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ABSTRACT: The association of an electron-rich substrate with an electron-accepting molecule can generate a new molecular
aggregate in the ground state, called an electron donor—acceptor (EDA) complex. Even when the two precursors do not absorb
visible light, the resulting EDA complex often does. In 1952, Mulliken proposed a quantum-mechanical theory to rationalize the
formation of such colored EDA complexes. However, and besides a few pioneering studies in the 20th century, it is only in the past
few years that the EDA complex photochemistry has been recognized as a powerful strategy for expanding the potential of visible-
light-driven radical synthetic chemistry. Here, we explain why this photochemical synthetic approach was overlooked for so long. We
critically discuss the historical context, scientific reasons, serendipitous observations, and landmark discoveries that were essential for
progress in the field. We also outline future directions and identify the key advances that are needed to fully exploit the potential of
the EDA complex photochemistry.
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chemists. In recent years, this situation has changed s il Jeaving group
dramatically and many photochemical methods have been
developed, greatly expanding the synthetic toolbox of modern Figure 1. (a) Classical EDA complex theory and the factors that
chemists. Progress within the field has mainly been spurred by complicate synthetic applications. (b) A general strategy to make the
photoredox catalysis.” This strategy relies on the use of colored EDA complex synthetically productive. Kgp,: association constant for

the formation of the EDA complex; kggr, kggr, kp: kinetic constants;
Wes: wave function associated with the ground state; Wgg: wave
function associated with the excited state; SET: single-electron
transfer; LG: leaving group.

photocatalysts that harvest the energy of visible light to activate
readily available bench-stable substrates and to generate
reactive radicals® under very mild reaction conditions.’
Recently, the synthetic community has recognized the
potential of a photochemical approach that intrinsically differs
from photoredox catalysis, since it does not rely on the use of
an exogenous photoredox catalyst. This strategy exploits the
association of an electron acceptor substrate A and a donor
molecule D (Lewis acids and bases, respectively) to bring
about the formation of a new molecular aggregation in the
ground state, called an electron donor—acceptor (EDA)
complex’ (Figure la). The two components A and D may
not absorb visible light themselves, but the resulting EDA
complex does. Light excitation then triggers an intramolecular
single-electron-transfer (SET) event that can generate radical
intermediates under mild conditions.® The photophysics of
EDA complexes have been extensively studied since the
1950s.”7'% In contrast, until very recently, they found only
limited application in chemical synthesis. In the past few years,

however, the EDA complex photochemistry has attracted the
interest of a growing number of chemists, providing fresh
opportunities in synthetic chemistry."'

With this Perspective, we will critically assess the synthetic
potential of EDA complex photochemistry. We will provide a
possible rationale for why this photochemical approach was
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overlooked so long, and highlight the accomplishments that
were crucial for developing the existing tools. In addition to
charting the ideas, challenges, and milestone reactions that
were essential for progress in the field, we will discuss future
directions and identify the key advances that are needed to
fully exploit the potential of the EDA complex photochemistry.

B BACKGROUND AND PIONEERING SYNTHETIC
APPLICATIONS

Chemists are familiar with the appearance of strong color on
combining two colorless organic compounds. The observation
that iodine forms different colored solutions in different
solvents prompted Hildebrand to investigate this phenomenon
in a series of studies, which covered a time span of about 40
years.'” Eventually, spectroscopic investigations showed that
benzene and mesitylene form 1:1 complexes of considerable
stability with iodine."”" In 1952, this series of studies, among
others,'” inspired Robert Mulliken to propose a quantum-
mechanical theory to rationalize the formation of these
complexes.'’ According to the Mulliken charge-transfer theory,
the association of an electron-rich substrate (a donor D with a
low ionization potential, IP) with an electron-accepting
molecule (an acceptor A having a high electronic affinity,
EA)"* can elicit the formation of a new complex in the ground
state, the EDA complex (Figure 1a, Kyp, being the association
constant for the complex formation). The physical properties
of an EDA complex differ from those of the separated
substrates. This is because new molecular orbitals are formed
from the electronic coupling of the D and A frontier orbitals
(HOMO/LUMO). This new chemical entity is characterized
by the appearance of a new absorption band, the charge-
transfer band (hvcr), associated with an W — P electronic
transition (W is the wave function, associated with ground and
excited states). In many cases, the energy of this transition lies
within the visible range. Upon excitation of the EDA complex
(orange box in Figure la), the Wy is populated, which
translates in an intracomplex transfer of an electron from D to
A to generate a radical ion pair characterized by a net charge
separation (light blue box). This complex may ultimately
furnish reactive radicals. The EDA complex photochemistry may
therefore offer the possibility of using visible light to activate
substances that would not normally absorb in the visible spectrum.

Initial research efforts focused on the photophysical
characterization of EDA complexes.”” For example, since the
energetic gap of the electronic transition is proportional to the
electron affinity of A and the ionization potential of D, cyclic
voltammetry measurements'* were used to assess the feasibility
of a donor and acceptor pair to undergo EDA complex
formation."”” In contrast, EDA complex photochemistry
initially found limited application in chemical synthesis.'®
This is probably due to the difficulties of avoiding an
unproductive back electron transfer (BET) from the radical
ion pair, which restores the ground-state EDA complex (Figure
1a). If other possible processes leading to reactive radicals and
eventually to the products are kinetically not competitive with
the BET, then the photoactivation of the EDA complex will be
synthetically unproductive.

To overcome this limitation and transform EDA complex
activation into a productive synthetic approach, one strategy
relies on the presence of a suitable leaving group (LG) within
the radical anion partner ([D**,A™*] in Figure 1b), which can
trigger an irreversible fragmentation event rapid enough to
compete with the BET. This can productively render two
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reactive radical intermediates, which can initiate synthetically
useful transformations (Figure 1b). The viability of this
approach was demonstrated by seminal contributions in
1970s. For example, Cantacuzene,'’ Bunnett,'® Russell,"
Kornblum,”® Kochi,*' and others*> showed that the EDA
complex photochemistry could trigger synthetically useful
radical processes under mild reaction conditions (Figure 2).

Seminal examples of EDA complex photochemistry
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Figure 2. Seminal examples reporting the use of EDA complex
photochemistry for synthetic applications. Rg: perfluoroalkyl residue.

