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Abstract

Bi-allelic Single Nucleotide Polymorphism (SNP) markers are widely used in population

genetic studies. In most studies, sequences either side of the SNPs remain unused,

although these sequences contain information beyond that used in population genetic stud-

ies. In this study, we show how these sequence tags either side of a single nucleotide poly-

morphism can be used for comparative genome analysis. We used DArTseq (Diversity

Array Technology) derived SNP data for a non-model Australian native freshwater fish, Mac-

quaria ambigua, to identify genes linked to SNP associated sequence tags, and to discover

homologies with evolutionarily conserved genes and genomic regions. We concatenated

6,776 SNP sequence tags to create a hypothetical genome (representing 0.1–0.3% of the

actual genome), which we used to find sequence homologies with 12 model fish species

using the Ensembl genome browser with stringent filtering parameters. We identified

sequence homologies for 17 evolutionarily conserved genes (cd9b, plk2b, rhot1b,

sh3pxd2aa, si:ch211-148f13.1, si:dkey-166d12.2, zgc:66447, atp8a2, clvs2, lyst, mkln1,

mnd1, piga, pik3ca, plagl2, rnf6, sec63) along with an ancestral evolutionarily conserved

syntenic block (euteleostomi Block_210). Our analysis also revealed repetitive sequences

covering approximately 12% of the hypothetical genome where DNA transposon, LTR and

non-LTR retrotransposons were most abundant. A hierarchical pattern of the number of

sequence homologies with phylogenetically close species validated the approach for

repeatability. This new approach of using SNP associated sequence tags for comparative

genome analysis may provide insight into the genome evolution of non-model species

where whole genome sequences are unavailable.
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Introduction

In recent years, advances in next generation sequencing technology have yielded higher resolu-

tion data for molecular genetic analyses. Sequencing data, ranging from short genomic frag-

ments to whole genome sequencing, has been used to answer critical questions about

evolutionary genetics using comparative genome analysis [1–3]. While whole genome

sequencing provides the highest resolution for comparative analyses, it remains expensive and

may not be cost effective for non-model species. Sequencing short genomic fragments, includ-

ing molecular markers (microsatellites, SNPs) costs less and, while providing a lower resolu-

tion, may be useful for comparative genome analysis [4]. Bi-allelic Single Nucleotide

Polymorphism (SNP) markers are widely used in population genetic studies. In most studies,

sequenced data either side of the SNPs remain unused, although these sequences contain infor-

mation beyond that used in population genetic studies, such as identification of evolutionarily

conserved regions [5–7].

Diversity Array Technology (DArTseq™) produces restriction site-associated SNP markers

using a combination of a complexity reduction method and a next generation sequencing plat-

form [8]. Conceptually similar to double digest RADseq [4], DArTseq screens thousands of

SNP markers across the genome, usually 69bp sequences (complexity reduction) containing a

single nucleotide polymorphism in two alleles for a certain locus [8]. While a greater number

of markers provides higher resolution for population genetic studies in plants [9] and in ani-

mals [10], low genome coverage (approximately 0.1–0.3%) and a lack of prior information

about gene associations make these markers unappealing for comparative genomic studies.

For example, the random sampling of such short sequence tags containing SNPs do not pro-

vide the exact location of each sequence in the genome, although there is always a chance that

sequences are associated with particular genes.

In this study we used 6,776 DArTseq derived 69 bp sequences containing SNPs (STAGs)

from an Australian native freshwater fish Macquaria ambigua (Richardson 1845) commonly

known as golden perch. Here, we define a STAG as a single trimmed sequence (remaining

product of a single 69 bp DArT marker after removing the restriction site-associated adapter)

usually 69 bp or less in length where the polymorphic nucleotide is replaced with a standard

ambiguity code. Hence, for more than one sample data set the replaced nucleotide with a stan-

dard ambiguity code determines polymorphism between individuals while the remainder of

the 68 bp (or less) remains the same for the entire data set. The set of sequenced data (6,776

markers) was generated from 90 M. ambigua with an aim to perform population genetic analy-

sis. Usually in population genetic studies with SNP markers, the single polymorphic nucleotide

aids as a data point while the remaining 68 bp remain unused. We concatenated a total of

6,776 STAGs from 90 individuals of M. ambigua and used the concatenated sequence as a vir-

tual low coverage genome for comparative genome analysis to identify evolutionarily con-

served regions including genes. We compared this low coverage virtual genome with genomes

from 12 fish species Poecilia formosa, Astyanax mexicanus, Xiphophorus maculatus, Lepisosteus
oculatus, Danio rerio, Oreochromis niloticus, Gadus morhua, Takifugu rubripes, Oryzias latipes,
Gasterosteus aculeatus, Tetraodon nigroviridis and Latimeria chalumnae. The specific aim of

this study is to assign M. ambigua STAGs to specific genes and use them to identify evolution-

arily conserved regions. Our study provides an alternate approach to identify the association

of STAGs with a suite of evolutionarily conserved genes and genomic regions and highlights

how STAGs can be used for comparative genome analysis to gain insight into genome evolu-

tion in non-traditional model species where whole genome sequences are unavailable.
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Materials and methods

