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Abstract: A Micromonospora strain, isolate MT25T, was recovered from a sediment collected from the
Challenger Deep of the Mariana Trench using a selective isolation procedure. The isolate produced
two major metabolites, n-acetylglutaminyl glutamine amide and desferrioxamine B, the chemical
structures of which were determined using 1D and 2D-NMR, including 1H-15N HSQC and 1H-15N
HMBC 2D-NMR, as well as high resolution MS. A whole genome sequence of the strain showed
the presence of ten natural product-biosynthetic gene clusters, including one responsible for the
biosynthesis of desferrioxamine B. Whilst 16S rRNA gene sequence analyses showed that the isolate
was most closely related to the type strain of Micromonospora chalcea, a whole genome sequence
analysis revealed it to be most closely related to Micromonospora tulbaghiae 45142T. The two strains
were distinguished using a combination of genomic and phenotypic features. Based on these data,
it is proposed that strain MT25T (NCIMB 15245T, TISTR 2834T) be classified as Micromonospora
provocatoris sp. nov. Analysis of the genome sequence of strain MT25T (genome size 6.1 Mbp)
revealed genes predicted to responsible for its adaptation to extreme environmental conditions that
prevail in deep-sea sediments.

Keywords: Mariana Trench; Micromonospora provocatoris MT25; desferrioxamine; n-acetylglutaminyl
glutamine amide; 1H-15N 2D-NMR; genomics; biosynthetic gene clusters; stress genes

1. Introduction

Novel filamentous actinobacteria isolated from marine sediments are a prolific source
of new specialized metabolites [1–3], as examplified by the discovery of the abyssomicins,
a new family of polyketides [4] produced by Micromonospora (formerly Verrucosispora)
maris [5] and the proximicins, novel aminofuran antibiotics and anticancer compounds
isolated from Micromonospora (Verrucosispora) fiedleri [6,7]. Novel micromonosporae have
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large genomes (6.1–7.9 Mbp) which contain strain, species and clade specific biosynthetic
gene clusters (BGCs) with the potential to express new bioactives [8–10] needed to counter
multi-drug resistant pathogens [11]. These developments provide an objective way of pri-
oritizing novel micromonosporae for genome mining and natural product discovery [8–10].
Key stress genes detected in the genomes of micromonosporae provide an insight into
how they became adapted to harsh abiotic conditions that are characteristic of extreme
biomes [8,12].

The actinobacterial genus Micromonospora [13] emend Nouioui et al. [5], the type
genus of the family Micromonosporaceae [14] emend Nouioui et al. [5] is a member of the
order Micromonosporales [15] of the class Actinomycetia [16]. The genus encompasses 88
validity published species (www.bacterio.net.micromonospora, accessed on 28 May 2018),
including the type species Micromonospora chalcea [13,17]. Micromonospora species can be
distinguished using combinations of phenotypic properties [10,18]. The application of
cutting-edge taxonomic methods showed the genus to be monophyletic, clarified its sub-
generic structure and provided a sound framework for the recognition of new species [5,8].
The genus typically contains aerobic to microaerophilic, Gram-positive, acid-fast-negative
actinobacteria, which form single, nonmotile spores on an extensively branched substrate
mycelium, lack aerial hyphae and produce either xylose or mannose or galactose and
glucose as major sugars. Hydrolysates of these microorganisms are rich in meso- and/or
dihydroxypimelic acid (A2pm) with phosphatidylethanolamine being a diagnostic polar
lipid. Iso-C15:0 and iso-C16:0 are the predominant fatty acids, while the DNA G + C
percentage ranges from 65% to 75% [5,8,16].

The present study was designed to determine the taxonomic status, biotechnological
potential and ecological characteristics of a Micromonospora strain, isolate MT25T, recovered
from sediment collected from the Challenger Deep of the Mariana Trench in the Pacific
Ocean. The results of the polyphasic study together with associated genomic features
showed that isolate MT25T represents a novel species within the genus Micromonospora
and has a large genome with the potential to express new natural products, as well as
stress-related genes that provide an insight into its ability to tolerate extreme environmental
conditions found in deep-sea sediments.

2. Results and Discussion

In this study we sequenced, annotated and analyzed the genome of isolate MT25T

which was recovered from sediment collected at a depth of 10,898 m from the Mariana
Trench, to highlight on its taxonomic status, ability to synthesize major metabolites, as well
as giving an insight into its ecological properties.

2.1. Isolation, Maintenance and Characterization of Strain MT25T

Micromonospora strain MT25T was isolated from a sediment sample (no. 281) taken
from the Mariana Trench (Challenger Deep; 142◦12′372′ ′ E; 11◦19′911′ ′ N) using a standard
dilution plate procedure [19] and raffinose-histidine agar as the selective medium [20]. The
sediment was collected at a depth of 10,898 m by the remotely operated submersible Kaiko,
using a sterilized mud sampler during dive 74 [21]. The sample (approximately 2 mL) was
taken to the UK in an isolated container at 4 ◦C, then stored at −20 ◦C.

The strain is aerobic, Gram-positive, nonmotile, produces a branched substrate
mycelium bearing single sessile spores with rugose surfaces (0.8–0.9 µm) (Figure 1 and
Figure S1). Meso-A2pm is the diamino acid of the peptidoglycan, and glucose, mannose,
ribose and xylose are the major whole organism sugars. Iso-C16:0 is the predominant fatty
acid, and the polar lipids are diphosphatidylglycerol, phosphatidylethanolamine (diag-
nostic component), phosphatidylinositol, a glycolipid and two unknown phospholipids
(Figure S2). Like the other micromonosporae, the strain contains complex mixtures of
saturated and unsaturated fatty acids [8,16], as shown by the presence of major propor-
tions of iso-C16:0 (25.3% of total), anteiso-C15:OH (10.5%) and iso-C15:0 (10.0%), lower
proportions of iso-C14:0 (3.6%), anteiso-C15:0 (6.9%), C16:0 (2.8%), 10-methyl C16:0 (3.0%),
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iso-C17:0 (4.2%), anteiso-C17:0 (8.6%), C17:1w9c (3.2%), C17:0 (3.2%), 10-methyl C17:0
(2.1%), iso-C18:0 (1.4%), C18:1w9c (3.5%), C18:0 (4.8%), 10-methyl C18:0 (1.2%) and trace
amounts (<1.0%) of iso-C10:0 (0.1%), C10:0 2OH (0.1%), iso-C12:0 (0.1%), C12:0 (0.2%),
iso-C13:0 (0.1%), anteiso-C13:0 (0.1%), C14:0 (0.7%), iso-C16:1 (0.6%), iso-C16:1w9c (0.6%),
iso-C15:0 3OH (0.5%), anteiso-C17:1 (0.5%), iso-C17:0 3OH (0.1%) and iso-C19:0 (0.1%).
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Figure 1. Scanning electron micrograph of Micromonospora strain MT25T (× 2.4 k), showing the
presence of single sessile spores with the rugose surfaces borne on the substrate mycelium following
growth on oatmeal agar for 7 days at 28 ◦C.

2.2. Compound Identification

Compound 1 was obtained as a white amorphous powder, 16.2 mg; [α]D
25= −47

(c 0.1, MeOH). The IR absorption peaks of 1 suggested NH2 (3408, 3326, 3316, 3274, 3230,
3202 cm−1) and carbonyl groups (1670, 1660, 1655, 1647). LRESIMS measurements revealed
peaks at m/z 316.1 [M + H]+ and 338.1 [M + Na]+ indicating that the molecular weight
was 315.1. The molecular formula of 1 was established as C12H21N5O5 by HRESIMS
(obsd. [M+Na]+ at m/z 338.143098, calcd. for C12H21N5O5Na, 338.144046, ∆ = −2.8 ppm),
indicating that the molecule had five degrees of unsaturation (Figure 2).
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Figure 2. Chemical structures of the isolated compounds.

The 1D 1H and 13C NMR data (DMSO-d6) in combination with the 1H-13C HSQC
NMR experiments of 1 showed two methine H-5 [δH 4.15 (1H, m)] and H-8 [δH 4.12 (1H,
m)]; four methylene H2-10 [δH 2.08 (2H, m)], H2-3 [δH 2.06 (2H, m)], H2-4 [δH 1.89 (1H, m)
and 1.74 (1H, m)], H2-9 [δH 1.87 (1H, m) and 1.67 (1H, m)] groups and one methyl group
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CH3-15 [δH 1.86 (3H, s)] as well as five quaternary carbonyl carbon atoms; C-11 (δC 173.8 s),
C-2 (δC 173.8 s), C-16 (δC 173.3 s), C-6 (δC 171.4 s) and C-14 (δC 169.7 s) (Table 1).

Table 1. 1H (600 MHz), 13C NMR (150 MHz) and 15N (600 MHz) data (in DMSO-d6) for compounds
1 and 2.