Specifically, Cantacuzene and Bunnett investigated the
participation of enamines and enolates (structure 1) as donors
in charge-transfer interactions with aryl and perfluoroalkyl
iodides of type 2, to form an EDA aggregate (EDA-1, Figure
2a)."”"* Following the mechanistic pattern depicted in Figure
1b, the native iodide functionality, embedded within the
acceptor core of 2, served as a suitable leaving group to foster
the fragmentation of the radical anion, preventing an
unproductive BET. The net process was a photochemical
alkylation/arylation of carbonyl compounds via an electron
transfer substitution reaction, which could not be achieved
under thermal activation. Russell expanded this substitution
protocol to other halogen native moieties, demonstrating that
electron-poor benzyl chlorides 4 could participate in EDA
complex formation with stoichiometric donor enamines
(Figure 2b)."” Kornblum used akin acceptors 4 in combination
with nitrogen-centered nucleophiles 3 to form a photoactive
EDA-2 that could trigger displacement of the chloride.””*’
Kochi’s laboratory identified electron-rich arenes of type § as
effective donors in EDA complex activation (Figure 2¢).2"
Charge-transfer interaction with tetranitromethane 6 produced
the photoactive EDA-3, which promoted the nitration of the
electron-rich aromatic ring. Kochi also demonstrated that alkyl
stannanes 7 could engage tetracyanoethylene (TCNE) 8>* in
the formation of a photoactive EDA-4.”"" In contrast with
previous examples, where the leaving group was a native
functionality within the acceptor core, here the fragmenting
group (ie., the metal center) favoring radical formation is
embedded within the donor structure. Excitation of EDA-4
and intracomplex SET, followed by fragmentation of the
radical cation, generated a metal cation and an alkyl radical,
which were both embedded in the core of the final product.
These early examples demonstrated the potential of the
EDA complex photochemistry as a radical generation strategy
useful for synthetic transformations. However, there was no

https://dx.doi.org/10.1021/jacs.0c01416
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emphasis on the real potential benefits for chemical synthesis,
probably because synthetic photochemistry was at the time
considered a specialized area requiring specific experimental
expertise. Overall, these early studies were viewed more as
unique chemical reactions than as integral parts of a larger
research field. It was not until 2013 that the photoactivity of
EDA complexes was recognized as an independent field of
synthetic research, which could provide an overarching and
powerful strategy in visible-light-driven radical synthesis.

B SYNTHETIC RENAISSANCE OF EDA COMPLEX
PHOTOCHEMISTRY

In 2013, independent efforts by Chatani”® and our laboratory™®

revisited and reintroduced EDA complex photochemistry as a
useful radical generation strategy for chemical synthesis
(Figure 3). To better contextualize these studies and provide
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Figure 3. (a) Visible-light-induced C2-arylation of pyrroles in the
absence of a photocatalyst: EDA-S formed upon association of two
stoichiometric substrates. (b) Enantioselective catalytic a-alkylation of
aldehydes enabled by irradiation of an enamine-based EDA complex:
EDA-6 formed upon association of a transient catalytic chiral
intermediate IIT with substrate 13. LED: light-emitting diode; CFL:
compact fluorescent lamp; EWG: electron-withdrawing group;
MTBE: methyl tert-butyl ether; TMS: trimethylsilyl. The filled gray

circle represents a bulky substituent on the chiral organic catalyst.

the historical context that motivated them, it is important to
appreciate how deeply the advent of photoredox catalysis, in
2008,%*” attracted the interest of the synthetic community.
Photoredox catalysis provides access under very mild
conditions to open-shell species, whose unique reactivity
allows transformations that are not accessible through polar
pathways. This created new opportunities to apply radical
chemistry in synthesis. The 2013 studies on EDA complex
photochemistry were developed in the context of a photoredox
system, and arose from the serendipitous observation (linked
to control experiments) that an exogenous photoredox catalyst
was not needed.”®

During the development of a photoredox protocol for the
arylation of heteroaromatics 9 with iodonium salts 10 (Figure
3a), Chatani and co-workers observed that, when using
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electron-rich pyrroles 9a as substrates, the corresponding
product 11a could also be obtained in the absence of the
exogenous iridium photoredox catalyst.”> The photoredox
catalyst was used to generate aryl radicals via SET reduction of
10. With pyrroles 9a, however, simple visible light illumination
of the substrates was enough to trigger the radical process. The
researchers rationalized this unusual reactivity with the
formation of a yellow-orange complex EDA-5 (Figure 3a),
generated in solution upon association of substrates 9a and 10.
Optical absorption spectroscopic studies confirmed the
appearance of a new absorption band in the visible region
(the charge-transfer band hvcr). Irradiation of the colored
EDA complex (EDA-5), followed by irreversible extrusion of
aryl iodide, generated the radical intermediates I and II, which
furnished the C2-arylated product 11a.”’

Concomitantly, prompted by the interest in asymmetric
organocatalysis,”’ our laboratory had been investigating the
direct a-alkylation of aldehydes 12 with electron-deficient alkyl
bromides 13, including benzyl and phenacyl bromldes,
catalyzed by the chiral amine 14 (Figure 3b).*° Previous
studies”’® on similar reactivity established the need for a
photoredox catalyst to generate radicals via reductive cleavage
of the alkyl bromide 13. However, a control experiment
revealed that, for specific substrates 13, the reaction could
efficiently proceed in a stereoselectlve fashion without an
external photoredox catalyst.”® The chemistry did not proceed
at all without light illumination, and evidence was collected
supporting a radical manifold. Mechanistic studies revealed the
ability of the electron-rich chiral enamines III, generated upon
condensation of the amine catalyst 14 with aldehyde 12, to
trigger the formation of visible-light-absorbing EDA complexes
(EDA-6) with electron-deficient dinitrobenzyl and phenacyl
bromides 13. An intracomplex SET, induced by irradiation of
EDA-6, afforded the chiral radical ion pair IV. By facilitating an
irreversible cleavage of the carbon—halogen bond, the bromide
within IV avoided an unproductive BET securing access to the
reactive open-shell intermediate V. Optical absorption
spectroscopic studies confirmed the formation of the
enamine-based complex EDA-6, which could absorb in visible
frequency regions where the individual components (enamine
II and bromide 13) could not. Quantum yield measure-
ments’' established that the reaction proceeded through a self-
propagating radical chain mechanism.”” This implies that the
photochemical activity of the enamine-based EDA-6 served as
an initiation to sustain a chain process. The propagation
manifold relied on the ability of the a-aminoalkyl radical (not
shown in Figure 3b), emerging from the trap of radical V from
the ground-state chiral enamine III, to regenerate V upon SET
reduction of organic bromides 13. This study demonstrated
that transiently generated catalytic intermediates, such as chiral
enamines, can engage in the formation of photoactive EDA
complexes and trigger asymmetric radical processes that are
not achievable with ground-state organocatalysis. Broadly
speaking, this study demonstrated that the synthetic potential
of organocatalysis can be enhanced when combined with
photochemical reactivity to unlock reaction pathways inacces-
sible via thermal activation.”

