the
corresponding gem-diborylalkanes were obtained.

The asymmetric organocatalytic 1,2-diboration of alkenes has been accomplished
utilizing economically accessible chiral alcohols as additives to form the Lewis acid-base
*RO-→bis(pinacolato)diboron adduct that is added to cyclic and non-cyclic alkenes, providing
moderate enantioselectivity. The authors reported moderate conversions and moderate levels of
enantioselectivity for the synthesis of the 1,2-diborated product (Scheme 7a) [57]. Alternatively,
the enantioselective diboration of alkenes can be achieved using inexpensive chiral carbohydrates, such
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as the pseudoenantiomeric glycol 6-tertbutyldimethylsilyl-1,2-dihydroglucal (4) and dihydrorhamnal
(5) (Scheme 7b) [58]. The alkoxide-catalyzed directed diboration of alkenyl alcohols through the
intramolecular activation of the diboron reagent and the selective delivery of the nucleophilic boryl
unit offers access to the diboration of cyclic and acyclic homoallylic and bishomoallylic alcohol
substrates (Scheme 7c) [59].
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Scheme 7. Enantioselective diboration of olefins. (a) synthesis of the 1,2-diborated product;
(b) synthesis of pseudoenantiomeric glycol 6-tertbutyldimethylsilyl-1,2-dihydroglucal (4) and
dihydrorhamnal (5); (c) synthesis of diboration of cyclic and acyclic homoallylic and bishomoallylic
alcohol substrates.
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3. Organoboron Compounds via Transition-Metal-Free Catalytic β-boration of
α,β-Unsaturated Compounds

3.1. N-Heterocyclic Carbene Catalysis

In 2009, Hoveyda and coworkers firstly reported that an imidazolium salt 6 in the absence
of a transition metal was able to promote the boron conjugation addition of cyclic and acyclic
α,β-unsaturated ketones and esters, providing β-boryl carbonyls (Scheme 8) [60]. It is noteworthy that
in the presence of a base (NaOtBu) only, the borylation reaction did not take place. It was proposed that
in this process a nucleophilic N-heterocyclic carbene (NHC) could associate with the diboron reagent
in presence of a base and an in situ generated NHC·B2(pin)2 complex. The diboron reagent becomes
nucleophilic and is able to transfer the “intact” sp2 boryl group to the activated olefins in boron
conjugate additions. A proton from alcohol additives or aqueous workup served as the electrophilic
counterpart of the boron nucleophile (Scheme 9). Density functional theory (DFT) calculations and
11B-NMR studies were carried out to determine the exact structure of the proposed sp2–sp3 hybridized
NHC·B2(pin)2 adduct. The DFT calculations showed polarization of the B–B bond and diminished
electrophilic character of the two boron atoms, where the electron density was strongly polarized
towards the unbound boron center. However, due to the weak association of the NHC to the sp2–sp2

diboron, causing dynamic exchange, the 11B-NMR signal for B2pin2 disappeared within five minutes
after treatment with the NHC. In 2012, the crystal structure of the neutral NHC adduct 7 was reported
by Marder and coworkers (Scheme 10) [61].
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In a subsequent study, Hoveyda reported further work on enantioselective method for boron 
conjugate addition to α,β-unsaturated carbonyls with a chiral NHC 8 in combination with 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU). This method can tolerate a broad range of substrates, 
including acyclic and cyclic α,β-unsaturated ketones, as well as acyclic esters, amides, and aldehydes. 
The desired β-boryl carbonyls are obtained in up to a 94% isolated yield and an >98:2 enantiomer 
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In a subsequent study, Hoveyda reported further work on enantioselective method for
boron conjugate addition to α,β-unsaturated carbonyls with a chiral NHC 8 in combination with
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). This method can tolerate a broad range of substrates,
including acyclic and cyclic α,β-unsaturated ketones, as well as acyclic esters, amides, and aldehydes.
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The desired β-boryl carbonyls are obtained in up to a 94% isolated yield and an >98:2 enantiomer ratio
(Scheme 11a) [62]. A later report extended this methodology to β-disubstituted enones, generating
products containing boron-substituted quaternary carbon with enantioselectivity (Scheme 11b) [63].
The use of diboranes and N-heterocyclic carbenes in the absence of a transition metal complex has
been reported by other groups [64,65].
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3.2. Base Catalysis