No.
1 2

δC, Mult. δN, Mult. δH, Mult
(J in Hz) δC, Mult. δN, Mult. δH, Mult

(J in Hz)

1 - 108.5, NH2
a. 7.28, brs
b. 6.75, brs 31.4 t

2 173.8, C - - 41.4 t 2.76 (t,8.0)
3 31.4, CH2 - 2.06, m 29.2 t 1.51 m

4 27.2, CH2 - a. 1.89, m
b. 1.74, m 25.4, t 1.38 m

5 52.7, CH - 4.15, m 28.3 t 1.51 m
6 171.4, C - - 49.3 t 3.46 m
7 - 117.3, NH 7.97, d (7.8) - 174.4, s 9.68 brs
8 52.1, CH - 4.12, m 173.9 s -

9 27.8, CH2 - a. 1.87, m
b. 1.67, m 30.0 t 2.58 m

10 31.6, CH2 - 2.08, m 31.3 t 2.27 m
11 173.8, C - - 173.9 s -

12 - 108.6, NH2
a. 7.28, brs
b. 6.75, brs - 116.2 d 7.79 brs

13 - 123.2, NH 8.11, d (7.8) 41.0 t 3.00 (q, 8.0)
14 169.7, C - - 31.4 t 1.38 m
15 22.6, CH3 - 1.86, s 26.0 t 1.26 m
16 173.3, C - - 28.6 t 1.51 m

17 - 104.8, NH2
a. 7.27, brs
b. 7.05, brs 49.4 t 3.46 m

18 174.4 s 9.67 brs
19 173.9 s -
20 30.1 t 2.58 m
21 32.4 t 2.27 m
22 173.9 s -
23 116.2 d 7.79 brs
24 41.0 t 3.00 (q, 8.0)
25 31.4 t 1.38 m
26 26.0 t 1.26 m
27 28.6 t 1.51 m
28 49.6 t 3.46 m
29 - 175.6 s 9.63 brs
30 173.5 s -
31 22.9 q 1.96 s

Eight hydrogen resonances lacked correlations in the 1H-13C HSQC 2D NMR spectrum
of 1 and were therefore recognized as being located on either oxygen or nitrogen atoms.
The 1H-15N HSQC NMR spectrum (Figure S8) of 1 indicated that all eight of these protons
were bonded to nitrogen (Table 1); three as part of NH2 groups; NH2-17 [δH 7.27 (1H, brs)
and 7.05 (1H, brs)], NH2-12 [δH 7.28 (1H, brs) and 6.75 (1H, brs)], NH2-1 [δH 7.28 (1H, brs)
and 6.75 (1H, brs)] and two in NH groups; NH-13 [δH 8.11 (1H, d, 7.8 Hz)], NH-7 [δH 7.97
(1H, d, 7.8 Hz)]. Also, from the 1H-15N HSQC and the 1H-15N HMBC 2D-NMR spectra
(DMSO-d6) of 1 it was possible to assign the resonance of each nitrogen; NH-13 (δN 123.2 t),
NH-7 (δN 117.3 d), NH2-12 (δN 108.6 t), NH2-17(δN 104.8 t) and NH2-1 (δN 108.5 t) (Figure 3
and Figure S8).
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With all protons assigned to their directly bonded carbon and nitrogen atoms it
was possible to deduce substructures with the aid of the 1H-1H COSY spectrum of 1
(Figure 3). The connectivities between substructures were established from key 1H-13C
HMBC correlations (Figure 3). Thus, correlations between C-2 (δC 173.8) and H2-3, H2-1
and between C-11 (δC 173.8) and H2-10, H2-12 as well as between C-5 (δC 52.7) and H2-3
and between C-8 (δC 52.1) and H2-17 and between C-14 (δC 169.7) and H-5, H-13, H3-15
and between C-16 and H-8, H2-9 and H2-17 clearly defined the planar structure as shown
in 1. Finally, the positions of nitrogen were defined from 1H-15N-HMBC which showed
long range correlations between N-13 and H4a/b and H3-15 and between N-7 and H9a/b
(Figure 3 and Figure S9). Given these results and comparisons with previously data [22],
the compound was identified as n-acetylglutaminyl glutamine amide.

Compound 2 was identified as deferoxamine B. Its molecular formula was established
as C25H49N6O8 by HRESIMS (m/z 561.3577 [M + H]+, calcd. for C25H49N6O8, 561.3592,
∆ = −2.6 ppm), which required five degrees of unsaturation, and also found bound to Fe+3

(m/z 614.2780 [M + Fe − 2H]+) (Figure 2).
The full planar structure of 2 was assigned by interpretation of 1D (1H and 13C) in

connection with extensive 2D-NMR (1H-1H COSY, 1H-13C HSQC, 1H-13C HMBC, HSQC-
TOCSY and 1,1-ADEQUATE) spectroscopic data recorded in (DMSO-d6) (Table 1), and by
comparing it with the previously reported data on desferrioxamine [23].

The 1D 1H and 13C NMR spectra (DMSO-d6) in combination with 1H-13C HSQC
experiments of 2 exhibited the presence of 31 carbons, including: one methyl CH3-31[(δH
2.14 (3H s), (δC 21.9 q)], nineteen methylenes grouped by interpretation of 1H-1H COSY
and 1,1-ADEQUATE experiments into five spin systems, including: H2-2 to H2-6; H2-9
and H2-10; H2-13 to H2-17; H2-20 and H2-21; H2-24 to H2-28 and five quaternary carbonyl
carbons C-8 (δC 173.9 s), C-11 (δC 174.7 s), C-19 (δC 173.9 s), C-22 (δC 174.9 s) and C-30 (δC
173.8 s).

Seven hydrogen resonances lacked correlations in the 1H-13C HSQC spectrum of 2
and were therefore recognized as being located on either oxygen or nitrogen. From the
results of a 1H-15N HSQC measurement made with 2 it was evident that four protons were
bonded to nitrogen: comprising one NH2 group; NH2-1 and two NH groups; NH-12 [δH
7.79 (1H, brs)] and NH-23 [δH 7.79 (1H, brs)]. Also, from the 1H-15N HSQC and 1H-15N
HMBC 2D-NMR spectra of 2 (Figure 3) it was possible to assign the resonance of each



Mar. Drugs 2021, 19, 243 6 of 19

nitrogen: NH2-1 (δN 31.4 t), NH-12 (δN 116.2 d), NH-23 (δN 116.2 d), N-7 (δN 174.4 s), N-18
(δN 174.4 s) and N-29 (δN 175.6 s).

With all protons assigned to their directly bonded carbon and nitrogen atoms it
was possible to deduce substructures. The connectivities between these substructures
were established from key 1H-13C HMBC and 1H-15N HMBC correlations (Figure 3 and
Figure S21). The positions of nitrogen in amide formation were confirmed by 15N-HMBC
that showed correlation from H-3 to NH2-1; H-5 to N-7; H-10, H-13 and H-14 to NH-12;
H-16 to N-18; H-21, H-24 and H-25 to NH-23 and H-27 and H-31 to N-29 (Figure S21). The
1,1-ADEQUATE experiment confirmed the correlations of 1H-1H COSY and partial sub-
structures through its two bond correlations (Figure 3 and Figure S23). The 1,1-ADEQUATE
is a technique used to obtain heteronuclear correlations similarly to 1H-13C HMBC. While
correlation signals from HMBC do not separate 2JCH from 3JCH, 1,1-adequate, which exclu-
sively observes 1JCH and 2JCH, and can be combined with 1H-13C HSQC to identify 2JCH.
Interpretation of HSQC-TOCSY confirmed the spin systems via correlations from H-7, H-6,
H-5, H-4, H-3 to C-2; H-9 to C-10; NH-12, H-14, H-15, H-16, H-17 to C-13; H-20 to C-21 and
NH-23, H-25, H-26, H-27, H-28 to C-24 and confirmed the full structure of desferrioxamine
B (2).

2.3. Genome Sequencing and Annotation

The whole genome sequencing reads of strain MT25T, generated using an Ion Torrent
PGM instrument, 316v2 chips and Ian on PGM Hi-QTM View Sequencing Kit, were
assembled using the Ion Torrent SPAdes plugin (v. 5.0.0.0) program (Life Technologies
Limited, Paisley, UK). The size of whole genome sequence of the strain represented by
1170 contigs is 6,053,796 bp with a G + C content of 71.6%. Additional genomic features of
the strain are shown in Table 2 according to GenBank NCBI prokaryotic genome annotation
pipeline [24–26].

Table 2. Genomic features of Micromonospora strain MT25T.

