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ABSTRACT
Metagenomics-based studies have provided insight intomany of the complexmicrobial
communities responsible for maintaining life on this planet. Sequencing efforts often
uncover novel genetic content; this is most evident for phage communities, in which
upwards of 90% of all sequences exhibit no similarity to any sequence in current
data repositories. For the small fraction that can be identified, the top BLAST hit is
generally posited as being representative of a viral taxon present in the sample of origin.
Homology-based classification, however, can be misleading as sequence repositories
capture but a small fraction of phage diversity. Furthermore, lateral gene transfer is
pervasive within phage communities. As such, the presence of a particular gene may
not be indicative of the presence of a particular viral species. Rather, it is just that: an
indication of the presence of a specific gene. To circumvent this limitation, we have
developed a new method for the analysis of viral metagenomic datasets. BLAST hits
are weighted, integrating the sequence identity and length of alignments as well as
a taxonomic signal, such that each gene is evaluated with respect to its information
content. Through this quantifiable metric, predictions of viral community structure
can be made with confidence. As a proof-of-concept, the approach presented here was
implemented and applied to seven freshwater viral metagenomes. While providing a
robust method for evaluating viral metagenomic data, the tool is versatile and can easily
be customized to investigations of any environment or biome.

Subjects Bioinformatics, Computational Biology, Microbiology, Virology
Keywords Virome, Metagenomics, Bacteriophage, Viral community

BACKGROUND
Bacterial viruses (bacteriophages) play a crucial role in shaping microbial populations and
processes on a global scale. They shape community structure via mediation of mortality
and drive diversity as agents of genetic mobility (Wilhelm & Suttle, 1999; Canchaya et al.,
2003; Berdjeb et al., 2011; Clokie et al., 2011; Winget et al., 2011; Willner et al., 2012; Brum
et al., 2016; Manrique et al., 2016), and their impact has been described at higher trophic
levels (Rohwer & Thurber, 2009; Jover et al., 2014). Despite being the most ubiquitous and
abundant biological entity on the planet, only a comparatively small fraction of phage
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genomes has been sequenced (Klumpp, Fouts & Sozhamannan, 2012). Nevertheless, from
this small and imprecise representation of phage diversity we have uncovered a great deal
about their genomes: they span a remarkable degree of genetic diversity and often have
highly mosaic genome architectures (Hatfull, 2008; Hatfull, 2015). The majority of phage
genes, however, are unfamiliar to us, their function unknown (Hatfull, 2008; Sharon et
al., 2011). Nevertheless, as is true of all aspects of microbial diversity in the environment,
the significance of the work performed to date does not negate how much there is left to
discover.

Numerous studies of phage communities spanning a wide variety of environments,
from the human gut (Minot et al., 2013) to terrestrial hot springs (Gudbergsdóttir et al.,
2015), have repeatedly found that we are underestimating the genetic diversity within
phage populations (Dinsdale et al., 2008; Halary et al., 2010; Hurwitz & Sullivan, 2013;
Paez-Espino et al., 2016). Conserved taxonomic ‘‘gene signature’’ sequences (e.g., g20
(Short & Suttle, 2005) and g23 (Filée, Tétart & Krisch, 2005)) are far from comprehensive
(Adriaenssens & Cowan, 2014); and there are likely groups in nature that do not contain
a single signature gene identified within existing clades. Thus, whole genome sequencing
(WGS) is widely considered to be the most representative method for exploring viral
diversity in the environment. Bioinformatic approaches for analyzing viral metagenomes
largelymirror those used for the study of bacterial and archaeal populations: reads or contigs
are compared to known, characterized sequences within public data repositories. While
comparisons can be made to, e.g., all viral genome sequences, another option is direct
comparison to Prokaryotic Virus Orthologous Groups (pVOGs, formerly called Phage
Orthologous Groups, POGs) (Kristensen et al., 2010; Kristensen et al., 2013; Grazziotin,
Koonin & Kristensen, 2017), including 57 taxon-specific ‘‘signature’’ sequences (Kristensen
et al., 2013). This approach has been employed frequently (e.g., Kristensen et al., 2010;
Waller et al., 2014; Jeffries et al., 2015; Laffy et al., 2016) and these taxon-specific signatures
include genes that are not found in genomes of other viral taxa. But the diversity of phages
is severely undersampled, and therefore it is not surprising then that only a small fraction
of sequences from viral metagenomic surveys exhibit any homology to extant databases or
these signature sequences (Hurwitz & Sullivan, 2013; Bruder et al., 2016; Paez-Espino et al.,
2016).