In 2012, Fernández reported the utility of the base-catalyzed method for the β-boration of
acyclic and cyclic activated olefins in cases involving α,β-unsaturated amides and phosphonates [66].
The methodology could be applied to different diboron reagents, such as bis(pinacolato)diboron
(B2pin2), bis(catecholato)borane (B2cat2) and so on. Alternative inorganic and organic bases were
explored, such as NaOMe, LiOMe, NaOtBu, K2CO3, CsF and Verkade’s base, the latter being the
most efficient (Scheme 12). With an excess of MeOH, Verkade’s base is completely protonated and
the generated MeO− forms a Lewis acid-base adduct with B2pin2. Computational studies identified
that there was an overlap between the strongly polarized B–B σ orbital and the C–C π* orbital, and
DFT calculations revealed that in adducts the sp2 boron atom gains a strong nucleophilic character
because the sp3 boron atom loses negative charge density upon the charge transfer from the Lewis base.
The intact sp2 boron atom corresponds to a nucleophilic attack at the β-carbon atom of the activated
olefins, forming a transition sate (TS), which releases the “(pin)BOMe” and leads to the formation of
an anionic intermediate, which is then protonated to provide the β-boration product (Scheme 13).

A later report extended the methodology to non-symmetrical diboron reagents, such as Bpin–Bdan
2, where the RO− selectively interacted with the stronger Lewis acid Bpin moiety (Scheme 14a) [67].
Experimental and theoretical investigation confirmed that the interaction of RO− and the Bpin moiety
preferred to form a [RO→Bpin–Bdan]− intermediate, which then resulted in exclusively the β-carbon
Bdan carbonyl compound with high yields. The adduct [MeO→Bpin–Bpin]− which efficiently
mediates the β-boration of α,β-unsaturated imines formed in situ was reported by Fernández’s group
(Scheme 14b) [68]. From a theoretical point of view, the mechanism of β-boration of α,β-unsaturated
imines has been thought to involve quaternization of the diboron reagent with methoxide. The function
of the phosphine has been regarded to the ion pair formation.
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3.3. Phosphine Catalysis

In 2010, Fernández reported the β-borylation of α,β-unsaturated compounds using a trivalent
phosphorus nucleophile in combination with catalytic amounts of bases and stoichiometric amounts
of methanol (Scheme 15) [69]. Further screening showed that a variety of phosphorus compounds
including achiral, chiral mono and bidentate phosphines could also give reasonable conversions
without a transition metal. The process was proposed that the phosphine interacted with the empty
orbital of one of the boron atoms to result in the heterolytic cleavage of the B–B bond of B2pin2.
Upon such interaction, the other boron moiety could act as a nucleophile towards the α,β-unsaturated
esters and ketones (Scheme 16) [69].
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In a further publication, Fernández presented novel reaction conditions for the β-boration reaction
of α,β-unsaturated carbonyl compounds without a transition metal. Eluding the use of Brönsted
bases to promote the catalytic active species, the reaction can be carried out by the unique presence of
catalytic amounts of phosphine in MeOH (Scheme 17) [70]. The experimental and theoretical studies
demonstrated interactions between the phosphine and the substrate. Initially, the phosphine interacts
with the substrate to form a strongly basic zwitterionic phosphonium enolate species, which would aid
deprotonation of the MeOH to eventually form the ion pair [α-(H),β-(PR3)-ketone]+[B2pin2·MeO]−

(Scheme 18).
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Córdova developed the first metal-free one-pot three-component catalytic selective reaction
between a diboron reagent, α,β-unsaturated aldehydes, and 2-(triphenylphosphoranylidene) acetate
esters for the synthesis of homoallylboronates. The multicomponent reactions undergoes a catalytic
β-boration of α,β-unsaturated aldehydes to give the β-borylaldehyde. A subsequent Wittig reaction
between the β-borylaldehyde and the 2-(triphenylphosphoranylidene)acetate esters yields the
corresponding homoallylboronates with high chemoselectivity and regioselectivity (Scheme 19) [71].
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4. Organoboron Compounds via Transition-Metal-Free Catalytic Borylation of Allyic and
Propargylic Alcohols