Features Strain MT25T

Assembly size, bp 6,053,796
No. of contigs 1170

G + C (%) 71.6
Fold coverage 39.94×

N50 8214
L50 203

Genes 6643
CDs 6573

Pseudo genes 2188
Protein encoding genes 4385

rRNA 8
tRNA 59

ncRNAs 3
Accession No. NZ_QNTW00000000

Assembly method SPAdes v. 5.0.0.0

2.4. Phylogeny

The phylogenetic tree (Figure 4) based on almost complete 16S rRNA gene sequences
shows that Micromonospora strain MT25T belongs to a well-supported lineage together
with the type strains of nine Micromonospora species. It is most closely related to M.
chalcea DSM 43026T. With only 4 nucleotides difference within a 1437 sequence, the 16S
rRNA sequences of these two strains are 99.7% identical. The 16S rRNA of strain MT25T

also shares a relatively high sequence identify with the Micromonospora aurantiaca [27],
Micromonospora marina [28], Micromonospora maritima [29], Micromonospora sediminicola [30]
and Micromonospora tulbaghiae [31,32] strains. The close relationship between these species is
in a good agreement with the results from previous 16S rRNA gene sequence analyses [8,33].
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The sequence similarities between the 16S rRNA sequences of strain MT25T and the other
Micromonospora strains range from 88.6 to 99.1%, which is equivalent to 13 to 20 nucleotide
differences.
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Greater confidence can be placed in the topology of phylogenetic trees based on
whole genome sequences than on corresponding 16S rRNA gene trees, as the former are
generated from millions, as opposed to hundreds, of unit characters [5]. The phylogenomic
tree (Figure 5) shows that the strain MT25T is most closely related to M. tulbaghiae DSM
45124T. In turn, these strains belong to a well-supported lineage which includes the M.
aurantiaca, M. chalcea, M. marina, M. maritima and M. sediminicola strains together with
the type strain of M. humi [34], all of these species belong to a distinct taxon, group 1a,
highlighted in the genome-based classification of the genus Micromonospora generated by
Carro et al. [8].

The recommended thresholds used to distinguish between closely related prokaryotic
species based on average nucleotide identity (ANI) and digital DNA-DNA hybridization
(dDDH) values are 95 to 96% [35,36] and 70% [36,37], respectively. Table 3 shows that the
ANI and dDDH similarities between strain MT25T and M. aurantiaca ATCC 27029T, M. chal-
cea DSM 43026T and M. marina DSM 45555T, its three closest phylogenomic neighbors, are
below the cut-off points used to assign closely related strains to the same species. The
ANI and dDDH values also provide further evidence that strain MT25T is most closely
related to M. tulbaghiae DSM 45142T. However, the relationship between these strains is
not clear-cut as they share a dDDH value below the 70% threshold and an ANI value at
the borderline used to assign closely related strains to the same species. Conflicting results
such as these are not unusual, as exemplified by studies on closely related Micromonospora
and Rhodococcus species [33,38]. In such instances, ANI and dDDH similarities need to be
interpreted with a level of flexibility and should also be seen within the context of other
biological features, such ecological, genomic and phenotypic criteria [33,38,39]. Again,
the use of a universal ANI threshold for the delineation of prokaryotic species has been
questioned [40].
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Table 3. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) similarities
between Micromonospora strain MT25T and its closest phylogenomic neighbors.

Phylogenomic Neighbors Similarity ANI Values (%) dDDH

M. aurantiaca ATCC 27029T 95.2 62.7
M. chalcea DSM 43026T 93.5 53.0
M. marina DSM 45555T 94.6 58.6

M. tulbaghiae DSM 45142T 96.0 68.1

2.5. Species Assignment

It can be seen from Table 4 that strain MT25T and M. tulbaghiae DSM 45142T, its closest
phylogenomic neighbor, have phenotypic features in common though a range of other
properties can be weighted to distinguish between them. Strain MT25T, unlike the M.
tulbaghiae strain, grows at pH 6 and 10, reduces nitrate and shows much greater activity
in the AP1-ZYM tests. In contrast, the M. tulbaghiae strain, unlike strain MT25T, grows at
4 ◦C, in the presence of 5% w/v sodium chloride, produces hydrogen sulfide and shows
greater activity in the degradation tests. In addition, strain MT25T produces sessile, rugose
ornamental single spores on the substrate mycelium (Figure 1) whereas the M. tulbaghiae
strain bears smooth, single spores borne on sporophores [31]. Further, strain MT25T

produces an orange as opposed to a brown substrate mycelium on yeast-malt extract agar
though the colonies of both strains become dark brown/black on sporulation. The two
strains also have different cellular sugar profiles as only strain MT25T produces mannose.
They can also be distinguished using a range of genomic features, notably genome size
and G + C content. The genome size of strain MT25T is 6.05 Mbp and its G + C content is
71.6%, whilst the corresponding figures for the M. tulbaghiae strain are 6.5 Mbp and 73.0%.
Genome size and G + C content are considered to be conserved within species and can
therefore represent useful taxonomic markers [5]. Inter-species variation in genomic G + C
content does not usually exceed 1% [5,41].
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Table 4. Phenotypic properties that distinguish isolate MT25T from M. tulbaghiae DSM 45142T.

Characteristics Strain MT25T M. tulbaghiae DSM 45142T

Morphology:
Spores borne on sporophores - +
Spore ornamentation Rugose Smooth
Substrate mycelial color on yeast extract-malt extract agar Orange Brown

AP1-ZYM tests:
Acid and alkaline phosphatases, β-glucosidase, lipase (C14),

naphthol-AS-BI-phosphohydrolase + -

α-galacosidase, β-glucoronidase, N-acetyl-β-glucosaminidase - +

Biochemical tests:
H2S production - +
Nitrate reduction + -

Degradation tests:
L-tyrosine + -
Casein - +
Gelatin - +
Starch - +
Tween-80 - +

Tolerance tests:
Growth at 4 ◦C - +
Growth at pH 6.0 and pH 10 + -
Growth in presence of 5% w/v NaCl - +

Chemotaxonomy:

Major whole-organism sugars Glucose, mannose,
ribose and xylose Glucose, ribose and xylose

+, positive results; -, negative results. * Data for the biochemical, chemotaxonomic, tolerance and morphological properties on the M.
tulbaghiae DSM 45142T were taken from Kirby and Meyer (2010) [31]. Each strain grew from 10 to 37 ◦C, from pH 7 to 9, and were positive
for α-chymotrypsin, cystine and valine arylamidases, esterase (C4), esterase lipase (C8), β-galactosidase and trypsin, but negative for
α-fucosidase, α-mannosidase and β-glucoronidase. Neither strain degraded xylan.

In light of all of these data, it can be concluded that although strains MT25T and M.
tulbaghiae DSM 45142T are close phylogenomic neighbors which can be distinguished using
a combination of genomic and phenotypic properties, notably their genome sizes and G+C
contents. It is, therefore, proposed that isolate MT25T be considered as the type strain of a
novel Micromonospora species that belongs to the phylogenomic group 1a, as designed by
Carro et al. [8]. The name proposed for this species is Micromonospora provocatoris sp. nov.

2.6. Description of Micromonospora provocatoris sp. nov.

Micromonospora provocatoris (pro.vo.ca.to‘ris. L. gen. n. provocatoris, of a challenger,
referring to the Challenger Deep of the Mariana Trench, the source of the isolate), Aerobic,
Gram-positive strain, non-acid-fast actinobacterium which forms nonmotile, single, sessile
spores (0.8–0.9 µm) with rugose ornamentation on extensively branched substrate hyphae,
but does not produce aerial hyphae. Colonies are orange on oatmeal agar eventually
turning black on sporulation (Figure S2). Growth Occurs between pH 6.0 and 8.0, optimally
at pH 7.0, from 10 ◦C to 37 ◦C, optimally at 28 ◦C and in the presence of 1% w/v sodium
chloride. Aesculin is hydrolyzed and catalase produced. Degrades arbutin and L-tyrosine,
but not starch or xylan. Furthermore, acid and alkaline phosphatases, α-chymotrypsin,
cystine, leucine and valine arylamidases, esterase (C4), lipase esterase (C8), lipase (C14),
β-galactosidase, β-glucosidase, naphthol-AS-BI-phosphohydrolase and trypsin are pro-
duced, but not α-fucosidase, α-galacturonidase, β-glucuronidase or α-mannosidase. The
cell wall contains meso-A2pm, and the whole cell sugars are glucose, mannose, ribose
and xylose. The predominant fatty acid is iso-C16:0 and the polar lipid profile contains
diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol, a glycolipid
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and two unidentified phospholipids. The dDNA G + C content of the type and only strain
is 71.6% and it is genome size 6.05 Mbp.

The type strain MT25T (= NCIMB 15245T = TISTR 2834T) was isolated from surface
sediment from the Challenger Deep in the Mariana Trench of the Pacific Ocean. The
accession numbers of the 16S rRNA gene sequence and that of the whole genome of the
strain are AY894337 and QNTW00000000, respectively.

2.7. Specialised Metabolite-Biosynthetic Gene Clusters

Antibiotic and Secondary Metabolites Analysis Shell “AntiSMASH 6.0.0 0 alpha 1” [42]
predicts natural products-biosynthetic gene clusters (NP-BGCs) that are based on the per-
centage of genes from the closest known bioclusters which share BLAST hits to the genome
of the strains under consideration. Mining the draft genome of M. provocatoris MT25T

revealed the presence of ten known BGCs (Table 5). Two gene clusters were predicted to
be responsible for the biosynthesis of siderophore desferrioxamine B, which was initially
isolated from Streptomyces strain 1D38640 [43], and rhizomide A, which has antitumor
and antimicrobial properties [44]. The other gene clusters found are likely to be involved
with the biosynthesis of such products as phosphonoglycans, alkyl-O-dihydrogeranyl-
methoxyhydroquinones [45], and the antibiotics kanamycin [46], brasilicardin A and
frankiamicin [47,48]. Interestingly, two bioclusters belonging to two classes I lanthipeptides
and a class III lanthipeptide lacked any homology thereby providing further evidence that
NP-BGCs are discontinuously distributed in the genomes of Micromonospora taxa [8,9].