Animals and tissue collection

Fin clip and muscle tissues were collected from 90 M. ambigua. Fish were captured using boat-

electrofishing from the Lachlan River, New South Wales, between Wallanthery (-33.34317688,

145.8420574) and Hillston (-33.47784, 145.52667) (7.5 kW Smith-Root model GPP 7.5 H/L

boat mounted electrofishing unit). Tissues were stored in 95% ethanol. All collection proce-

dures were performed by approved animal ethics protocol; University of Canberra Animal eth-

ics project ID AEC 17–18, Fisheries NSW Animal Care and Ethics permit 14/10 and Scientific

Collection Permit P01/0059(A)-2.0.

Genomic DNA extraction and genotyping by sequencing

DNA extraction was performed using protocols developed by Diversity Array Technology Pty

Ltd (DArTseq™) [8]. The quality of genomic DNA was evaluated by running agarose gel elec-

trophoresis (1.2% agarose). Genotyping by sequencing was performed by DArTseq™ using a

combination of DArT complexity reduction methods and next generation sequencing follow-

ing protocols described in [8, 11–14]. Markers with a high call ratio (threshold 0.25) were fil-

tered based on their polymorphic information content (>0.025) using a software package

developed by DArT PL (http://www.diversityarrays.com/software.html). Here, a high call ratio

represents the least proportion of missing values (to call both alleles of a marker) caused by

sequencing error or low-quality genomic DNA.

Low coverage genome construction, repeat masking and BLAST/BLAT

analysis

We pooled and concatenated 6,776 STAGs from 90 individuals to generate a hypothetical low

coverage genome of M. ambigua (Golden perch). The golden perch hypothetical genome

(GP-H-Genome) was constructed in two steps: preparation of a hypothetical genome for each

individual through concatenating all STAGs followed by a multiple alignment of all hypotheti-

cal genomes using software geneious (S1 Fig) [15]. To retain the same order of sequences for

every individual during concatenation we arranged the markers ascending to their allele ID

(unique marker ID) prior to generating an individual fasta file. We applied the following crite-

ria for multiple alignment: global alignment with free end gaps along with a default multiple

alignment setting including 65% similarity (5.0/-4.0), cost matrix, gap open penalty (GOP) -

12, Gap extension penalty (GEP)– 3 and Refinement iteration (RI)– 2. Pooling STAGs from 90

individuals captured missing alleles, providing improved coverage of the concatenated

genome, and ensuring the most common nucleotide in the SNP position of a marker through

multiple alignment.

We used “Repbase” to analyse the repetitive sequences of GP-H-Genome [16] and the

Ensembl BLAST/BLAT (http://asia.ensembl.org/Multi/Tools/Blast?db=core) tool to identify

sequence homologies against 12 available fish species (20/10/2017) [17]. While NCBI BLAST

tools (https://blast.ncbi.nlm.nih.gov/Blast.cgi) are more popular and can provide a higher

number of species to search against, we selected Ensembl over NCBI given its ability to per-

form BLAST and BLAT (BLAST Like Alignment Tool) at once, thus enabling identification of

homologies with short sequences. We performed a normal sensitivity BLAST/BLAT search

with 1 for a match score and -3 for a single mismatch score, along with enabled repeat masking

and filtering low complexity regions. We restricted the number of hits with a threshold maxi-

mum E-value of 1e-10.
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Despite the benefits of the concatenation approach, including ease of handling and lower

computational time, a possible drawback is the probability of getting false positive hits relative

to an individual BLAST search of each STAG. We characterised a hit as a false positive if it ful-

filled three criteria: (i) the sequence length was greater than 69 bp, (ii) the sequence starts with

the restriction fragment (Contains TGCAG at the beginning) at the 5’ end and (iii) the

sequence contains the whole or a concatenated part of the restriction fragment (TGCAG). As

DArT PL used the PstI restriction enzyme (best scored out of four pairs; refer to methods) as a

5’end anchor, all markers had a common 5’ end “TGCAG”. Therefore, a false positive hit must

contain two sets of such sequences or one complete sequence at the beginning and a part at the

end. Only the first nucleotide “T” can randomly occur at the end of the sequence (with proba-

bility 1 in 4). We excluded such sequences being identified as a false positive. We also excluded

homologies with concatenated first two nucleotides “TG” from being identified as false posi-

tive hit probability of occurrence (1 in 16) and the abundant di-nucleotide repeats (AC, TG,

CT) described in the results section. As the chance of three or more nucleotides of the restric-

tion fragments randomly occurring is low (TGC- 1 in 64, TGCA– 1 in 256, TGCAG– 1 in

1024) we excluded these hits (approximately 1.42%, S2 Fig) from the analysis to avoid potential

error. We also randomly selected 600 STAGs (approximately 10% of the total set) and BLAST

them against the O. niloticus (Nile tilapia) genome as individual alleles (without concatenation)

for further validation.