For the few viral species that can be identified, typically via BLAST searches against
complete viral genomes or the aforementioned POG/pVOG sequences, the best hit is often
regarded as being representative of the viral taxon containing the homologous region
(particularly if the hit is to one of the taxon-specific signatures). This approach is employed
by many metagenomics-based studies, analytical tools, and metrics (e.g., Wommack et
al., 2012; Huson & Weber, 2013; Roux et al., 2014; Aziz et al., 2015; Keegan, Glass & Meyer,
2016). Homology-based classifications, however, can be misleading due to two factors.
Firstly, phage genomes available in public repositories: (a) capture but a small fraction
of the viral diversity on Earth, (b) represent phages with hosts amicable to growth under
laboratory conditions, and (c) phage groups have very biased sampling rates (e.g., the
heavily sampled Mycobacteriophage vs. the less-sampled phages of Burkholderia) (Bruder
et al., 2016). Secondly, lateral gene transfer (LGT) is pervasive within phages communities.
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There is an abundance of evidence of LGT between phages with similar host ranges, between
phages within the same environment, and between phages and their hosts (e.g., Mann et
al., 2003; Brussow, Canchaya & Hardt, 2004; Lindell et al., 2005; Lima-Mendez et al., 2008;
Thompson et al., 2011; Gao, Gui & Zhang, 2012).

Here, we introduce a rigorous method for classifying viromes. Genes exhibiting
homology to characterized sequences are weighted based upon their informativity—a
new metric for describing viral community structure. This metric provides a means
for distinguishing (and qualifying this distinction) between the presence/absence of a
particular taxonomical group and genic content. Thus, it is possible to distinguish between
genes indicative of a particular taxa and those that are frequently exchanged within viral
communities. In addition to presenting the method, we have tested its robustness through
the analysis of all individual genera of tailed bacteriophages (order: Caudovirales). As a
proof-of-concept, we examined seven publicly available freshwater DNA metagenomic
datasets.

MATERIALS AND METHODS
Development of the informativity metric
Establishing a taxonomic signal threshold
To ascertain the presence/absence of a specific taxon within a metagenome, we suggest
a threshold to differentiate between informative and uninformative hits. The taxonomic
signal threshold T is determined through a two-step process prior to evaluation of the
metagenomic data. In the first step, each annotated coding region for a given taxon of
interest is compared to all annotated sequences within the genome(s) of a known relative.
Thus, each coding region’s sequence x (x ∈ X, where X is the set of sequences for all coding
regions annotated within the genome of the taxon of interest) is compared to each coding
region’s sequence g (g ∈ G, where G is the set of sequences for all coding regions annotated
within the genome of a known relative). The use of a known relative genome(s) establishes
if and how conserved the coding region is between known, related strains/species. Where
sequence homology is detected, the sequence identity and query coverage of the match is
recorded: S1 and Q1, respectively.

In the second step, each coding region’s sequence is compared again, this time to
the sequences for all annotated coding regions for the group assayed by the metagenome
(e.g., all phages, viruses, bacteria, archaea, etc.), however, those belonging to the taxonomic
group containing the taxon of interest and the known relative considered in step one are
omitted. Many hits may be recorded for a particular gene x. Thus the best hit, the highest
scoring hit both with respect to the sequence identity and the query coverage of the match,
is selected; S2 and Q2 denote this best match’s sequence identity and query coverage,
respectively. A taxonomic signal threshold T is defined as T = {S1−S2,Q1−Q2} where
the subscripts 1 and 2 represent the sequence identity and query coverage of the match
detected from steps one and two, respectively. Figure 1 illustrates the two-step process and
the T values produced.