The base-catalyzed borylation of tertiary allylic alcohols can be efficiently performed to prepare
1,1-disubstituted allyl boronates with a high yields (Scheme 20a) [72]. The reactions are performed
in the presence of a catalytic amount of Cs2CO3 and MeOH to promote the formation of the Lewis
acid-base adduct, [Hbase]+[MeOB2pin2]−, which may also be responsible for the tandem allylic
borylation/diboration of allylic alcohols that generate 1,2,3-polyborated products (Scheme 20a).
To complement the study, the scope of the metal-free allylic borylation was further expanded to
1-propargylic cyclohexanol, to form the corresponding product with a working hydroborated triple
bond at 50 ◦C. Interestingly, by increasing the temperature to 90 ◦C, the alkenyl borane was selectively
formed (Scheme 20b). The author suggested a possible mechanism to account for this process. First,
the adduct [B2pin2·MeO]− was formed through a base-mediated nucleophilic attack at one of the Bpin
moieties of B2pin2. Second, the other Bpin unit with nucleophilic activity attacks the terminal carbon
atom of the allylic alcohol, which leads cleavage of the C–O bond. Last, the base catalyst is regenerated
via the reaction of the conjugated acid of the base (BaseH+) and the OH group (Scheme 21).
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Another facile synthetic process for converting tertiary allylic alcohols to corresponding allylic
boronates in moderate to good yields was reported. The mechanistic approach suggested that allylic
boronate formation was achieved via the sequential processes of Fernández-type alkoxide-mediated
diborylation of an alkene and the boron-Wittig reaction (Scheme 22) [73].
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On the basis of “pseudo-intramolecular activation” [53] of diborons enabling the trans-selective
diboration of alkynes, Uchiyama and coworkers found that the carboboration reaction was enabled by
pseudo-intramolecular activation of alkynylboronates using propargylic alcohols to produce oxaborole
products (Scheme 23) [74]. The synthetic utility of this product was investigated using medicinal
chemistry and strong blue fluorescence emission.
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and protodeboronation (Scheme 24a) [75]. This method has high regioselectivity and chemoselectivity,
good to excellent yields and can tolerate a broad range functional groups. The transition-metal-free
method for borylation of alkynes and alkenes with bis(pinacolato)diboron can also easily afford
vinylboronates (Scheme 24b) [76] or diboryl alkanes (Scheme 24c) [77]. In 2018, Fernández and
coworkers reported that the 1,4-hydroboration of 1,3-dienes was followed by an in situ diboration
reaction of the internal double bond to produce a 1,2,3-triboration product (Scheme 24d) [78].
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A new approach to the transition-metal-free synthesis of alkenyl boronates was based on the
hydroboration of the distal double bond of allenamides (Scheme 25) [79]. In order to obtain exclusively
the complete stereoselective product, the acyl groups on the amine moiety were crucial, which formed
a stable allylic anion intermediate that was further regioselectively protonated to obtain a Z-isomer.Molecules 2018, 23, x 12 of 16 
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6. Conclusions

In this review, we have presented numerous very useful processes for the synthesis of valuable
organoboron compounds, which involve transition-metal-free catalyzed diboration, β-boration and
boryl substitution reactions. The key to the success of this reaction is to use a simple Lewis base capable
of activating the diboron reagent to create a significant nucleophilic boryl synthon. The reactions
tolerate a wide variety of functional groups and progress under metal-free reaction conditions, thus
avoiding contaminating the final boron products with heavy metals, a problem which is frequently
encountered in the manufacturing process. Although the metal-free catalyzed borylation of alkynes
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and alkenes is relatively unexplored at this time, there is no doubt that the future is promising for this
reaction and there will be many exciting discoveries in this field.
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