Identification of evolutionarily conserved genes

Evolutionarily conserved genes were selected from gene associated sequence homologies

(orthologs) based on our cut-off E-value (1e-10). We performed this analysis in two steps; first,

selecting common genes within multiple species and second, validating the origin of genes

using online databases, such as Genomicus (http://www.genomicus.biologie.ens.fr/

genomicus-95.01/cgi-bin/search.pl). A schematic representation of these steps is presented in

Fig 1. From the available fish species, we selected three species based on several criteria: i) phy-

logenetic relationship, ii) diverse habitat and, iii) number of homologies (including unique

STAGs) obtained from the BLAST/BLAT search. Based on these criteria we selected a freshwa-

ter fish (O. niloticus; Nile tilapia), an anadromous fish (Gasterosteus aculeatus; three spined-

stickleback) and a marine fish (Gadus morhua; Atlantic cod) for this analysis. Common genes

with non-repetitive sequence homologies were selected for further analysis as evolutionarily

conserved genes. Genomicus tools [18] were used to interpret evolutionary origins of con-

served genes and synteny through isolation of orthologs and paralogs within fishes as well as

within vertebrates.

Results

M. ambigua genomic representation

A total of 6,776 STAGs were scored for 90 M. ambigua after screening with an average read

depth threshold (>60 per locus). The multiple alignment resulted in a 405,803 bp consensus

sequence with 47.5% GC content, which is our hypothetical genome for golden perch (the

GP-H-Genome).

Masked repetitive sequences

Analysis of masked repetitive sequences revealed a total of 628 repetitive fragments represent-

ing 49,561 bp covering approximately 12.21% of the GP-H-Genome (Table 1). Approximately

95% of the repetitive sequences were transposable elements of three categories: DNA

Application of DArT seq derived SNP tags for comparative genome analysis
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transposons (51.7%), endogenous retroviruses (3.9%) and retrotransposons (44.4%). The ret-

rotransposons were almost equally divided into LTR retrotransposons (54%) and Non-LTR

retrotransposons (46%) (Table 1). In addition to transposable elements, 3 repetitive fragments

aligned with Caulimovirus.

Sequence homologies (Ensembl BLAST/BLAT hits)

Ensembl BLAST/BLAT search of GP-H-Genome identified a range of sequence alignments

homologous (includes both ortholog and paralog) to 12 fish genomes (Table 2). The least

Fig 1. A schematic diagram of selecting evolutionarily conserved genes. Numbers against each species represents predicted genes resulted

from non-repetitive sequence (STAGs) homologies.

https://doi.org/10.1371/journal.pone.0226365.g001

Table 1. Major classes of repetitive sequences in GP-H-Genome (the concatenated M. ambigua genome covering approximately 0.1–0.3% of the whole genome).

Repeat class Number of hits Total Length of all alignment (bp) Pseudogene

Integrated virus 3 131 -

Interspersed repeat 10 825 -

DNA transposon 300 24,405 1

Endogenous Retrovirus 27 1,829 -

LTR Retrotransposon 141 11,414 1

Non-LTR Retrotransposon 139 9,526 -

Simple repeat 8 1,431 -

Total 628 49,561 2

Proportion 12.2%

https://doi.org/10.1371/journal.pone.0226365.t001
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number of homologies (23) were identified against the L. oculatus (Spotted gar) genome while

the highest number (1491) were identified against Gadus morhua (Atlantic Cod) (Table 2).

The number of gene associated homologies (ortholog/paralog) identified from Ensembl

BLAST/BLAT analysis ranged between 15 (L. oculatus) to 527 (D. rerio). As gene associated

homologies contains both repetitive and non-repetitive STAGs alignment, we found multiple

genes association for few repetitive STAGs. The analysis revealed only di-nucleotide repeats

(AC, TG, CT) among the repetitive homologies predominantly AC and TG repeats. Hence,

even the highest number of gene associated homologies was identified against the D. rerio
(527) genome, the number of GP-H-Genome fragments (unique STAGs) was comparatively

low (83) (Fig 2). On the other hand, the highest and second highest number STAGs with gene

association homologies were with O. niloticus (356) and Gasterosteus aculeatus (253), reflecting

their close taxonomic relationship with M. ambigua. For greater accuracy we excluded all the

repetitive STAGs alignment homologies from the analysis for evolutionarily conserved genes.

A comparison between GP-H-Genome BLAST/BLAT hit and individual BLAST/BLAT hit

(e.g. linkage group, genomic location, length of the alignment, %ID) for a certain STAG pres-

ent in GP-H-Genome (S1 Table) suggests no significant tendency to nominate the homologies

as a false positive. Furthermore, the probability of getting a false positive hit due to concatena-

tion of two adjacent markers is reduced by the pipeline and the algorithm used for Ensembl

BLAST/BLAT, including percentage alignment and setting the E-value. For the present study,

we used a low E-value threshold (1e-10) to minimise the chance that a sequence homology

with more than 69 bp was a false positive hit. In comparing individual BLAST/BLAT and

Table 2. Ensembl nucleotide BLAST analysis hits. Major groups of homologies where non-repeat alignments are sequence homologies without any association with

genes. Repetitive alignments are the homologies of full or partially repetitive sequences. And Genes represent sequence homology both repetitive and non-repetitive have

association with at least one gene. The proportion of GP-H-Genome has homology with a certain species is shown as %.