It is important to note that the taxonomic group used for comparison is user defined.
For instance, in order to ascertain if a gene can be used to distinguish between the
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Figure 1 Two-step process for determining the taxonomic signal threshold T and the information
which can be gained regarding the presence/absence of a taxon’s phylogenetic group. S1 and S2 repre-
sent the sequence identity of homologies identified in step 1 and 2, respectively. Likewise, Q1 and Q2 refer
to the query coverage of the match detected in step 1 and 2, respectively.

presence/absence of a particular species, one may consider the taxonomic group to be
inclusive only of strains of the species. Therefore, in this case, the most distant relative
belonging to the taxonomic group in step one would be the closest related species. If a
more distant relative, say the most distantly related species of the same genus, were to be
investigated, then the taxonomic signal threshold T would serve as a means to distinguish
between the presence/absence of a subset of the species (inclusive of the taxon of interest)
within the genus. This flexibility enables the researcher to define and control the granularity
of his/her analyses. If a particular taxa of interest lacks available genomes capturing the
phylogenetic diversity of the species (or genus or subfamily, etc.), a more distant relative
can be selected. In addition to the intended purpose of establishing the taxonomic signal
threshold, the two-step process can provide insight into putative horizontally acquired
elements and gene loss events, e.g., instances in which the gene did not include a homolog
in the most distant relative but did exhibit sequence similarity to a gene within the genome
of another taxonomic group.

Using informativity to ascertain confidence in taxonomical calls
As indicated in Fig. 1, when T is greater than zero (outcomes C and D1), the presence of a
specific gene can provide insight. Operational Taxonomic Unit (OTU) calls are informed
by this threshold to decipher BLAST analyses of metagenomic datasets as some hits may be
to genes which are conserved and thus poor indicators if a species/taxa is present or absent.
For a given hit within a metagenomic dataset, the sequence identity and query coverage, SH
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and QH respectively, is assessed relative to the taxonomic signal threshold T for the gene
producing the match. Genes in which T <0 have already been classified as uninformative
(Fig. 1). Hits which fall below the gene’s threshold, {SH , QH } < T, are also classified as
uninformative, while hits which are above the threshold are considered informative. The
informativity I of each hit is quantified based upon deviation from this threshold T such
that I = {SH , QH }-T. I can range from 0 (equivalent to the threshold T ) to 100 (T =
{0,0}, SH = QH = 100%). Thus, genes with a high value of I are strong indicators of the
presence of the gene from the taxon of interest (or a closely related strain/species) within a
metagenomic dataset.

Taking into consideration the number of informative genes detected within a
metagenomic sample and their individual I values, one can then quantify with confidence
the likelihood of the presence/absence of the taxon of interest. For example, consider the
case in which a novel species, n, within a genus is represented within a metagenome. It
shares homology with other genomes for the genus. For the sake of simplicity assume there
are two other genomes for the genus: a and b. The novel species n’s genome contains a
subset of genes that are more similar to informative genes in a’s genomes and some genes
that are more similar to informative genes in b’s genome. One can use the informativity
values calculated for the genes of n to provide a confidence value in calling the contig
a representative of a and/or b. Furthermore, rather than simply assign the contig as a
representative of a or b or simply a member of a particular genus based upon a single
signature gene, the informativity metric can provide insight into the evolutionary history
of this novel species and the taxa.

Implementation
The method for assessing the informativity of viromic hits was implemented using a series
of BLAST databases and BLAST searches. A collection of all coding regions (nucleotide
sequences) for the taxon of interest (X) and all genes (amino acid sequences) annotated
within the genome of the selected relative (G) are supplied by the user. A local BLAST
database is created forG, and the genes belonging toX are queried against the local database
via blastx. The sequence identity and query coverage of the match detected for the best
hit for each gene is then parsed from the BLAST results quantifying each gene’s S1 and Q1

values. Next, a BLAST database is created for the annotated coding regions (amino acid
sequences) provided for step 2 of this method (set Z ), again supplied by the user. Each of
the genes for the taxon of interest X is queried against this second local database via blastx;
the results are again parsed for each gene’s S2 and Q2 values so that the taxonomic signal
threshold T can be calculated.

A metagenomic dataset can next be evaluated, comparing each read or contig against
a collection of annotated gene sequences. To accommodate the variation between
characterized sequences in databases and environmental samples, contigs are translated—
generating all six open reading frames—and a protein database representative of the
metagenomic dataset is produced. Each BLAST hit is next assessed with respect to its
scores {SH , QH } relative to that of the gene’s threshold T. For each gene in the genome
of interest X, the values for S1, Q1, S2, Q2, SH , and QH are written to file. The user can
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then evaluate the likelihood of a particular taxon’s or taxonomic group’s presence within
the metagenomic sample based upon the I values for informative genes. Note that for the
analyses presented here we have weighted S andQ values equally in the calculation of T ; the
two values are, however, reported separately such that users can select their own weighting
of the contributions of sequence identity and query coverage.