Table 5. Identity of predicted natural product biosynthetic gene clusters using antiSMASH 6.0.0 alpha 1.

BGCs No. Nucleotide
(nt) bp Type Accession

Number Homologue Accession
Number Identity

Siderophore 1 6963 Desferrioxamine E QNTW01000257
Desferrioxamine EBGC

from Streptomyces sp.
ID38640

MG459167.1 100%

T2PKS * 1 3695 Frankiamicin QNTW01000523 Frankiamicin BGC from
Frankia sp. EAN1pec CP000820.1 28%

Terpene 1 20066 Isorenieratene QNTW01000028
Isorenieratene BGC from
Streptomyces griseus subsp.

griseus NBRC 13350
AP009493.1 28%

Terpene 1 11057 Phosphonoglycans QNTW01000118
Phosphonoglycans BGC

from Glycomyces sp.
NRRL B-16210

KJ125437.1 3%

Oligosaccharides 1 Brasilicardin A
Brasilicardin A BGC from

Nocardia terpenica IFM
0406

KV411304.1 23%

NRPS *** 1 10526 Rhizomide (A-C) QNTW01000131
Rhizomide A BGC from

Paraburkholderia
rhizoxinica HKI 454

NC_014718.1 100%

T3PKS ** 1 12,601
Alkyl-O-

dihydrogeranyl-
methoxyhydroquinones

QNTW01000093

alkyl-O-dihydrogeranyl-
methoxyhydroquinones
biosynthetic gene cluster

from Actinoplanes
missouriensis 431

AP012319.1 28%

Lanthipeptide-
class-i 1 26,371 Kanamycin QNTW01000003

kanamycin biosynthetic
gene cluster from

Streptomyces
kanamyceticus

AB254080.1 1%

Lanthipeptide-
class-i 1 18,770 No match found QNTW01000004 - - -

Lanthipeptide-
class-iii 1 7750 No match found QNTW01000229 - - -

* Type II and III PKS cluster, ** Type III PKS cluster and *** Non-ribosomal peptide synthetase cluster.
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2.8. Genes Potentially Associated with Enviromental Stress

Stress-related genes detected in the genome of Dermacoccus abyssi strain MT1.1T, an
isolate from the same sediment sample as the M. provocatoris strain, gave clues to how this
piezotolerant strain became adapted to environmental conditions which prevail in sea-floor
sediment of the Challenger Deep of the Mariana Trench [49]. In the present study, the
genome of M. provocatoris strain MT25T annotated using NCBI Genbank [24–26] pipeline
was seen to harbor genes associated with a range of stress responses, notably ones linked
with carbon starvation, cold shock response, high pressure, osmoregulation and oxidative
stress (Table S3), as was the case with the D. abyssi strain.

Deep-sea psychrophilic bacteria synthesize cold shock proteins essential for adaptation
to low temperatures [50–52]. The genome of strain MT25T contained genes predicted to
encode cold shock proteins, as exemplified by genes clpB and hscB which are associated with
the synthesis of ATP-dependent and Fe-S chaperones, respectively [52–54]. The genome
also contains gene deaD encoding an RNA helicase involved in cold shock response and
adaptation [55]. The strain has genes associated with the synthesis of branch-chain and
long chain polysaturated fatty acids that are linked to membrane fluidity and functionality
at low temperatures [49,52], including fabF, fabG, fabH and fabI genes which are responsible
for the biosynthesis of β-ketoacyl-ACP synthase II, 3-oxoacyl-ACP reductase, ketoacyl-
ACP synthase III, enoyl-ACP reductase and enoyl-ACP reductase, respectively (Table S3).
The synthesis of low-melting point branched-chain and/or polyunsaturated fatty acids
(PUFAs) is crucial as it allows organisms in cold environments to maintain membrane
fluidity in a liquid crystalline state thereby allowing organisms to resist freeze-thaw cycles
at low temperatures [56,57]. Low temperatures reduce enzymatic activity leading to
the generation of reactive oxygen species (ROS). The genome of strain MT25T contains
genes sodN, trxA and trxB predicted to encode products that offset the harmful effects of
superoxide dismutase, thioredoxin and thioredoxin-disulfide reductase respectively.

Bacteria living in deep-sea habitats have developed ways of dealing with osmotic
stress, notably by synthesizing osmoregulators, these are small organic molecules (com-
patible solutes) induced under hyperosmotic stress [58–60]. In this context, strain MT25T

contains genes predicted to be involved in the biosynthesis of compatible solutes, such as
opuA gene, which regulates the uptake of glycine/betaine thereby contributing to osmotic
stress responses [61,62]. Similarly, genes asnO and ngg are predicted to be involved in the
production of osmoprotectant NAGGN (n-acetylglutaminylglutamine amide) that has an
important role in counteracting osmotic stress in deep-sea environments. It is produced by
many bacteria grown at high osmolarity bacteria, such as Sinorhizobium meliloti [63].

Another consequence of high pressure on bacteria is that the transport of compounds,
such as amino acids, is reduced leading to upregulation of transported molecules [64].
Genes associated with the production of different types of ABC transporter permeases
were detected in strain MT25T including branched-chain amino acid permeases that are
upregulated at high pressure [65]. In addition, the genome of strain MT25T contains pres-
sure sensing and pressure adaptation genes, as illustrated by cycD, mdh and asd genes,
which are linked to the production of a thiol reductant ABC exporter subunit, malate dehy-
drogenase and aspartate semialdehyde dehydrogenase, respectively. Similarly, secD and
secF are predicted to encode protein translocase subunits and secG preprotein translocase
unit [65,66], as shown in Table S3.

Bacteria able to grow in nutrient-limiting conditions need to store carbon compounds
like glycogen [67]. In this respect, it is interesting that strain MT25T contains a gene,
gigA, which is predicted to encode glycogen synthase and another gene, gigx, which
is linked with the production of a glycogen debranching enzyme responsible for the
breakdown of this storage molecule. Furthermore, the strain has the capacity to produce
carbonic anhydrase proteins which are required for fixation of carbon dioxide [65,68]
thereby suggesting that its potential to grow as a lithoautotroph. This discovery provides
further evidence that filamentous actinobacteria in carbon-limiting, extreme biomes are
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capable of adopting a lithoautotrophic lifestyle, as shown by the type strains of novel
Blastococcus, Geodermatophilus and Modestobacter species [69–73].

Micromonosporae can grow under aerobic and microaerophilic conditions. Their
ability to tolerate low oxygen tensions indicates an ability to grow in oxygen depleted
biomes, such as lake and river sediments and soil prone to flooding [74,75]. Genome mining
of strain MT25T revealed many putative genes predicted to encode terminal oxidases
involved in aerobic respiration, as witnessed by the cydB gene encoding cytochrome d
ubiquinol oxidase subunit II, and genes ctad and coxb expressing cytochrome c oxidase
subunits I and II, respectively. Several terminal dehydrogenase and reductase encoding
genes involved in respiratory chains were detected, including ones predicted to express
arsenate reductase arsc and ferredoxin reductase. Multiple genes predicted to encode
succinate dehydrogenase used as electron donors under low oxygen conditions were also
detected in the genome of strain MT25T. Further support for the ability of the strain to adapt
to different oxygen levels reflects its capacity to form cytochrome oxidase complexes that
have different affinities for oxygen. Biological adaptations such as these may account for
the presence of micromonosporae (including verrucosisporae) in marine habitats, including
deep-sea sediments [2,3,76].

3. Materials and Methods
3.1. Microorganism

Micromonospora strain MT25T was isolated from Mariana Trench sediment, sample
no. 281, collected at a depth of 10,898 m (Challenger Deep; 11◦19′911′′ N; 142◦12′372′′ E)
by the remotely operated submersible Kaiko, using a sterilized mud sampler, on 21 May
1998, during dive number 74. The sample was transported to the UK in an insulated
container at 4 ◦C and stored at −20 ◦C until examined for actinobacteria. The test strain
was isolated, purified and maintained using procedures described by Pathom-aree et al. [19].
M. tulbaghiae DSM 45142T was maintained under the same conditions.

3.2. General Experimental Procedures

General Experimental Procedures. 1H, 13C, 15N NMR experiments were recorded
on a Bruker Avance 600 MHz NMR spectrometer AVANCE III HD (Billerica, MA, USA)
equipped with a cryoprobe, in DMSO-d6. Low resolution electrospray mass spectra were
obtained using a Perseptive Biosystems Mariner LC-MS (PerSeptive Biosystems, Fram-
ingham, MA, USA), and high-resolution mass data were generated on Finnigan MAT 900
XLT (Thermo-Finnigan, San Jose, CA, USA). HPLC separations were carried out using a
Phenomenex reversed-phase (C18, 10 Å × 10 mm × 250 mm) column and an Agilent 1100
series gradient pump and monitored using an Agilent DAD G1315B variable-wavelength
UV detector (Agilent Technologies, Waldbronn, Germany).