Species Non-repeat alignments Repetitive alignments Genes Total % of

GP-H-GenomeNumber

of hits

GP

fragments

length

(bp)

Number

of hits

GP

fragments

length

(bp)

Number

of hits

GP

fragments

length

(bp)

Number

of hits

GP

fragments

length

(bp)

Poecilia
formosa

66 51 3228 72 29 1606 246 140 8889 384 220 13723 3.38

Astyanax
mexicanus

3 3 208 48 28 1406 49 31 1770 100 62 3384 0.83

Gadus
morhua

9 9 573 1137 115 6498 345 93 5430 1491 217 12501 3.08

Latimeria
chalumnae

0 0 0 173 38 2078 97 27 1471 270 65 3549 0.87

Takifugu
rubripes

52 49 2954 143 45 2499 209 142 8932 404 236 14385 3.54

Oryzias
latipes

46 45 2798 16 10 501 97 84 5354 159 139 8653 2.13

Xiphophorus
maculatus

58 46 2893 28 20 1157 134 110 7044 220 176 11094 2.73

Lepisosteus
oculatus

1 1 57 7 7 359 15 9 587 23 17 1003 0.25

Gasterosteus
aculeatus

112 102 6077 163 63 3368 417 253 16052 692 418 25497 6.28

Tetraodon
nigroviridis

40 39 2422 170 49 2677 205 131 7955 415 219 13054 3.22

Oreochromis
niloticus

419 161 10289 111 38 2086 492 356 22423 1022 555 34798 8.57

Danio rerio 3 3 166 260 57 3234 527 83 4812 790 143 8212 2.02

https://doi.org/10.1371/journal.pone.0226365.t002
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GP-H-Genome BLAST/BLAT searches, we found two homologies with 69+ bp in the

concatenated genome (S1 Table), although none of them were a false positive as per the criteria

mentioned above. Hence, having such hits (above 69) might be a beneficial property of the

concatenation approach.

Evolutionarily conserved genes

Using the criteria as described in the methods (Fig 1), we screened for gene associated homolo-

gies with the O. niloticus, Gasterosteus aculeatus and Gadus morhua genome. Filtering for false

positive hits resulted 476 genes in O. niloticus, 409 genes in Gasterosteus aculeatus and 342

genes in Gadus morhua. As these gene-associated homologies are also composed of repetitive

and non-repetitive STAGs in GP-H-Genome, we filtered out all genes selected from repetitive

STAGs, resulting in 307 genes in O. niloticus, 214 in Gasterosteus aculeatus and 29 in Gadus
morhua, respectively. We identified 17 evolutionarily conserved genes across the three species

(Fig 3a) (S2 Table). These include 8 genes (cd9b, pik3ca, plagl2, rhot1b, sh3pxd2aa, si:ch211-
148f13.1, si:dkey-166d12.2, zgc:66447) conserved across fish genera with ancestral roots dating

back 550–420 MYA (S3 Table) [18] (http://www.genomicus.biologie.ens.fr/genomicus-94.01/

cgi-bin/search.pl), and 9 genes (atp8a2, clvs2, lyst, mkln1, mnd1, piga, plk2b, rnf6, sec63) con-

served across vertebrates with ancestral roots dating back to 1500 MYA.

The comparative orthology analysis of the 17 selected genes revealed that orthologues of

atp8a2, clvs2, lyst, mkln1, pik3ca, plagl2, rnf6 genes are conserved across all vertebrates while

mnd1, piga and sec63 are conserved beyond vertebrates (fungi/Metazoa group: Yeast Chr XV),

Fig 2. Ensembl Nucleotide BLAST/BLAT hits. Phylogeny (Not according to scale) adopted from Betancur-R et al. (2017) [19] represents

Macquaria ambigua (golden perch) lineage with all reference fish used for the analysis. Length (in kilo-base pairs) represents the proportion of

golden perch hypothetical genome (GP-H-Genome) homologous with 12 fish species (M. ambigua bar represent the length of the total

GP-H-Genome). STAGs stand for a single trimmed sequence (remaining product of a single 69 bp DArT marker after removing the restriction

site-associated adapter) usually 69 bp or less in length where the polymorphic nucleotide is replaced with a standard ambiguity code.

https://doi.org/10.1371/journal.pone.0226365.g002
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while fish specific genes share either Craniata or Euteleostomi as a common ancestor. Analysis

of linkage group associations revealed two vertebrate specific genes atp8a2 and rnf6 that share

the same linkage group across all selected species (e.g. Gasterosteus aculeatus chromosome

XXI, O. latipes Chromosome 20, O. niloticus scaffold 831157). Since this suggests that ortholo-

gues of atp8a2 and rnf6 are part of a conserved homologus syntenic block (HSBs) across all the

vertebrate species, we investigated the association of other genes in the same syntenic block

(Fig 3c). Conservation of the syntenic block across vertebrates (including human and chicken)

was found for 10 genes associated with the reference gene, although one of the reference genes

(rnf6) showed no homologies in L. oculatus.