Collectively, the reports highlighted in Figure 3 showcased
the synthetic potential of the EDA photochemistry and revived
interest in this radical generation strategy. The synthetic
community has since developed a variety of synthetically useful
photochemical procedures. This Perspective, instead of
providing an exhaustive list of reactions, critically describes

https://dx.doi.org/10.1021/jacs.0c01416
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developments since 2013, charting the ideas and advances that
were crucial in developing the photochemical synthetic tools.
We categorize the selected examples in two classes, based on
whether the intermediates involved in EDA complex formation
are present in stoichiometric (in analogy to the chemistry
reported in Figure 3a) or catalytic amounts (in analogy to
Figure 3b). EDA complexes can also be thermally activated to
trigger synthetic transformations.”* This ground-state EDA
complex reactivity falls outside of the scope of this Perspective.

B PHOTOACTIVITY OF STOICHIOMETRIC EDA
COMPLEXES

Direct Coupling between Donor and Acceptor
Substrates. The most straightforward synthetic application
of the EDA complex activation strategy is based on the light-
driven coupling of two substrates, the donor and the acceptor
(Figure 4a). The viability of the resulting radical processes is
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Figure 4. (a) General strategy for the coupling of electron-rich
(donor) and electron-poor (acceptor) stoichiometric substrates via
EDA complex activation. (b) Photochemical C2-alkylation of indoles
and the X-ray structure of the photoactive complex EDA-7, formed
upon association of 3-methylindole and 2,4-dinitrobenzyl bromide.
(c) Photochemical C(sp*)—C(sp*) coupling between aniline
derivatives 19 and bromothiophenes 20.

strictly dependent on the intrinsic electronic properties of the
two partners, which should be prone to forming a photoactive
EDA complex. The structural moieties of the substrates, which
are responsible for EDA complex formation, would both
eventually end up in the core of the final product. Critical for
reactivity is the presence of a suitable leaving group (blue circle
in Figure 4a), which is generally a native functionality (e.g.,
halides) adorning the structure of one of the substrates. As
explained above (Figure 1b), this leaving group is essential to
securing, upon photoinduced SET, an irreversible fragmenta-
tion that productively affords open-shell intermediates,
responsible for the formation of the product. The net process
is a selective coupling reaction, although these photochemical
processes are often based on radical chain propagation
manifolds and not on radical coupling events.””

5464

This strategy has been used to promote carbon—carbon
bond-forming processes. Generally, electron-rich aromatic
compounds have served as donors, while electron-poor alkyl
halides have been used as acceptors. The halides act as suitable
leaving groups. Along these lines, a photochemical strategy was
developed for the direct alkylation of 3-substituted indoles 16
with electron-accepting benzyl 13 and phenacyl bromides 17
(Figure 4b).*

The most significant result was the successful isolation and
full characterization by X-ray single-crystal spectroscopic
analysis™* of a visible-light-absorbing EDA complex (EDA-7),
whose photochemical activity triggered the alkylation process.
Remarkably, the latter analysis established that the average
interplanar distance between the 3-methylindole and the 2,4-
dinitrobenzyl bromide fragments (3.33 A) is significantly lower
than the van der Waals separation for aromatic molecules (3.40
A),*® which is consonant with intermolecular binding forces
being at work in the solid state. Irradiation of EDA-7 by a
compact fluorescence lamp (CFL) bulb induced the formation
of the radical ion pair VI, which evolved into the radicals VII
and VIII upon extrusion of the bromide anion. The low
quantum yield of the process (@ = 0.2) indicated that a radical
combination could be responsible for delivering the C2-
alkylated indole 18. Similar photochemical C—C bond-forming
processes have been developed, using an array of electron-rich
aromatics.>” For example, Konig and co-workers used a
photoactive EDA complex (EDA-8), formed upon aggregation
of aniline derivatives 19 and electron-poor bromothiophenes
20, 5(7) forge a C(sp*)—C(sp”) bond within product 21 (Figure
4¢).>"?

a-Ketoacids of type 22 have also been reported to be
suitable donors for productive EDA complex formation with
different acceptors, including imines®® and alkyl boronic
acids.”” In particular, the latter strategy enabled the 1,2-radical
addition to the carbonyl system of 22 (Figure S). The radical
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Figure 5. 1,2-Radical addition to carbonyl compounds driven by light-
irradiation of EDA-9.

addition to a carbonyl compound, in particular ketones, is a
difficult process. This is because it is generally hampered by the
strong tendency of the resulting alkoxyl radical to undergo f-
fragmentation, which makes the process reversible.”” The EDA
complex photochemistry provided an effective strategy to
overcome this limitation, highlighting its potential applicability
to difficult synthetic problems. Specifically, the chemistry is
triggered by the boron complex formation between a-ketoacids
22 and alkyl boronic acids 23, which act as Lewis acids. The
resulting complex can be represented as either the Lewis acid—
base pair EDA-9a or the boron anhydride EDA-9b (Figure ).

https://dx.doi.org/10.1021/jacs.0c01416
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This boron complex EDA-9 was confirmed to have a 1:1
composition in the substrates and to absorb in the visible
region. Irradiation furnished alkyl radicals IX, which could add
on the activated carbonyl of another molecule of the boron
anhydride EDA-9b. Interception of the oxygen-centered
radical within the resulting intermediate X by the vicinal
boron atom prevented an unproductive f-scission, while
feeding a radical chain manifold by regenerating the alkyl
radical IX. Hydrolysis of the boracycle XI, followed by
telescoped esterification, delivered lactate products 24. Here,
the complex EDA-9 served as the radical precursor and
activated the carbonyl to facilitate the alkyl radical addition.
An alternative strategy for productive EDA complex
formation is to generate stoichiometric transient highly
electron-rich intermediates from stable weakly polarized
substrates. Our laboratory used this strategy for the photo-
chemical perfluoroalkylation of arenes (Figure 6a).' The

in situ generated EDA complexes for C-C bond formation
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TMG: 1,1,3,3-tetramethylguanidine; Rg: perfluoroalkyl residue.

presence of a base unmasked an electron-rich enolate, which
was generated in situ upon facile deprotonation of a-cyano
arylacetates 25, which bear a highly acidic proton. The enolate
formed a colored EDA complex (EDA-10) upon association
with electron poor perfluoroalkyl iodides (Rgl, where Rg
indicates the perfluoroalkyl fragment). The photoactivity of
EDA-10 afforded electrophilic perfluoroalkyl radicals (Rg),
which could be intercepted by the aryl moiety of substrate 25
via a homolytic aromatic substitution (HAS) pathway.
Quantum vyield determination (® = 3.8, 4 = 400 nm)
established a radical chain mechanism as the main reaction
pathway, implying that the EDA complex photoactivity served
as an initiation step.