3.3. Fermentation Conditions

For the first-stage seed preparation, an agar grown culture of strain MT25T, was
inoculated into 10 mL of GYE medium (4.0 g glucose, 4.0 g yeast extract, agar 15 g, distilled
H2O 1 L, pH 7.0). After 5 days incubation at 28 ◦C, with agitation, the first stage culture
was used to inoculate the production fermentation, using ISP2 broth (yeast extract 4 g, malt
extract 10 g, glucose 4 g, CaCO3 2 g, distilled H2O 1 L, pH 7.3). The fermentation was
incubated at 28 ◦C, with agitation, and the biomass was harvested on the seventh day. All
media components were purchased from Sigma-Aldrich (St. Louis, MO, USA).

3.4. Isolation and Purification of Secondary Metabolites

Harvested fermentation broth (6 L) was centrifuged at 3000 rpm for 20 min, and the
HP20 resin together with the cell mass was washed with distilled water then extracted with
MeOH (3 × 500 mL). The MeOH extracts were combined and concentrated under reduced
pressure to yield 6.39 g solid extract. The extract was suspended in 250 mL of MeOH and
then partitioned with n-hexane (3 × 250 mL). The remaining MeOH solubles were the sub-
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ject of further purification by Sephadex LH-20 column chromatography (CH2Cl2/MeOH
1:1) to yield 3 fractions. Final purification was achieved using reversed–phase HPLC
(C18, 10 µm, 10 mm × 250 mm), employing gradient elution from 0–90% CH3CN/H2O
containing 0.01% TFA over 40 min for fraction A (23 mg) to give compound 1 (16.2 mg)
and fraction B (27 mg) and to give compound 2 (9.4 mg).

Compound (1): white amorphous powder, 16.2 mg; [α]25
D = −47 (c 0.1, MeOH); IR

νmax: 3408, 3326, 3316, 3274, 3230, 3202, 1670, 1660, 1655, 1647, 1445, 1237 cm−1; LRESIMS
m/z 338.10 [M + Na]+; HRESIMS m/z 338.143098 [M + Na]+ (calcd for C12H21N5O5Na,
338.144046, ∆ = −2.8 ppm).; 1H and 13C NMR data (DMSO-d6), see Table 1.

Compound (2): colorless amorphous substance, 9.4 mg; IR νmax: 3315, 3090, 2860, 1625,
1560, 1460, 1270, 1225, 1190 cm−1; HRESIMS m/z 561.3577 [M + H]+ (calcd for C25H49N6O8,
561.3592, ∆ = −2.6 ppm).; 1H and 13C NMR data (DMSO-d6), see Table 1.

3.5. Phylogeny

An almost complete 16S rRNA gene sequence (1437 nucleotides) (Genbank accession
number AY894337) was taken directly from the draft genome of the isolate using the
ContEst16S tool from the EzBioCloud webserver (https://www.ezbiocloud.net/tools/
contest16s, accessed on 1 June 2018) [77]. The sequence was aligned with corresponding
sequences of the most closely related type strains of Micromonospora species drawn from the
EzBioCloud webserver [78] using MUSCLE software (Version No. 3.8.31, drive5, Berkeley,
CA, USA) [79]. Pairwise sequence similarities were generated using the single gene tree
option from the Genome-to-Genome Distance calculator (GGDC) webserver [37,80] and
phylogenetic trees inferred using the maximum-likelihood [81], maximum-parsimony [82]
and neighbor-joining [83] algorithms. A ML (maximum likelihood) tree was generated
from alignments with RAxML (Randomized Axelerated Maximum Likelihood) [84] using
rapid bootstrapping with the auto Maximum-Relative-Error (MRE) criterion [85] and
a MP tree inferred from alignments with the tree analysis using the New Technology
(TNT) program [86] with 1000 bootstraps together with tree-bisection-and-reconnection
branch swapping and ten random sequence addition replicates. The sequences were
checked for computational bias using the x2 test taken from PAUP * (Phylogenetic analysis
using parsimony) [87]. The trees were evaluated using bootstrap analyses based on 1000
replicates [88] from the MEGA X software package (Version No. 10.0.5, MEGA development
team, State College, PA, USA) [89] and the two-parameter model of Jukes and Cantor,
1969 [90]. The 16S rRNA gene sequence of Catellatospora citrea IFO 14495T (D85477) was
used to root the tree.

3.6. Phenotypic Characterisation

The isolate was examined for a broad range of phenotype properties known to be
of value in Micromonospora systematics [10,16]. Standard chromatographic procedures
were used to detect isomers of diaminopimelic acid [91], whole-organism sugars [92]
and polar lipids [93,94], using freeze dried biomass harvested from yeast extract-malt
extract broth cultures (International Streptomyces Project [ISP] medium 2) [95]. Similarly,
cellular fatty acids extracted from the isolate were methylated and analyzed using the
Sherlock Microbial Identification (MIDI) system and the resultant peaks identified using
the ACTINO 6 database [96].

Cultural and morphological properties of the isolate were recorded following growth
on oatmeal agar (ISP medium 3) [95]. Growth from the oatmeal agar plate was examined
for micromorphological traits using a scanning electron microscope (Tescan Vega 3, LMU
instrument, Fuveau, France) and the protocol described by O’Donnell et al. [97]. The
enzymatic profiles of strain MT25T and M. tulbaghiae DSM 45142T were determined using
AP1-ZYM strips (bioMérieux) by following the instructions of the manufacture. Similarly,
biochemical, degradation, physiological and staining properties were acquired using media
and methods described by Williams et al. [98]. The ability of strain MT25T to grow under
different temperature and pH regimes and in the presence of various concentrations of

https://www.ezbiocloud.net/tools/contest16s
https://www.ezbiocloud.net/tools/contest16s
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sodium chloride were recorded on ISP2 agar as the basal medium; the pH values were
determined using phosphate buffers. All of these tests were carried out using a standard
inoculum of spores and mycelial fragments equivalent to 5.0 on the McFarland scale [99].

3.7. Whole-Genome Sequencing
3.7.1. DNA Extraction and Genome Sequencing

Genomic DNA was extracted from wet biomass of a single colony of strain MT25T

following growth on yeast extract-malt extract agar for 7 days at 28 ◦C [95], using the
modified CTAB method [100]. The sequence library was prepared using a NEB Next Fast
DNA Fragmentation and Library Preparation Kit for an Ion Torrent (New England Biolabs,
Hitchin, UK).

Briefly, the DNA sample (0.5 µg) was subjected to enzymatic fragmentation, end
repaired and ligated to A1 and P2 adapters, followed by extraction of 490–500 bp fragments
and PCR amplification. The PCR products were analyzed using a High Sensitivity DNA
kit and BioAnalyser 2100 (Agilent Technologies LDA).

(UK Limited, Cheshire, UK). AMPure XP beads (Beckman Coulter, Brea, CA, USA)
were used for DNA purification according to the protocol. The library was diluted to give
a final concentration of 25 pM, and a template was prepared using an Ion PGM Hi-Q™
(Life Technologies Limited, Paisley, UK) View OT2 Kit and IonTorrent One Touch system
OT2. The recovery of positive Ion Sphere Particles was achieved using the One Touch ES
enrichment system. The sequencing reaction was conducted using an Ion PGM Hi-QTM

View Sequencing Kit, 316v2 chips and an IonTorrent PGM instrument with 850 sequencing
flows, according to manufacturer’s instructions (Life Technologies Limited, Paisley, UK),
required for 400 nt read lengths.

3.7.2. Annotation of Genome and Bioinformatics

The sequencing reads were mapped onto reference genome sequences using CLC
Genomics Workbench software (GWB, ver. 7.5, QIAGEN, LLC, Germantown, MD, USA).
The reads were assembled using SPAdes v. 5.0.0.0 plugin (LifeTechnologies, Thermo Fisher
Scientific, UK). The annotation of the genomic sequence was performed via NCBI GenBank
annotation pipeline [24,101].

3.7.3. Detection of the Gene Clusters

The whole genome sequence of strain MT25T was mined using AntiSMASH 6.0.0
alpha 1 (“Antibiotic and Secondary Metabolites Analysis Shell”) [42] to detect biosynthetic
gene clusters. The NCBI [24–26] GenBank annotation pipeline was used to detect the genes
and proteins associated with bacterial adaptation.

3.7.4. GenBank Accession Number

This Whole Genome Shotgun sequence has been deposited at DDBJ/ENA/GenBank
under accession number NZ_QNTW00000000. The version described in this paper is
NZ_QNTW00000000.1.