Discussion

Our study demonstrated that DArTSeq derived STAGs can be used for comparative genome

analysis to infer genome evolution within teleost fishes. The mapping strategy used for the

concatenated M. ambigua genome revealed a variable number of homologies across fish spe-

cies (maximum: 555 STAGs of GP-H-Genome with O. niloticus; minimum: 17 STAGs of

GP-H-Genome with L. oculatus), leading to a hierarchical pattern supporting the phylogenetic

position of the taxa in the fish tree (Fig 2). Furthermore, the percentage of repetitive sequences

Fig 3. Evolutionarily conserved genes. (a) Number of genes have homologies with non-repetitive part of GP-H-Genome. Colour code

represents the species against the BLAST hits obtained. 17 genes common in all three species. (b) Gene block arrangement. Comparison of

conserve gene block arrangement for the region encompassing genes atp8a2 and nrf6 genes on Gasterosteus aculeatus Chromosome XXI and

Oryzias latipes Chromosome 20 with the ancestral Euteleostomi blocks predicted in Genomicus database (c) atp8a2 and nrf6 genes are

conserved compared to other vertebrate species. Arrows indicate direction of the transcription. Gene order and orientation is unknown for M.

ambigua.

https://doi.org/10.1371/journal.pone.0226365.g003
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(structurally similar to microsatellites), along with protein coding genes, was similar to that

achieved by whole genome sequencing approaches [20] or even sequencing of certain genomic

blocks (e.g. chromosome) [1].

The concatenated M. ambigua genome represents random segments of the original

genome. Our study revealed about 12% of these segments are repetitive elements (Table 1) pre-

dominantly LTR and Non-LTR retrotransposons. These transposable elements are abundant

in the eukaryotic genome (around 50% in human) and play a vital role in epigenomic regula-

tion [21]. Active transposable elements are highly mutagenic and often responsible for inser-

tion and deletion in protein coding genes resulting in genome rearrangement and irregular

recombination [21–23]. Transposable elements are also useful for comparative genomics

across a range of species [24]. In this study we have only detected transposable elements associ-

ated with restriction sites (due to DArTseq pipeline). Considering the proportion of these

transposable elements and their function, future population genetic studies associated with

these elements might be useful for fish species from diverse habitats.

The abundance of repetitive-type gene associated homologies over non-repetitive types in

other fish species (such as in Gasterosteus aculeatus, 203 gene associate repetitive homologies

(48% of total gene associated homologies in Gasterosteus aculeatus) while in Gadus morhua
almost 92% gene associated homologies were repetitive) also validates the taxonomic lineage

of the study species. Although, the data set only contains partial repeats, this could be a result

of the nature of DArT seq markers (restriction site-association) and the threshold E-value of

the BLAST analysis that we set.

Along with an assessment for the false positive hits (S1 Table), which discards the probabil-

ity of getting a false homology due to concatenation, the High-scoring Segment Pair (HSP) dis-

tribution (S3 Fig) produced by Ensembl BLAST also justifies the approach. The hierarchical

pattern of horizontal distribution of hits (sequence homologies) with multiple species is com-

plementary to their phylogenetic relationship. Furthermore, the number of sequence homolo-

gies along with unique GP-H-Genome fragments (Fig 2) further indicates the repeatability of

the approach. Although having highest homologies with Gadus morhua seems contradictory,

the HSP distribution and number of unique GP-H-Genome STAGs comes with a valid justifi-

cation. One of the reasons might be the abundance of transposable elements in the genome of

the species. In this study, we found the highest hit producing STAG (545 hits against one

STAG) was a dinucleotide tandem repeat (TG)n.

The present study represents the first attempt to use the flanking regions of DArT seq

derived Single Nucleotide Polymorphism (SNP) markers for comparative genome analysis.

Although similar markers such as Restriction site-associated DNA (RAD) has been demon-

strated useful for comparative genome analysis [25–27], the present study offers an alternative

pipeline for such markers. Despite the successful demonstration for the potential use of the

pipeline across multiple fish species, one possible drawback is its application to other groups of

animals such as mammals, birds is yet unknown. Future studies focused on such groups are

required to investigate the suitability of the technique.