Since perfluoroalkyl iodides are particularly prone to EDA
complex formation, they have been extensively used as
acceptors.42 One recent representative example is a photo-
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chemical EDA complex strategy for the dearomative
functionalization of naphthols 26 (Figure 6b)."** Treating 26
with cesium carbonate secured the formation of the
naphtholate anion, which acted as the donor for the formation
of EDA-11. The donor ability of enolates, generated in situ
upon deprotonation of oxindoles 27, was also used to trigger
the formation of aryl radicals by means of the photoactivity of
the colored EDA—12 formed by association with aryl iodides
(Figure 6¢).**® This approach was used for the C3-arylation of
oxindoles 27.

All the protocols discussed above deal with the formation of
novel C—C bonds. The photoactivity of stoichiometric EDA
complexes could also be used to design efficient carbon-
heteroatom coupling procedures. For carbon—sulfur bond-
forming methods,” one often requires forcing experimental
conditions or specialized catalytic systems, mostly relying on
the use of transition metals." Miyake recently developed a
metal-free alternative for the formation of the C—S bond in
aryl thioethers 30 (Figure 6d)."*

This reactivity is based on the charge-transfer interaction
between an electron-rich thiolate, formed upon deprotonation
of aryl thiol 28, and an electron-poor aryl halide 29. Irradiation
by white light emitting-diodes (LEDs) of the resulting EDA
complex (EDA-13) generated radicals XII and XIII, which
delivered products 30 upon radical coupling. The mild
experimental conditions of this photochemical process secured
an excellent functional group tolerance, as demonstrated by the
late-stage functionalization of diuretic remedy hydrochlor-
othiazide (structure 30a in Figure 6d).

Eluding Structural Constrictions: Using Sacrificial
Donors and Redox Auxiliaries. The methods highlighted
above enable the coupling of two substrates, which are also
involved in the EDA complex formation. Therefore, the
diversity of the reaction products is somehow restricted by the
need to select highly polarized reagents with donor and
acceptor properties, which eventually end up in the product
scaffold. One strategy to evade this limitation is to use
sacrificial donor compounds that elicit EDA complex
formation by aggregation with electron-poor substrates (Figure
7a). Upon light-induced radical formation, the resulting open-
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Figure 7. (a) General strategy for radical formation based on the use
of a stoichiometric sacrificial donor to drive EDA complex formation.
The structure of the radical trap, which is not involved in the radical
formation process, ends up in the final product. (b) Photochemical
generation of perfluoroalkyl radicals for the synthesis of quinoxalines;
Rg: perfluoroalkyl residue.
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shell intermediate is intercepted by an external substrate, which
serves as a trap. This approach has an enhanced synthetic
versatility since the radical trap does not need specific
electronic properties to elicit EDA complex formation. For
example, stoichiometric amounts of secondary amines 31 have
been used as sacrificial donors to activate perfluoroalkyl iodides
(Rgl 32) via EDA complex formation (EDA-14, Figure 7b).*
Visible-light irradiation of EDA-14 generates perfluoroalkyl
radicals (Rg+,XIV), which add on isocyanide 33, acting as an
external radical trap. The ensuing intermediate XV triggers a
cyclization to afford radical XVI, which abstracts an iodine
from R¢I to form the quinoxaline product 34 while propagating
a radical chain via regeneration of Rg-.

Another limitation of the EDA complex-based synthetic
strategies discussed so far is that one substrate must be both
electronically biased and bear a fragmenting functionality. This
is necessary to form an EDA aggregate and trigger the
fragmentation needed for radical formation. Generally, simple
and easily available substrates adorned with native function-
alities (mostly halides within acceptors) were used for this
purpose. The use of native fragmenting groups is advantageous
in terms of the availability of the reagents, but it requires the
EDA complex formation to be elicited exclusively by the
electronic properties of the substrate’s main core. This means
that only highly polarized radicals can be generated. For
example, in the previous contribution reported in Figure 7, it is
the electron-poor nature of the perfluoralkyl fragment within
R;I that secures the formation of the EDA complex, while the
iodide is a mere fragmenting group. The resulting perfluor-
oalkyl radical is therefore electronically biased (highly
electrophilic). In an alternative strategy, which proved useful
to expand the synthetic potential of EDA complex photo-
chemistry, a reaction partner is decorated with a purposely
installed activating group, which serves as both redox-auxiliary
(RA, blue circle in Figure 8a) and leaving group. The
substrate’s main core does not need to be electronically biased
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Figure 8. (a) General representation of the use of a redox auxiliary
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photoexcitation and fragmentation, the generation of an electronically
unbiased radical. (b) Photochemical generation of nitrogen-centered
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here, since the EDA complex formation is facilitated by the
electronic properties of the redox-auxiliary/fragmenting group.
The radical emerging from the excitation of the EDA complex
is therefore electronically unbiased.