3.8. Comparison of Genomes

The draft genome sequence of strain MT25T was compared with corresponding se-
quences of the type strains of closely related Micromonospora strains, as shown in the
phylogenomic analyses. A ML phylogenomic tree inferred using the codon tree option in
the PATRIC webserver [102], based on aligned amino acids and nucleotides derived from
704 single copy core genes in the genome dataset matched against the PATRIC PGFams
database (http://www.patricbrc.org, accessed on 10 July 2018), was generated using the
RAxML algorithm [84]. Average nucleotide identity (ortho ANI) [103] and digital DNA-
DNA hybridization [38] values were determined between the isolate and the type strains of
M. aurantiaca, M. chalcea, M. marina and M. tulbaghiae, its closest phylogenomic neighbors.

http://www.patricbrc.org
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4. Conclusions

Micromonospora strain MT25T, an isolate recovered from sediment taken from the
Mariana Trench in the Pacific Ocean, was shown to be most closely related to the type strain
M. tulbaghiae following a genome-based classification. Characterization of strain MT25T

using a range of methods suggests that it belongs to a new Micromonospora species, which
we name as Micromonospora provocatoris sp. nov. An associated bioassay-guided study
together with structural analyses showed that the isolate has a potential to synthesize two
major metabolites, n-acetylglutaminyl glutamine amide and desferrioxamine B. In line
with previous studies on micromonosporae isolated from extreme habitats, strain MT25T

had a relatively large genome containing genes likely to be involved in the biosynthesis
of novel natural products. Bioinformatic analyses of the genome of the M. provoactoris
strain revealed a broad range of stress-related genes relevant to its survival in deep-sea
sediments.

Supplementary Materials: The following are available online at http://www.mdpi.com/xxx/s1,
Table S1: 1D and 2D NMR data for compound (1), Figures S1: Photograph of M. provocatoris MT25T

and scanning electron micrograph showing single spores, Figure S2: Polar lipid patterns, Figures
S3–S11: NMR and mass spectra of compound (1), Table S2: 1D and 2D NMR data for compound (2),
Figure S12–S25: NMR and mass spectra of compound (2), Table S3: Some putative stress response
genes.

Author Contributions: W.M.A.-M., B.L. and A.V.K. performed whole genome sequencing and
bioinformatics analyses. W.M.A.-M., L.H.A.-W. and M.S.M.A.-S. analyzed the sequencing data
for protein coding genes and their functions. The acquisition of the phenotypic data on the M.
provocatoris and the M. tulbaghiae strains was carried out by A.B.K. and H.S., A.B.K., H.S., B.L. and
A.V.K. performed identification of the strain based on 16S rRNA and whole genome analysis and
produced phylogenetic and phylogenomic trees. W.P.-A. isolated and purified the strain from the
marine sediment. I.N. and M.G. were responsible for the provision of strain MT25T and for the
isolation and purification of DNA extracted from it. W.M.A.-M. and M.J. cultivated the organism for
the isolation and identification of compounds 1 and 2. M.G. and W.P.-A. deposited strain MT25T in
the NCIMB and TISTR culture collections, respectively. W.M.A.-M., L.H.A.-W., B.L., M.S.M.A.-S.,
M.G., A.B.K., H.S., M.J. and A.V.K. prepared the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the Deanship of Scientific Research at Princess Nourah bint
Abdulrahman University, through the Research Groups Program Grant no. (RGP-1440-0014) (2).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The article contains all the data produced in this study.

Acknowledgments: This work was funded by the Deanship of Scientific Research at Princess Nourah
bint Abdulrahman University, through the Research Groups Program Grant no. (RGP-1440-0014)
(2). M.G. is indebted to Jose M. Iqbal (Instituto de Resoursos Naturales Y Agrobilogia de Salamanca,
Spain) for undertaking the fatty acid analyses. We thank Anthony Wright for acquiring the NMR
data at the Australian Institute of Marine Sciences.

Conflicts of Interest: The authors declare that they do not have any conflict of interest.

References
1. Kamjam, M.; Sivalingam, P.; Deng, Z.; Hong, K. Deep sea actinomycetes and their secondary metabolites. Front. Microbiol. 2017, 8,

760. [CrossRef] [PubMed]
2. Bull, A.T.; Goodfellow, M. Dark, rare and inspirational microbial matter in the extremobiosphere: 16,000 m of bioprospecting

campaigns. Microbiology 2019, 165, 1252–1264. [CrossRef] [PubMed]
3. Subramani, R.; Sipkema, D. Marine rare actinomycetes: A promising source of structurally diverse and unique novel natural

products. Mar. Drugs 2019, 17, 249. [CrossRef]

http://www.mdpi.com/xxx/s1
http://doi.org/10.3389/fmicb.2017.00760
http://www.ncbi.nlm.nih.gov/pubmed/28507537
http://doi.org/10.1099/mic.0.000822
http://www.ncbi.nlm.nih.gov/pubmed/31184575
http://doi.org/10.3390/md17050249


Mar. Drugs 2021, 19, 243 16 of 19

4. Riedlinger, J.; Reicke, A.; Zähner, H.; Krismer, B.; Bull, A.T.; Maldonado, L.A.; Ward, A.C.; Goodfellow, M.; Bister, B.; Bischoff, D.;
et al. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J.
Antibiot. 2004, 57, 271–279. [CrossRef]

5. Nouioui, I.; Carro, L.; García-López, M.; Meier-Kolthoff, J.P.; Woyke, T.; Kyrpides, N.C.; Pukall, R.; Klenk, H.P.; Goodfellow, M.;
Göker, M. Genome-based taxonomic classification of the phylum Actinobacteria. Front. Microbiol. 2018, 9, 2007. [CrossRef]

6. Fiedler, H.P.; Bruntner, C.; Riedlinger, J.; Bull, A.T.; Knutsen, G.; Goodfellow, M.; Jones, A.; Maldonado, L.; Pathom-aree, W.; Beil,
W.; et al. Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the
actinomycete Verrucosispora. J. Antibiot. 2008, 61, 158–163. [CrossRef]

7. Goodfellow, M.; Brown, R.; Ahmed, L.; Pathom-aree, W.; Bull, A.T.; Jones, A.L.; Stach, J.E.; Zucchi, T.D.; Zhang, L.; Wang,
J. Verrucosispora fiedleri sp. nov., an actinomycete isolated from a fjord sediment which synthesizes proximicins. Antonie van
Leeuwenhoek 2013, 103, 493–502. [CrossRef]

8. Carro, L.; Nouioui, I.; Sangal, V.; Meier-Kolthoff, J.P.; Trujillo, M.E.; Montero-Calasanz, M.D.C.; Sahin, N.; Smith, D.L.; Kim, K.E.;
Peluso, P.; et al. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential.
Sci. Rep. 2018, 8, 525. [CrossRef]

9. Carro, L.; Castro, J.F.; Razmilic, V.; Nouioui, I.; Pan, C.; Igual, J.M.; Jaspars, M.; Goodfellow, M.; Bull, A.T.; Asenjo, J.A.; et al.
Uncovering the potential of novel micromonosporae isolated from an extreme hyper-arid Atacama Desert soil. Sci. Rep. 2019, 9,
4678. [CrossRef]

10. Carro, L.; Golinska, P.; Nouioui, I.; Bull, A.T.; Igual, J.M.; Andrews, B.A.; Klenk, H.P.; Goodfellow, M. Micromonospora acroterricola
sp. nov., a novel actinobacterium isolated from a high altitude Atacama Desert soil. Int. J. Syst. Evol. Microbiol. 2019, 69, 3426–3436.
[CrossRef] [PubMed]

11. Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.;
Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria
and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [CrossRef]

12. Carro, L.; Razmilic, V.; Nouioui, I.; Richardson, L.; Pan, C.; Golinska, P.; Asenjo, J.A.; Bull, A.T.; Klenk, H.P.; Goodfellow, M.
Hunting for cultivable Micromonospora strains in soils of the Atacama Desert. Antonie van Leeuwenhoek 2018, 111, 1375–1387.
[CrossRef]

13. Ørskov, J. Investigations into the Morphology of the Ray Fungi; Levin and Munksgaard: Copenhagen, Denmark, 1923.
14. Krassilnikov, N.A. Ray Fungi and Related Organisms, Actinomycetales; Akademii Nauk S. S. S. R.: Moscow, Russia, 1938.
15. Genilloud, O. Order XI. Micromonosporales ord. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Goodfellow, M.,

Kämpfer, P., Busse, H.-J., Trujillo, M.E., Suzuki, K.-i., Ludwig, W., Whitman, W.B., Eds.; Springer: Berlin/Heidelberg, Germany,
2012; Volume 5, p. 1035.

16. Salam, N.; Jiao, J.Y.; Zhang, X.T.; Li, W.J. Update on the classification of higher ranks in the phylum Actinobacteria. Int. J. Syst. Evol.
Microbiol. 2020, 70, 1331–1355. [CrossRef]

17. Foulerton, A.G.R. New species of Streptothrix isolated from the air. Lancet 1905, 1, 1199–1200.
18. Genilloud, O.; Ørskov, G.I.M. 156AL. In Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Goodfellow, M., Kämpfer, P., Busse,

H.-J., Trujillo, M.E., Suzuki, K.-I., Ludwig, W., Whitman, W.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 5, pp.
1039–1057.