Ancestral syntenic Block

A total of 17 protein coding genes were identified through a stringent screening of gene associ-

ated homologies. Of these 17 common genes, eight are fish specific (S3 Table) with diverse cel-

lular functions including disease association. For example, one of the fish specific genes CD9,

with an ancestral root dating back to 420 million years, is involved in cell adhesion, cell motil-

ity and tumour metastasis and is essential for sperm-egg fusion. Another fish specific gene

plk2b (ancestral root euteleostomi), plays a vital role in cell cycle progression. The remaining
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ten vertebrate specific genes are involved in multiple cellular functions (atp8a2: required for

normal visual and auditory function, mnd1: required for proper homologous chromosome

pairing and efficient cross-over and intragenic recombination during meiosis). Comparative

ortholog and paralog analysis (reference species: O. niloticus) revealed all eight fish specific

genes are paralogs due to a single or multiple (pik3ca) duplication event (mostly in ancestral

Clupeocephala (300 MYA). Multi species comparisons revealed conservation of two genes

(atp8a2 and rnf6) in a certain syntenic blocks across O. niloticus (GL831157), Gasterosteus acu-
leatus (Group XXI) and Gadus morhua (Genescaffold 733) (S2 Table). Further analysis

revealed that these two genes have been conserved for over 420 million years since the diver-

gence of Euteleostomi. The Euteleostomi syntenic block 210 containing these two genes is con-

served across all nodes of vertebrate speciation (Fig 3b), suggesting the potential use of STAGs

for identification of evolutionarily conserved genes and syntenic blocks.

Conclusion

The pattern of sequence homologies (hierarchical to the phylogenetically closest species), accu-

mulation of abundant repetitive sequences, and evolutionarily conserved sequences associated

with genes in the concatenated M. ambigua (golden perch) genome suggests that this

concatenated genome provides a partial but valid representation of the complete genome of

the species. Through identification of evolutionarily conserved ancestral blocks, our study has

demonstrated that DArT seq derived STAGs can be used for more than population genetic

studies. This offers an alternative pipeline for comparative genome analysis of species when

the annotated genomic data is unavailable for non-model species. The present approach will

assist similar studies in other non-traditional model species.

Supporting information

S1 Fig. A schematic diagram of low coverage genome construction. Panel 1: concatenating

STAGs for each individual as a hypothetical contiguous sequence (shown as contig) consider-

ing standard ambiguity code; panel 2: multiple alignment of representative hypothetical con-

tigs; panel 3: consensus sequence as partial genome of the representative population or species.

(TIF)

S2 Fig. Assessment for the false positive hits. First pie (Left) represents the percentage of pos-

itive hits (98.58%) and false positive hits (1.42%). The second pie represents the types of false

positive hits (number of nucleotides from the sequence “TGCAG”).

(TIF)

S3 Fig. High-scoring segment pair (HSP) distribution. Each panel represent a species.

GP-H-Genome represented with black and white striped line and red bars represent each

homology. Horizontal distribution of red bar suggests for number of unique fragment homol-

ogy and vertical distribution represents presence of multiple homologies against a single query

sequence (STAG of GP-H-Genome).

(TIF)

S1 Table. A comparison of BLAST search between concatenated hypothetical genome

(GP-H-Genome) and individual STAGs. The first column represents the nth SNP tag out of

randomly selected 600 (approximately 10% of total) while the missing values has been

excluded due to absence of homologies with Oreochromis niloticus genome under same criteria

(threshold E-value: 1e-10).

(DOCX)
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S2 Table. GP-H-Genome fragments (STAGs) with maximum E-value for 17 evolutionarily

conserved genes. Length of the homology varies from 57–72 predominantly 69 base pairs. Cal-

culated score based on E-value, length and percentage of alignment also predominant with

Gasterosteus aculeatus suggesting for a closest phylogenetic lineage.

(DOCX)

S3 Table. Evolutionary conserved genes with Euteleostomi as a predominant root species.

Gene atp8a2 and rnf6 are conserved to a specific syntenic block across all species (Chromo-

some 21 in Gasterosteus aculeatus while in O. niloticus and Gadus morhua consequently in

scaffold GL831157 and GeneScaffold 733).

(DOCX)

Acknowledgments

We acknowledge Shayer Mahmood Ibney Alam and Meaghan Duncan for reviewing the draft

manuscript.

Author Contributions

Conceptualization: Tariq Ezaz.

Data curation: Foyez Shams.

Formal analysis: Foyez Shams.

Investigation: Tariq Ezaz.

Methodology: Foyez Shams, Tariq Ezaz.

Project administration: Tariq Ezaz.

Resources: Jason D. Thiem, Tariq Ezaz.

Supervision: Fiona Dyer, Tariq Ezaz.

Validation: Andrzej Kilian, Tariq Ezaz.

Writing – original draft: Foyez Shams, Tariq Ezaz.

Writing – review & editing: Foyez Shams, Fiona Dyer, Ross Thompson, Richard P. Duncan,

Jason D. Thiem, Andrzej Kilian, Tariq Ezaz.

References
1. Ezaz T, Azad B, O’Meally D, Young MJ, Matsubara K, Edwards MJ, et al. Sequence and gene content

of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-

spondin 1. BMC genomics. 2013; 14(1):899.