This strategy was elegantly exploited by Daniele Leonori to
generate nitrogen-centered radicals (NCRs) using appropri-
ately functionalized dinitro-substituted O-aryl oximes 35 as
bench-stable precursors (Figure 8b).** The electron-poor
dinitro aryl moiety on the oxime substrate served as a redox
tag to elicit the formation of an EDA complex (EDA-15) upon
aggregation with electron-rich triethylamine, as supported by
UV-—vis analyses. Upon photoinduced SET, EDA-15 delivered
the ion pair XVII. Here, the reduced electron auxiliary acted as
a leaving group, extruding the stable phenoxide 38. The
resulting iminyl radical underwent a S-exo-trig cyclization to
give the C-centered radical XVIIL*" The latter can either
abstract a hydrogen atom from the cyclohexadiene additive, or
be oxidized by 38 to deliver cyclic imines 36 and 37,
respectively. This iminyl radical generation from dinitro-
substituted aryl oximes was also used to synthesize
imidazoles,** cyclic sulfonimides,48b phenanthridines, and
quinolines.** Further studies highlighted the ability of
potassium carbonate to participate as donor in similar EDA
complexes to form amidyl radicals.***

The main advantage of installing suitable redox auxiliaries is
the possibility of generating unbiased radicals, not bearing any
stabilizing/activating functionality. Often, the redox auxiliary is
easily installed on readily available substrates. Chen’s group
implemented a protocol for generating alkyl radicals from
alcohol precursors, simply by adorning the native hydroxyl
moiety of the substrate with a N-phthalimide fragment (Figure

49a : . :
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auxiliaries for the activation of primary amines and the generation of

alkyl radicals.
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phthalimide 39 was electron-poor, which elicited a productive
n—7x interaction with the electron-rich Hantzsch ester 40,
leading to the EDA complex EDA-16. Light-mediated SET
generated the phthalimide anion 43, the oxygen-centered
radical XIX, and the radical cation XX. Extrusion of
formaldehyde from XIX formed the alkyl radical XXI, which
added to an external trap, namely allyl phenyl sulfone 41,
through a Giese-type addition to ultimately afford products 42.

In a similar approach developed by Varinder Agsgarwal,50 the
electron-accepting properties of pyridinium salts,”' which can
be easily prepared from amines, served as redox auxiliaries for
EDA complex formation. Pyridinium derivatives 44 formed
EDA-17 with Hantzsch ester 40 to generate alkyl radicals and
promote a Giese addition to electron-poor olefins 45 (Figure
9b). The versatility of this radical generation method has been
used to design other photochemical processes, including
hydrodeamination, alkynylation, alkenylation, allylation, thio-
etherification,”® and thioesterification®® reactions. Glorius
found that indoles can also aggregate with pyridinium
derivatives to form EDA complexes, whose photoactivity can
trigger C2-functionalization of indoles.”

As highlighted by the previous examples (Figure 9), redox
auxiliaries modulate the redox properties of a substrate and,
upon aggregation with a sacrificial donor (the Hantzsch ester
40), enable the photochemical generation of electronically
unbiased radicals. The use of external radical traps allows for a
wide diversification of products. But the redox-auxiliary-based
strategy is also useful for implementing coupling processes,
where both partners of the EDA complex provide fragments to
the final products of the photochemical process (Figure 10a).
In this context, Aggarwal54 demonstrated that redox-active N-
(acyloxy)phthalimides 47a,>** Katritizky N-alkylpyridinium
salts 47b,54b’cI and thionocarbonates 47¢°* can act as both
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suitable acceptors and radical precursors for photochemical
borylation processes (Figure 10b). These protocols convert
readily available carboxylic acid, amine, and alcohol derivatives
into valuable boronic esters. Crucial for reactivity was the in
situ formation of an aggregate between bis(catecholato)-
diboron 48 and the amide-based solvent (N,N-dimethylaceta-
mide, DMA), which can act as an effective donor for EDA
complex formation with N-(acyloxy)phthalimides 47a and N-
alkylpyridinium salts 47b. The photoactivity of the resulting
colored complexes (EDA-18a and EDA-18b) triggered the
radical borylation process. Conversely, for thionocarbonates
47¢, additional triethylamine was required to increase the
electron-donating character of 48, leading to the complex
EDA-18c. In all these examples, the formation of visible-light-
absorbing EDA-18 was ascertained by UV—vis absorption
studies, showing the appearance of the charge-transfer band.
Visible-light excitation of EDA-18 triggers an intracomplex
SET-forming radical cation XXII, along with the open-shell
intermediate XXI, formed upon extrusion of the redox
auxiliary. XXI is trapped by a second 48-DMA aggregate to
furnish the desired boronic ester product 49 after ligand
exchange. The trapping event delivers a strongly reducing
boron-centered radical XXIII, which is responsible for
propagating a radical chain pattern by SET reduction of
substrate 47. The high quantum yield measured for the
borylation process with 47b (@ = 7) is congruent with this
mechanistic scenario. The mild reaction conditions of the
protocol provided for the efficient borylation of primary,
secondary, and specific tertiary radical precursors, with high
functional group tolerance.

The EDA complex activation strategy is generally charac-
terized by mild operational conditions and a high functional
group tolerance, which makes it potentially suitable for the
functionalization of biologically relevant macromolecules. A
first demonstration of this potential comes from the Ragains
laboratory, which developed a photochemical O-glycosylation
of thioglycosides 51 (Figure 11).>
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Figure 11. Visible-light promoted O-glycosylation reported by
Ragains and co-workers.*> OTf: triflate; PMP: p-methoxyphenyl.

Here, to foster the formation of a charge-transfer interaction
with Umemoto’s reagent 50,>° thioglycoside 51 is adorned
with an electron-rich p-methoxy styrene moiety. This leads to a
m—n stacking interaction between the styrene and the S-
trifluoromethyldibenzothiophenium cation to form EDA-19, as
indicated by spectroscopic and computational studies. This
aggregate can absorb light in the visible region, promoting the
formation of the distonic radical cation XXIV and the
trifluoromethyl radical XXV, upon fragmentation of the
dibenzothiophene 53, which acted as a redox auxiliary and a
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leaving group. Intramolecular attack of the nucleophilic sulfur
followed by intermolecular trap of the trifluoromethyl radical
XXV generates the sulfonium intermediate $4. The presence of
an external oxygen-centered nucleophile (an alcohol) displaced
the sulfur-based leaving group, furnishing the O-glycosylated
product 52.