19. Pathom-Aree, W.; Stach, J.E.; Ward, A.C.; Horikoshi, K.; Bull, A.T.; Goodfellow, M. Divesity of actinomycetes isolated from
Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 2006, 10, 181–189. [CrossRef] [PubMed]

20. Vickers, J.C.; Williams, S.T.; Ross, G.W. A taxonomic approach to selective isolation of streptomycetes from soil. In Biological,
Biochemical and Biomedical Aspects of Actinomycetes; Ortiz-Ortiz, L., Bojalil, L.F., Yakoleff, V., Eds.; Academic Press: Orlando, FL,
USA, 1984; pp. 553–561.

21. Kato, C.; Li, L.; Tamaoka, J.; Horikoshi, K. Molecular analyses of the sediment of the 11,000-m deep Mariana Trench. Extremophiles
1997, 1, 117–123. [CrossRef]

22. Smith, L.T.; Smith, G.M. An osmoregulated dipeptide in stressed Rhizobium meliloti. J. Bacteriol. 1989, 171, 4714–4717. [CrossRef]
[PubMed]

23. Masatomi, I.; Tetsuya, S.; Masahide, A.; Ryuichi, S.; Hiroshi, N.; Masaaki, I.; Tomio, T. IC202A, a new siderophore with
immunosuppressive activity produced by Streptoalloteichus sp. 1454-19. II. Physico-chemical properties and structure elucidation.
J. Antibiot. 1999, 52, 25–28.

24. Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky,
M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [CrossRef]

25. Angiuoli, S.V.; Gussman, A.; Klimke, W.; Cochrane, G.; Field, D.; Garrity, G.; Kodira, C.D.; Kyrpides, N.; Madupu, R.; Markowitz,
V.; et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta) genomic annotation. OMICS 2008, 12,
137–141. [CrossRef] [PubMed]

26. Tatusova, T.; Ciufo, S.; Fedorov, B.; O’Neill, K.; Tolstoy, I. RefSeq microbial genomes database: New representation and annotation
strategy. Nucleic Acids Res. 2014, 42, D553–D559. [CrossRef] [PubMed]

27. Sveshnikova, M.A.; Maksimova, T.S.; Kudrina, E.S. Species of the genus Micromonospora Oerskov, 1923 and their taxonomy.
Mikrobiologiia 1969, 38, 883–893.

http://doi.org/10.7164/antibiotics.57.271
http://doi.org/10.3389/fmicb.2018.02007
http://doi.org/10.1038/ja.2008.125
http://doi.org/10.1007/s10482-012-9831-y
http://doi.org/10.1038/s41598-017-17392-0
http://doi.org/10.1038/s41598-019-38789-z
http://doi.org/10.1099/ijsem.0.003634
http://www.ncbi.nlm.nih.gov/pubmed/31395106
http://doi.org/10.1016/S1473-3099(17)30753-3
http://doi.org/10.1007/s10482-018-1049-1
http://doi.org/10.1099/ijsem.0.003920
http://doi.org/10.1007/s00792-005-0482-z
http://www.ncbi.nlm.nih.gov/pubmed/16538400
http://doi.org/10.1007/s007920050024
http://doi.org/10.1128/JB.171.9.4714-4717.1989
http://www.ncbi.nlm.nih.gov/pubmed/2768187
http://doi.org/10.1093/nar/gkw569
http://doi.org/10.1089/omi.2008.0017
http://www.ncbi.nlm.nih.gov/pubmed/18416670
http://doi.org/10.1093/nar/gkt1274
http://www.ncbi.nlm.nih.gov/pubmed/24316578


Mar. Drugs 2021, 19, 243 17 of 19

28. Tanasupawat, S.; Jongrungruangchok, S.; Kudo, T. Micromonospora marina sp. nov., isolated from sea sand. Int. J. Syst. Evol.
Microbiol. 2010, 60, 648–652. [CrossRef] [PubMed]

29. Songsumanus, A.; Tanasupawat, S.; Igarashi, Y.; Kudo, T. Micromonospora maritima sp. nov., isolated from mangrove soil. Int. J.
Syst. Evol. Microbiol. 2013, 63, 554–559. [CrossRef]

30. Supong, K.; Suriyachadkun, C.; Tanasupawat, S.; Suwanborirux, K.; Pittayakhajonwut, P.; Kudo, T.; Thawai, C. Micromonospora
sediminicola sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 2013, 63, 570–575. [CrossRef] [PubMed]

31. Kirby, B.M.; Meyers, P.R. Micromonospora tulbaghiae sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea. Int. J. Syst.
Evol. Microbiol. 2010, 60, 1328–1333. [CrossRef]

32. Contreras-Castro, L.; Maldonado, L.A.; Quintana, E.T.; Carro, L.; Klenk, H.-P. Genomic insight into three marine Micromonospora
sp. strains from the Gulf of California. Microbiol. Resour. Announc. 2019, 8, e01673-18. [CrossRef]

33. Riesco, R.; Carro, L.; Román-Ponce, B.; Prieto, C.; Blom, J.; Klenk, H.P.; Normand, P.; Trujillo, M.E. Defining the species
Micromonospora saelicesensis and Micromonospora noduli Under the framework of genomics. Front. Microbiol. 2018, 9, 1360.
[CrossRef]

34. Songsumanus, A.; Tanasupawat, S.; Thawai, C.; Suwanborirux, K.; Kudo, T. Micromonospora humi sp. nov., isolated from peat
swamp forest soil. Int. J. Syst. Evol. Microbiol. 2011, 61, 1176–1181. [CrossRef]

35. Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci.
USA 2009, 106, 19126–19131. [CrossRef]

36. Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.W.; De Meyer, S.; et al.
Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68,
461–466. [CrossRef]

37. Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals
and improved distance functions. BMC Bioinform. 2013, 14, 60. [CrossRef] [PubMed]

38. Thompson, D.; Cognat, V.; Goodfellow, M.; Koechler, S.; Heintz, D.; Carapito, C.; Van Dorsselaer, A.; Mahmoud, H.; Sangal, V.;
Ismail, W. Phylogenomic classification and biosynthetic potential of the fossil fuel-biodesulfurizing Rhodococcus strain IGTS8.
Front. Microbiol. 2020, 11, 1417. [CrossRef]

39. Li, X.; Huang, Y.; Whitman, W.B. The relationship of the whole genome sequence identity to DNA hybridization varies between
genera of prokaryotes. Antonie van Leeuwenhoek 2015, 107, 241–249. [CrossRef]

40. Palmer, M.; Steenkamp, E.T.; Blom, J.; Hedlund, B.P.; Venter, S.N. All ANIs are not created equal: Implications for prokaryotic
species boundaries and integration of ANIs into polyphasic taxonomy. Int. J. Syst. Evol. Microbiol. 2020, 70, 2937–2948. [CrossRef]
[PubMed]

41. Meier-Kolthoff, J.P.; Klenk, H.P.; Göker, M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic
age. Int. J. Syst. Evol. Microbiol. 2014, 64, 352–356. [CrossRef] [PubMed]

42. Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. antiSMASH 5.0: Updates to the
secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019, 47, W81–W87.

43. Sosio, M.; Gaspari, E.; Iorio, M.; Pessina, S.; Medema, M.H.; Bernasconi, A.; Simone, M.; Maffioli, S.I.; Ebright, R.H.; Donadio, S.
Analysis of the pseudouridimycin biosynthetic pathway provides insights into the formation of c-nucleoside antibiotics. Cell
Chem. Biol. 2018, 25, 540–549.e4. [CrossRef]

44. Wang, X.; Zhou, H.; Chen, H.; Jing, X.; Zheng, W.; Li, R.; Sun, T.; Liu, J.; Fu, J.; Huo, L.; et al. Discovery of recombinases enables
genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proc. Natl. Acad. Sci. USA 2018, 115, E4255–E4263.