2. Shetty S, Griffin DK, Graves JAM. Comparative Painting Reveals Strong Chromosome Homology Over

80 Million Years of Bird Evolution. Chromosome Research. 1999; 7(4):289–95. https://doi.org/10.1023/

a:1009278914829 PMID: 10461874

3. Taylor JS, Van de Peer Y, Braasch I, Meyer A. Comparative genomics provides evidence for an ancient

genome duplication event in fish. Philosophical Transactions of the Royal Society of London Series B:

Biological Sciences. 2001; 356(1414):1661–79. https://doi.org/10.1098/rstb.2001.0975 PMID:

11604130

4. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker

discovery and genotyping using next-generation sequencing. Nature Reviews Genetics. 2011; 12

(7):499–510. https://doi.org/10.1038/nrg3012 PMID: 21681211

5. Liu S, Zhou Z, Lu J, Sun F, Wang S, Liu H, et al. Generation of genome-scale gene-associated SNPs in

catfish for the construction of a high-density SNP array. BMC Genomics. 2011; 12:53. Epub 2011/01/

25. https://doi.org/10.1186/1471-2164-12-53 PMID: 21255432.

Application of DArT seq derived SNP tags for comparative genome analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0226365 December 12, 2019 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226365.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226365.s006
https://doi.org/10.1023/a:1009278914829
https://doi.org/10.1023/a:1009278914829
http://www.ncbi.nlm.nih.gov/pubmed/10461874
https://doi.org/10.1098/rstb.2001.0975
http://www.ncbi.nlm.nih.gov/pubmed/11604130
https://doi.org/10.1038/nrg3012
http://www.ncbi.nlm.nih.gov/pubmed/21681211
https://doi.org/10.1186/1471-2164-12-53
http://www.ncbi.nlm.nih.gov/pubmed/21255432
https://doi.org/10.1371/journal.pone.0226365


6. Sturm RA, Duffy DL, Zhao ZZ, Leite FP, Stark MS, Hayward NK, et al. A single SNP in an evolutionary

conserved region within intron 86 of the HERC2 gene determines human blue-brown eye color. The

American Journal of Human Genetics. 2008; 82(2):424–31. https://doi.org/10.1016/j.ajhg.2007.11.005

PMID: 18252222

7. Vignal A, Milan D, SanCristobal M, Eggen A. A review on SNP and other types of molecular markers

and their use in animal genetics. Genetics Selection Evolution. 2002; 34(3):275–306.

8. Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, et al. Diversity arrays technology: a generic

genome profiling technology on open platforms. Data Production and Analysis in Population Genomics:

Methods and Protocols. 2012:67–89.

9. Baloch FS, Alsaleh A, Shahid MQ, Çiftçi VE. Sáenz de Miera L, Aasim M, et al. A Whole Genome DArT-

seq and SNP Analysis for Genetic Diversity Assessment in Durum Wheat from Central Fertile Crescent.

PloS one. 2017; 12(1):e0167821. https://doi.org/10.1371/journal.pone.0167821 PMID: 28099442

10. Romanov MN, Dementyeva NV, Plemyashov KV, Terletsky VP, Stanishevskaya OI, Kudinov AA, et al.

Applying SNP array technology to assess genetic diversity in Russian gene pool of chickens. 2017.

11. Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, et al. An SNP map of the human

genome generated by reduced representation shotgun sequencing. Nature. 2000; 407(6803):513–6.

https://doi.org/10.1038/35035083 PMID: 11029002

12. Couch AJ, Unmack PJ, Dyer FJ, Lintermans M. Who’s your mama? Riverine hybridisation of threatened

freshwater Trout Cod and Murray Cod. PeerJ. 2016; 4:e2593. Epub 2016/11/05. https://doi.org/10.

7717/peerj.2593 PMID: 27812407.

13. Melville J, Haines ML, Boysen K, Hodkinson L, Kilian A, Date KLS, et al. Identifying hybridization and

admixture using SNPs: application of the DArTseq platform in phylogeographic research on verte-

brates. Royal Society open science. 2017; 4(7):161061. https://doi.org/10.1098/rsos.161061 PMID:

28791133

14. Wells SJ, Dale J. Contrasting gene flow at different spatial scales revealed by genotyping-by-sequenc-

ing in Isocladus armatus, a massively colour polymorphic New Zealand marine isopod. PeerJ. 2018; 6:

e5462. https://doi.org/10.7717/peerj.5462 PMID: 30155361

15. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an inte-

grated and extendable desktop software platform for the organization and analysis of sequence data.

Bioinformatics. 2012; 28(12):1647–9. https://doi.org/10.1093/bioinformatics/bts199 PMID: 22543367

16. Kohany O, Gentles AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements

in Repbase: RepbaseSubmitter and Censor. BMC bioinformatics. 2006; 7:474. Epub 2006/10/27.

https://doi.org/10.1186/1471-2105-7-474 PMID: 17064419.

17. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, et al. Ensembl 2016. Nucleic acids

research. 2016; 44(D1):D710–6. https://doi.org/10.1093/nar/gkv1157 PMID: 26687719

18. Louis A, Muffato M, Roest Crollius H. Genomicus: five genome browsers for comparative genomics in

eukaryota. Nucleic acids research. 2012; 41(D1):D700–D5.

19. Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, et al. Phylogenetic classification of bony

fishes. BMC evolutionary biology. 2017; 17(1):162. https://doi.org/10.1186/s12862-017-0958-3 PMID:

28683774

20. Austin CM, Tan MH, Harrisson KA, Lee YP, Croft LJ, Sunnucks P, et al. De novo genome assembly

and annotation of Australia’s largest freshwater fish, the Murray cod (Maccullochella peelii), from Illu-

mina and Nanopore sequencing read. GigaScience. 2017; 6(8):1–6.

21. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome.

Nature Reviews Genetics. 2007; 8(4):272. https://doi.org/10.1038/nrg2072 PMID: 17363976

22. Consortium IHGS. Initial sequencing and analysis of the human genome. Nature. 2001; 409(6822):860.

https://doi.org/10.1038/35057062 PMID: 11237011

23. Girard L, Freeling M. Regulatory changes as a consequence of transposon insertion. Developmental

genetics. 1999; 25(4):291–6. https://doi.org/10.1002/(SICI)1520-6408(1999)25:4<291::AID-DVG2>3.

0.CO;2-5 PMID: 10570460

24. Suh A, Witt CC, Menger J, Sadanandan KR, Podsiadlowski L, Gerth M, et al. Ancient horizontal trans-

fers of retrotransposons between birds and ancestors of human pathogenic nematodes. Nature com-

munications. 2016; 7:11396. https://doi.org/10.1038/ncomms11396 PMID: 27097561

25. Gamble T, Coryell J, Ezaz T, Lynch J, Scantlebury DP, Zarkower D. Restriction site-associated DNA

sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining

systems. Molecular Biology and Evolution. 2015; 32(5):1296–309. https://doi.org/10.1093/molbev/

msv023 PMID: 25657328

Application of DArT seq derived SNP tags for comparative genome analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0226365 December 12, 2019 12 / 13

https://doi.org/10.1016/j.ajhg.2007.11.005
http://www.ncbi.nlm.nih.gov/pubmed/18252222
https://doi.org/10.1371/journal.pone.0167821
http://www.ncbi.nlm.nih.gov/pubmed/28099442
https://doi.org/10.1038/35035083
http://www.ncbi.nlm.nih.gov/pubmed/11029002
https://doi.org/10.7717/peerj.2593
https://doi.org/10.7717/peerj.2593
http://www.ncbi.nlm.nih.gov/pubmed/27812407
https://doi.org/10.1098/rsos.161061
http://www.ncbi.nlm.nih.gov/pubmed/28791133
https://doi.org/10.7717/peerj.5462
http://www.ncbi.nlm.nih.gov/pubmed/30155361
https://doi.org/10.1093/bioinformatics/bts199
http://www.ncbi.nlm.nih.gov/pubmed/22543367
https://doi.org/10.1186/1471-2105-7-474
http://www.ncbi.nlm.nih.gov/pubmed/17064419
https://doi.org/10.1093/nar/gkv1157
http://www.ncbi.nlm.nih.gov/pubmed/26687719
https://doi.org/10.1186/s12862-017-0958-3
http://www.ncbi.nlm.nih.gov/pubmed/28683774
https://doi.org/10.1038/nrg2072
http://www.ncbi.nlm.nih.gov/pubmed/17363976
https://doi.org/10.1038/35057062
http://www.ncbi.nlm.nih.gov/pubmed/11237011
https://doi.org/10.1002/(SICI)1520-6408(1999)25:4<291::AID-DVG2>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1520-6408(1999)25:4<291::AID-DVG2>3.0.CO;2-5
http://www.ncbi.nlm.nih.gov/pubmed/10570460
https://doi.org/10.1038/ncomms11396
http://www.ncbi.nlm.nih.gov/pubmed/27097561
https://doi.org/10.1093/molbev/msv023
https://doi.org/10.1093/molbev/msv023
http://www.ncbi.nlm.nih.gov/pubmed/25657328
https://doi.org/10.1371/journal.pone.0226365


26. Manousaki T, Tsakogiannis A, Taggart JB, Palaiokostas C, Tsaparis D, Lagnel J, et al. Exploring a non-

model teleost genome through rad sequencing—linkage mapping in Common Pandora, Pagellus ery-

thrinus and comparative genomic analysis. G3: Genes, genomes, genetics. 2016; 6(3):509–19.

27. Shao C, Niu Y, Rastas P, Liu Y, Xie Z, Li H, et al. Genome-wide SNP identification for the construction

of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL

mapping of Vibrio anguillarum disease resistance and comparative genomic analysis. DNA research.

2015; 22(2):161–70. https://doi.org/10.1093/dnares/dsv001 PMID: 25762582

Application of DArT seq derived SNP tags for comparative genome analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0226365 December 12, 2019 13 / 13

https://doi.org/10.1093/dnares/dsv001
http://www.ncbi.nlm.nih.gov/pubmed/25762582
https://doi.org/10.1371/journal.pone.0226365