B PHOTOACTIVITY OF CATALYTIC EDA COMPLEXES

The efficiency and scope of the photochemical processes was
considerably improved by adorning substrates with well-
tailored activating groups that could elicit EDA interactions
and facilitate both redox processes and radical formation. But
this approach still required the use of stoichiometric substrates
that can form an EDA complex. An important advance was to
implement the EDA complex activation strategy within a
catalytic regime. This requires a catalyst to activate one of the
substrates, which is weakly polarized in its native form. The
ensuing generation of a transient catalytic intermediate,
characterized by a greatly enhanced polarization, could then
trigger the formation of a photoactive EDA aggregate (Figure
12a). This approach provided opportunities to expand the
efficiency of the EDA complex photochemistry, while
implementing asymmetric radical processes when using a
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Organocatalysis and Asymmetric Photochemical
Processes. Organocatalysis proved effective for developing
catalytic asymmetric reactions driven by the photoactivity of
EDA complexes.”> The organocatalytic mechanisms of
substrate activation and induction, which had been so
successful in promoting ionic processes in the thermal regime
with high enantioselectivity, could also be used for the
photoactivation of substrates and to control the stereochemical
outcome of the ensuing radical process (Figure 12a). As an
early example, our laboratory (Figure 3b) used transiently
generated catalytic enamines as donors for EDA complex
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formation.”® Here, the key reactivity aspect is that the chiral
organocatalyst can activate weakly polarized substrates (such as
aldehydes or ketones”) that would normally not be suitable
donors to elicit a charge-transfer interaction with an acceptor.
This is because the enamine, resulting from amine catalyst
condensation with the carbonyl substrate, has a greatly
enhanced donor ability, which makes it prone to EDA complex
formation. Irradiation with visible light started a radical chain
manifold, where the ground-state chiral enamine could
stereoselectively intercept the photochemically generated
open-shell intermediate.

This strategy was expanded to include other chiral
organocatalytic intermediates and thus to develop enantiose-
lective processes that are not achievable with the ground-state
chemistry of organocatalysis. For example, the electronic
similarities with enamines suggested the use of chiral enolates
of type XXVI, generated in situ under phase transfer (PTC)
conditions®® by deprotonation of cyclic p-ketoesters $$
(Figure 12b).°” Perfluoroalkyl iodides 32 were selected as
electron-accepting substrates. The chiral enolate XXVI was
sufficiently electron-rich to interact with the o* of RpI and
promote the formation of a colored EDA complex (EDA-20).
Visible-light irradiation induced an SET which triggered the
formation of the perfluoroalkyl radical (Rgr) XIV via the
reductive cleavage of the C—I bond. Since Rg* is an
electrophilic radical, it was intercepted by the ground-state
chiral enolate XXVI to furnish the enantioenriched ketoester
products 57 bearing a perfluoroalkyl- or a trifluoromethyl-
containing quaternary stereocenter. >

Ryan Gilmour developed a complementary strategy (Figure
13),°° exploiting the electron-poor character of another
classical organocatalytic intermediate: the iminium ion.%!
This strongly electrophilic intermediate XXVII is generated
from weakly polarized a,f-unsaturated aldehydes 58 upon
activation by a chiral amine catalyst. The ground-state
reactivity of chiral iminium ions has found wide application
in the stereoselective p-functionalization of enals with
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nucleophilic compounds.®> Here, the electronic nature of the
transient catalytic iminium ion was used to trigger the
formation of a photoactive EDA complex with a donor
substrate (Figure 13b). The use of a-keto acids 22 as donor
substrates was crucial for reaction development: (i) acting as
acids, they facilitated the condensation of the aminocatalysts
59 with enals 58, leading to the iminium ions XXVII; (ii)
along with electrostatic interactions, their electron-rich nature
secured the formation of the EDA complex with the electron-
poor organocatalytic intermediate (EDA-21); and (iii) they
acted as latent acyl radicals. Indeed, the excitation of the EDA
complex with UV light at 402 nm triggered an SET event,
which induced rapid decarboxylation prior to radical—radical
combination between the 5-7 f-enaminyl intermediate XXVIII
and the acyl radical XXIX. The overall process provided access
to 1,4-dicarbonyl compounds 60 by means of an acyl radical
conjugate addition, namely a formal radical Stetter reaction
(Figure 13b).° Quantum yield determination (® = 0.01) and
computational analysis suggested that a closed radical catalytic
cycle was operative. Although an asymmetric variant of this
process could not be implemented, these studies established
the possibility of electron-poor iminium ions serving as
acceptors in the formation of intermolecular EDA complexes.
Another peculiarity of this process was that, in contrast to
many of the previous examples, a chain propagation
mechanism was not operative. This implied that the photo-
activity of the EDA complex was not limited to promoting an
initiation step, but rather was iteratively driving every catalytic
cycle.

As the examples in this Perspective show, the synthetic
methods triggered by the photoactivity of EDA complexes
generally rely on the excitation of intermolecular aggregates
formed upon association of two substrates/intermediates. Our
laboratory recently demonstrated that photon-absorbing intra-
molecular EDA complexes can also promote synthetically useful
processes (Figure 14).° Similarly to the chemistry discussed
above (cf. Figure 13b), this approach uses the electron-poor
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character of catalytically generated iminium ions. Here,
however, we used a chiral amine catalyst adorned with an
electron-rich carbazole moiety®* (amine 63 in Figure 14b).
Upon condensation with cyclic enone 61, this catalyst
generated chiral iminium ions that showed a broad absorption
band in the visible region. This optical property arises from an
intramolecular charge transfer m—n interaction between the
electron-rich carbazole fragment and the electron-deficient
iminium double bond: for example, aliphatic iminium ions
typically can only absorb in the UV region (below 400 nm).
The formation of the intramolecular EDA complex EDA-22
was confirmed by X-ray crystallographic analysis, which
showed how the interatomic separation between the carbazole
nitrogen and the sp* a-carbon of the iminium ion (3.10 A) was
significantly shorter than the van der Waals distance. Excitation
of the intramolecular EDA-22 at 420 nm triggered an SET
event from the carbazole to the iminium ion, furnishing the
chiral radical intermediate XXX. The long-lived carbazole
radical cation in XXX then acted as an effective oxidant to
generate a radical from an easily oxidizable electron-rich alkyl
silane 62. The resulting radical was then stereoselectively
intercepted by the ground-state electron-poor iminium ion.
The overall process, which proceeded by virtue of a radical
chain propagation manifold, enabled radical conjugate
additions to fB-substituted cyclic enones to form synthetically
valuable quaternary carbon stereocenters” with high stereo-
control using visible lioght irradiation. Besides the synthetic
implications, this study®® demonstrates that the photoactivity
of visible-light-absorbing intramolecular EDA coméalexes can be
used to generate radicals under mild conditions.*®

Toward a General Catalytic Radical Generation
Strategy. The catalytic strategies discussed so far are all
based on the exploitation of organocatalytic intermediates that
are directly involved in the photochemical radical formation
and the trapping of the ensuing open-shell intermediates.
Eventually, a portion of the structure of the catalytic
intermediate is embedded in the core of the final products.
These systems therefore require judiciously chosen catalysts
and reagents, which lowers the substrate generality and the
scope of the reactions. A more flexible and effective catalytic
system for EDA complex photochemistry would require these
processes, namely the photochemical generation of radicals
and the trapping event, to be decoupled. This would require
the use of a catalyst to exclusively generate radicals. In the
general strategy depicted in Figure 15a, an electron-rich
catalyst would trigger EDA complex formation upon
aggregation with an electron-poor substrate. Photoinduced
SET would then lead to radicals, which could be intercepted by
an external trap to form a product. The essential step would be
an effective catalyst turnover through SET reduction of the
catalyst radical cation, arising from the photoactivity of the
progenitor EDA complex.