45. Awakawa, T.; Fujita, N.; Hayakawa, M.; Ohnishi, Y.; Horinouchi, S. Characterization of the biosynthesis gene cluster for
alkyl-O-dihydrogeranyl-methoxyhydroquinones in Actinoplanes missouriensis. ChemBioChem 2011, 12, 439–448. [CrossRef]

46. Yanai, K.; Murakami, T.; Bibb, M. Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain
improvement of Streptomyces kanamyceticus. Proc. Natl. Acad. Sci. USA 2006, 103, 9661–9666. [CrossRef]

47. Shigemori, H.; Komaki, H.; Yazawa, K.; Mikami, Y.; Nemoto, A.; Tanaka, Y.; Sasaki, T.; In, Y.; Ishida, T.; Kobayashi, J.; et al.
Brasilicardin A. A novel tricyclic metabolite with potent immunosuppressive activity from actinomycete Nocardia brasiliensis. J.
Org. Chem. 1998, 63, 6900–6904. [CrossRef]

48. Ogasawara, Y.; Yackley, B.J.; Greenberg, J.A.; Rogelj, S.; Melançon, C.E., 3rd. Expanding our understanding of sequence-function
relationships of type II polyketide biosynthetic gene clusters: Bioinformatics-guided identification of Frankiamicin A from Frankia
sp. EAN1pec. PLoS ONE 2015, 10, e0121505. [CrossRef]

49. Abdel-Mageed, W.M.; Juhasz, B.; Lehri, B.; Alqahtani, A.S.; Nouioui, I.; Pech-Puch, D.; Tabudravu, J.N.; Goodfellow, M.;
Rodríguez, J.; Jaspars, M.; et al. Whole genome sequence of Dermacoccus abyssi MT1.1 isolated from the Challenger Deep of the
Mariana Trench reveals phenazine biosynthesis locus and environmental adaptation factors. Mar. Drugs 2020, 18, 131. [CrossRef]
[PubMed]

50. Gumley, A.W.; Inniss, W.E. Cold shock proteins and cold acclimation proteins in the psychrotrophic bacterium Pseudomonas putida
Q5 and its transconjugant. Can. J. Microbiol. 1996, 42, 798–803. [CrossRef]

51. Fujii, S.; Nakasone, K.; Horikoshi, K. Cloning of two cold shock genes, cspA and cspG, from the deep-sea psychrophilic bacterium
Shewanella violacea strain DSS12. FEMS Microbiol. Lett. 1999, 178, 123–128. [CrossRef] [PubMed]

http://doi.org/10.1099/ijs.0.014068-0
http://www.ncbi.nlm.nih.gov/pubmed/19656925
http://doi.org/10.1099/ijs.0.039180-0
http://doi.org/10.1099/ijs.0.041103-0
http://www.ncbi.nlm.nih.gov/pubmed/22523170
http://doi.org/10.1099/ijs.0.013243-0
http://doi.org/10.1128/MRA.01673-18
http://doi.org/10.3389/fmicb.2018.01360
http://doi.org/10.1099/ijs.0.024281-0
http://doi.org/10.1073/pnas.0906412106
http://doi.org/10.1099/ijsem.0.002516
http://doi.org/10.1186/1471-2105-14-60
http://www.ncbi.nlm.nih.gov/pubmed/23432962
http://doi.org/10.3389/fmicb.2020.01417
http://doi.org/10.1007/s10482-014-0322-1
http://doi.org/10.1099/ijsem.0.004124
http://www.ncbi.nlm.nih.gov/pubmed/32242793
http://doi.org/10.1099/ijs.0.056994-0
http://www.ncbi.nlm.nih.gov/pubmed/24505073
http://doi.org/10.1016/j.chembiol.2018.02.008
http://doi.org/10.1002/cbic.201000628
http://doi.org/10.1073/pnas.0603251103
http://doi.org/10.1021/jo9807114
http://doi.org/10.1371/journal.pone.0121505
http://doi.org/10.3390/md18030131
http://www.ncbi.nlm.nih.gov/pubmed/32106586
http://doi.org/10.1139/m96-100
http://doi.org/10.1111/j.1574-6968.1999.tb13767.x
http://www.ncbi.nlm.nih.gov/pubmed/10483731


Mar. Drugs 2021, 19, 243 18 of 19

52. Abdel-Mageed, W.M.; Lehri, B.; Jarmusch, S.A.; Miranda, K.; Al-Wahaibi, L.H.; Stewart, H.A.; Jamieson, A.J.; Jaspars, M.;
Karlyshev, A.V. Whole genome sequencing of four bacterial strains from South Shetland Trench revealing biosynthetic and
environmental adaptation gene clusters. Mar. Genom. 2020, 54, 100782. [CrossRef]

53. Lelivelt, M.J.; Kawula, T.H. Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J.
Bacteriol. 1995, 177, 4900–4907. [CrossRef]

54. Lee, S.; Sowa, M.E.; Choi, J.M.; Tsai, F.T. The ClpB/Hsp104 molecular chaperone—A protein disaggregating machine. J. Struct.
Biol. 2004, 146, 99–105. [CrossRef] [PubMed]

55. Redder, P.; Hausmann, S.; Khemici, V.; Yasrebi, H.; Linder, P. Bacterial versatility requires DEAD-box RNA helicases. FEMS
Microbiol. Rev. 2015, 39, 392–412. [CrossRef]

56. Chattopadhyay, M.; Jagannadham, M. Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol. 2001, 24, 386–388.
57. Chattopadhyay, M.K.; Jagannadham, M.V. A branched chain fatty acid promotes cold adaptation in bacteria. J. Biosci. 2003, 28,

363–364. [CrossRef]
58. Goude, R.; Renaud, S.; Bonnassie, S.; Bernard, T.; Blanco, C. Glutamine, glutamate, and alpha-glucosylglycerate are the major

osmotic solutes accumulated by Erwinia chrysanthemi strain 3937. Appl. Environ. Microbiol. 2004, 70, 6535–6541. [CrossRef]
59. Kuhlmann, A.U.; Hoffmann, T.; Bursy, J.; Jebbar, M.; Bremer, E. Ectoine and hydroxyectoine as protectants against osmotic

and cold stress: Uptake through the SigB-controlled betaine-choline- carnitine transporter-type carrier EctT from Virgibacillus
pantothenticus. J. Bacteriol. 2011, 193, 4699–4708. [CrossRef]

60. Gouffi, K.; Blanco, C. Is the accumulation of osmoprotectant the unique mechanism involved in bacterial osmoprotection? Int. J.
Food Microbiol. 2000, 55, 171–174. [CrossRef]

61. Nau-Wagner, G.; Opper, D.; Rolbetzki, A.; Boch, J.; Kempf, B.; Hoffmann, T.; Bremer, E. Genetic control of osmoadaptive glycine
betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor. J. Bacteriol. 2012,
194, 2703–2714. [CrossRef] [PubMed]

62. Boncompagni, E.; Osteras, M.; Poggi, M.C.; le Rudulier, D. Occurrence of choline and glycine betaine uptake and metabolism in
the family Rhizobiaceae and their roles in osmoprotection. Appl. Environ. Microbiol. 1999, 65, 2072–2077. [CrossRef] [PubMed]

63. Sagot, B.; Gaysinski, M.; Mehiri, M.; Guigonis, J.M.; Le Rudulier, D.; Alloing, G. Osmotically induced synthesis of the dipeptide
N-acetylglutaminylglutamine amide is mediated by a new pathway conserved among bacteria. Proc. Natl. Acad. Sci. USA 2010,
107, 12652–12657. [CrossRef] [PubMed]

64. Campanaro, S.; Treu, L.; Valle, G. Protein evolution in deep sea bacteria: An analysis of amino acids substitution rates. BMC Evol.
Biol. 2008, 8, 313. [CrossRef]

65. Goordial, J.; Raymond-Bouchard, I.; Zolotarov, Y.; de Bethencourt, L.; Ronholm, J.; Shapiro, N.; Woyke, T.; Stromvik, M.; Greer, C.;
Bakermans, C.; et al. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3
isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiol. Ecol. 2016, 92, fiv154.

66. Bartlett, D.H. Microbial adaptations to the psychrosphere/piezosphere. J. Mol. Microbiol. Biotechnol. 1999, 1, 93–100.
67. Sekar, K.; Linker, S.M.; Nguyen, J.; Grünhagen, A.; Stocker, R.; Sauer, U. Bacterial glycogen provides short-term benefits in

changing environments. Appl. Environ. Microbiol. 2020, 86, e00049-20. [CrossRef]
68. Cannon, G.C.; Heinhorst, S.; Kerfeld, C.A. Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation.

Biochim. Biophys. Acta 2010, 1804, 382–392. [CrossRef]
69. Busarakam, K.; Bull, A.T.; Trujillo, M.E.; Riesco, R.; Sangal, V.; van Wezel, G.P.; Goodfellow, M. Modestobacter caceresii sp. nov.,

novel actinobacteria with an insight into their adaptive mechanisms for survival in extreme hyper-arid Atacama Desert soils.
Syst. Appl. Microbiol. 2016, 39, 243–251. [CrossRef]

70. Castro, J.F.; Nouioui, I.; Sangal, V.; Choi, S.; Yang, S.J.; Kim, B.Y.; Trujillo, M.E.; Riesco, R.; Montero-Calasanz, M.D.C.; Rahmani,
T.P.D.; et al. Blastococcus atacamensis sp. nov., a novel strain adapted to life in the Yungay core region of the Atacama Desert. Int. J.
Syst. Evol. Microbiol. 2018, 68, 2712–2721. [CrossRef] [PubMed]

71. Castro, J.F.; Nouioui, I.; Sangal, V.; Trujillo, M.E.; Montero-Calasanz, M.D.C.; Rahmani, T.; Bull, A.T.; Asenjo, J.A.; Andrews, B.A.;
Goodfellow, M. Geodermatophilus chilensis sp. nov., from soil of the Yungay core-region of the Atacama Desert, Chile. Syst. Appl.
Microbiol. 2018, 41, 427–436. [CrossRef] [PubMed]
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