Recent studies have demonstrated the feasibility of this
catalytic approach. Shang and Fu reported a combination of
easily available and inexpensive catalysts, namely triphenyl-
phosphine (PhyP) and sodium iodide (Nal), which, despite
not absorbing in the visible spectrum individually, can promote
synthetically useful reactions under blue light irradiation
(Figure 15b).% Specifically, these catalysts could mediate the
formation of radicals from redox-active esters 47a since they
could trigger the formation of a photoactive three-component
EDA complex (EDA-23 in Figure 15b). A light-induced
intracomplex SET from iodide to the substrate phthalimide
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moiety in 47a produced the catalyst radical cation XXXI and,
upon CO, extrusion, the open-shell intermediate XXI. Radicals
XXIT are then intercepted by acid-activated heteroarenes 65 in a
Minisci manifold. The crucial step of this mechanism is the
catalyst turnover: the radical cation XXXII, generated upon
C—C bond formation, is reduced by the Ph;P—I* intermediate
XXXI, which was proposed to be a persistent radical.”® This
SET event delivers the alkylated heteroaromatic product 66
while turning over the Ph;P/Nal catalytic system. Quantum
yield determination (@ = 0.15) is consonant with a closed
radical catalytic cycle being operational. The triphenylphos-
phine plays a key role in this catalytic machinery. It is crucial
for facilitating, upon association with iodine, the intermolecular
EDA complex formation (EDA-23) and stabilizing the iodine
radical as a PhyP—I* intermediate. The supposed persistency of
the latter radical intermediate secured an effective catalyst
turnover through SET reduction. The same Nal/PPh; catalytic
system was then used to promote the formation of radicals via
photoinduced SET reduction of other radical precursors,
including hypervalent iodine reagent 67 and pyridinium salts
44. The ensuing photochemically generated radicals were later
intercepted by suitable electron-rich radical traps. However,
since the quantum yield of these processes was not measured, a
radical chain manifold (which would not require an effective
catalyst turnover) could not be excluded.

Bosque and Bach expanded the concept of using a catalytic
electron donor species to trigger visible-light-mediated radical
reactions via EDA complex formation. They demonstrated that
3-acetoxyquinuclidine (q-OAc, 69) could be used in a catalytic
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fashion (Figure 16).°” Combination with electron-poor
tetrachlorophthalimide ester 68 affords the colored complex

Bosque and Bach 2019
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Figure 16. Use of 3-acetoxyquinuclidine as an external electron-donor
catalyst for visible-light-mediated radical processes via EDA complex
formation; q-OAC: 3-acetoxyquinuclidine; BOC: tert-butyloxycarbon-

yl

EDA-24. Blue-light irradiation triggers an intracomplex SET
from the catalyst (q-OAc) to the tetrachlorophthalimide
moiety, leading to decarboxylation and formation of the a-
amino radical XXXIII. The latter intermediate is then oxidized
by the catalyst radical cation (q-OAc*®, XXXIV): this step
turns the catalyst over and affords iminium ion XXXV, which is
trapped by the previously liberated tetrachlorophthalimide
anion 43, delivering the final product 70. The low value of the
quantum yield (@ = 0.02) is consonant with a closed catalytic
cycle with no radical propagation chain being operative.
Overall, q-OAc 69 triggers a redox-neutral pathway, since it
acts first as a donor for an intracomplex SET within the EDA
complex, and then can get back the electron from intermediate
XXXIII The crucial aspect for catalysis here relies on the rigid,
geometrically constrained structure of the catalyst’s quinucli-
dine core, which prevents a p0551b1e degradation path
proceeding through a-deprotonation’” of the radical cation
q-OAc™, XXXIV.

Sami Lakhdar has recently reported a different, interesting
catalytic approach for EDA complex photochemistry.”' In
contrast to the examples in Figures 15 and 16, here the catalyst
does not directly activate substrates toward radical formation
(Figure 17a). Instead, the donor catalyst forms an EDA
complex with an electron-poor additive. The resulting
photoactivity affords an open-shell intermediate (A- in Figure
17a) that is eventually responsible to generate radicals (R:),
which participate in the process leading to the final products.
This means that neither partners of the photoactive EDA
complex (the catalyst and the additive) end up in the product’s
structure. This catalytic strategy was used to photochemically
generate hydrogen atom transfer (HAT) agents, which could
then promote radical cascade reactions upon activation of
diphenylphosphine oxide 72 (Figure 17b).”" Specifically, the
ground-state association between eosin Y (73), present in
catalytic amounts, and pyridinium salts 74, used as additives,
formed EDA-25.” The formation of this photoactive aggregate
was confirmed by both UV—vis and X-ray spectroscopic
analyses. Upon irradiation of EDA-25, photoinduced SET
afforded the oxidized form of 73 (73**) along with ethoxy
radical XXXVI, generated upon reductive fragmentation of the
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pyridinium salts 74. The ethoxy radical XXXVI, due to its
propensity for hydrogen abstraction, became the real promoter
for radical formation. Acting as a HAT agent, it activated
diphenylphosphine oxide 72 to form the phosphorus-centered
radical XXXVIIL. This intermediate then started a radical

cascade sequence: addition to acetylene 71 generated the
C(sp?)-centered radical XXXVIII, which triggered a cyclization
leading to cyclohexadienyl intermediate XXXIX. The latter
intermediate transferred an electron to the oxidized catalyst
73** to deliver, after deprotonation, product 75 while closing
the catalytic cycle. The low quantum yield value (® = 0.19)
was consonant with this photochemical mechanism.

The reported catalytic systems have shown potential for
expanding the synthetic applicability of EDA complex
photochemistry. Further applications are expected, for
example, driven by the identification of more effective and
general catalyst turnover events or by the use of catalytic
electron acceptors.

EDA Complex Photochemistry and Asymmetric
Enzymatic Catalysis. The utility of the EDA complex
photochemistry in stereoselective catalytic radical processes
can be expanded to include biocatalysis.”> Recent advances
highlighted the ability of some enzymes, dependent on
photoactive cofactors,”* to alter their native reactivity upon
light excitation and catalyze completely different processes
than those for which they evolved. This strategy holds great
potential, given that charge-transfer interactions between
substrates can be facilitated by the spatial proximity secured
by the enzyme active sites. In addition, the functions of a
natural enzyme can be opportunely enhanced and tuned by
directed evolution.”> As a general approach (Figure 18a),
specific electron-rich cofactors can serve as donors in EDA
complex formation with electron-poor substrates, which are
brought in close proximity upon selective binding within the
enzyme active site (symbolized as a light blue oval). The SET
event triggered by the direct excitation of the EDA complex
delivers an open-shell radical intermediate (R- in green circle),
which is still bound to the active site. The chiral environment
provided by the enzyme then secures a high stereocontrol over
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the ensuing radical process. Substrate exchange and regener-
ation of the cofactor (from deactivated gray to active purple
circle) re-establish the catalytic activity of the enzyme.

This strategy was successfully applied by Todd Hyster, who
demonstrated that the natural reactivity of nicotinamide-
dependent ketoreductases (KREDs) can be altered upon light
excitation of the photoresponsive NADH/NADPH cofactor,
which is bound into the enzyme active site (Figure 18b).”® The
native reactivity of these enzymes, which is based on classical
polar mechanisms, enables the stereoselective reduction of
ketone substrates.”” The ground-state carbonyl reductase
activity depends on the enzymes’ ability to bring the carbonyl
compound and the cofactor in close proximity through
noncovalent weak interactions. The NADH cofactor can
then stereoselectively deliver a hydride (H™). However, the
close proximity within the active site was also found to elicit
the formation of a photoactive EDA complex between the
NADP(H) cofactor 79 and electron-poor a-bromolactones 76
(EDA-26). These substrates can bind in the active site of
KREDs but are not primed to carbonyl reduction. Photo-
induced SET under blue light illumination triggers the
mesolytic cleavage of the C—Br bond, leading to the prochiral
a-carboxyl radical XLI. The tendency of the cofactor radical
cation XL, emerging from the SET, to act as a good hydrogen
atom (H-) donor for XLI drives the formation of the reduced
chiral product 78. Mechanistic insights indicated that the last
HAT step, which happens in the chiral environment provided
by the enzyme, is the enantio-determining event, since the
binding of the racemic bromolactones 76 from the KRED
enzyme is unselective. The turnover of the cofactor is obtained
by reduction of the deactivated NADP" intermediate 77 by
either i-PrOH, taking advantage of the native dehydrogenase
activity of the enzyme, or a glucose dehydrogenase (GDH-
10S) coenzyme. The net reaction of this photochemical
process is the enantioselective dehalogenation of racemic a-
bromo lactones 76.

Building upon these findings, the Hyster laboratory
expanded this photobiocatalytic strategy to the use of
flavoenzymes (flavin-dependent “ene”-reductases). The strat-
egy was used to implement the synthetically elusive stereo-
selective radical hydroalkylation of alkenes (Figure 18c).”®
Here, the flavin hydroquinone cofactor 82 and the alkene-
tethered a-chloroamide 80 are responsible for the formation of
the EDA complex within the active site of the ene-reductase
enzyme (EDA-27). Excitation by cyan LEDs (497 nm) triggers
both the SET and chloride fragmentation events, which
generate the radical intermediates XLII and XLIII. Radical
cyclization from XLII and an ensuing HAT from XLI forge
two novel bonds within the chiral lactam product 81 in a
stereodefined fashion. Remarkably, the highly structured chiral
environment of the flavoenzyme’s active site enables exquisite
control of absolute and relative stereoselectivity of the process.
These methods illustrate how using light to develop enzymes
with new catalytic functions holds great potential for the design
of stereoselective radical-mediated biocatalytic reactions.

B CONCLUSIONS AND FUTURE OUTLOOK

Opver the past few years, the photochemistry of EDA complexes
has provided fresh opportunities in synthetic radical chemistry.
We have outlined here the evolution of this strategy from the
simple coupling of specialized, electronically biased substrates
to the development of more general platforms providing
products with a wider structural diversity. More sophisticated
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variants have shown the potential of this chemistry in
asymmetric catalytic strategies, including within biological
systems. Overall, the resulting methods provide new synthetic
frameworks to successfully tackle some major challenges in
radical reactivity, which traditional methodologies have not
been able to address. But major developments are probably still
to come.

Novel synthetic developments are expected to arise from the
identification of other substrates that can engage in the
formation of productive EDA complexes. In particular, the
installation of redox auxiliaries within substrates has greatly
expanded the potential of this strategy. However, the structural
diversity of the auxiliaries is still very limited, thus offering the
possibility for further developments. For example, the redox
auxiliaries identified to date all have electron-accepting
properties. A future goal for the continued expansion of the
field will be to design redox-active scaffolds capable of acting as
donors in charge-transfer interactions, which could open up
complementary reaction manifolds.

The EDA complex activation has been successfully used in
asymmetric processes when coupled with organocatalytic
strategies. This approach has been limited to a few organo-
catalytic mechanisms of induction and substrate activation,
namely aminocatalysis and phase-transfer catalysis. We foresee
that other organocatalytic strategies, including N-heterocyclic
carbene” or hydrogen-bonding catalysis,*’ could be useful to
activate inactive substrates and turn them into potential chiral
donors or acceptors, unlocking novel radical enantioselective
processes. Along the same lines, another force for innovation
may be the use of chiral Lewis acids to foster EDA complex
formation and control the stereochemical outcome of the
ensuing radical process, thus providing new mechanisms for
stereocontrolled bond-formation. Finally, since the EDA
complex activation strategy and the ensuing radical reactivity
proceed under mild conditions while exhibiting high functional
group tolerance, we expect great strides in the development of
novel visible light-driven processes for the late-stage derivatiza-
tion of advanced biologically relevant intermediates and
macromolecules, including proteins (i.e., bioconjugation).®'

Given the many innovative reactivity concepts identified in
the past few years, and their impact on the field of radical
relativity and synthetic photochemistry, EDA complex
activation has a bright future.
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