The described process has been automated via functionality developed in C++ (available
for both Windows and Unix OS). Users must supply or specify the FASTA format files
for the taxon of interest (X), the known relative (G), and the group assayed (less the
taxonomic group of interest) (Z ). If metagenomic comparisons are to be conducted, as
this is optional in the current implementation, the user must also supply the metagenomic
dataset. The code has been designed for both ease of use, speed, and flexibility, such that
analyses can be tailored to the environmental niche and/or hypothesis under investigation.
Most importantly, this is a light-weight solution which can be integrated into the standard
method of viral metagenomic analyses. Source code, documentation, and sample data are
publicly available at https://github.com/putonti/informativity.

Datasets examined
Viral gene and genome datasets
Sequence data were retrieved from NCBI GenBank (NCBI Resource Coordinators, 2017)
(collected August 2016). Datasets for 70 taxonomical groups within Caudovirales were
retrieved (Table S1); searches were conducted in NCBI for protein sequences through
an advanced search query: PHG[Division] AND txidXXXXX[Organism] (where the X’s
refer to the NCBI Taxonomy Browser’s Taxonomy ID number). Note, this only collects
phages that have been annotated to the taxon (i.e., their genome has been annotated
with the Taxonomy ID). From these queries, 70 sets of genome sequences were retrieved.
Sixty-four individual genera were selected. The other six sets consist of sequences for
species belonging to the same subfamily. Caudovirales taxa were selected as they are the
largest and best characterized phage genomes currently available (Salmond & Fineran,
2015). In addition, phages classified within other orders were retrieved with the following
query: (PHG[Division] NOT txid28883[Organism]); Taxonomy ID 28883 is the unique
identifier for Caudovirales. The results of this query include all phages belonging to other
orders (1,003 phage strains in total). For each Caudovirales taxonomical group, the type
species’ genome was retrieved, again from NCBI. The type species was determined by
referring to the 2015 release by the International Committee on Taxonomy of Viruses
(ICTV) (http://www.ictvonline.org). The type species for each Caudovirales taxonomical
group is listed in Table S1 .

In our proof-of-concept analyses of the Pbunavirus Pseudomonas phage PB1, we verified
the taxonomic classification of Pbunaviruses. Genomes exhibiting significant homology
(>50% of coding regions) to PB1 that were not assigned to the Pbunavirus Taxonomy ID
were further investigated. The complete sequence of the genome in question was aligned
via the blastn algorithm through the NCBI BLAST site. Alignments with a query coverage
and percent identity greater than 50% were identified and the literature was referenced to
correctly assign the taxonomic classification. Additional Pbunavirus strains were identified
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from the ‘‘unclassified Myoviridae’’ following this above method. These genomes were
thus reannotated for our subsequent analysis of viral metagenomic datasets as Pbunavirus.
(See Table S2 for a list of the genomes classified here as Pbunaviruses.) Pbunaviruses were
selected for this proof-of-concept work given our prior isolation and identification of
Pseudomonas phage PB1 in the freshwaters of Lake Michigan (Malki et al., 2015).

Viral metagenomic analyses
SRA records were collected from the NCBI SRA database (http://www.ncbi.nlm.nih.gov/
sra). Table S3 lists all of the datasets included in the proof-of-concept study. Each SRA
record (line listed in the Table S3) was considered as an individual sample with two
exceptions. Two samples are aggregates of more than one SRA record, both belonging
to Virome IV, as they were combined in the downloadable file from the SRA database.
Our dataset includes 56 individual samples. These samples were chosen as they target
DNA viruses in similar environments (freshwater). Furthermore, they are rather well
documented in the literature. Each individual sample was next assembled using Velvet
(Zerbino & Birney, 2008) with a hash size of 31; default values were used for all other
parameters. Each sample was thus uniformly prepared for analysis.

The amino acid and nucleotide sequences for Pseudomonas phage PB1 (type strain for
the Pbunavirus genus; Accession Number: NC_011810) and Burkholderia phage BcepF1
(Accession Number: NC_009015) were downloaded from NCBI for comparison with
the virome datasets. All phage nucleotide sequences (omitting those belonging to the
Pbunavirus) were also retrieved via the advanced search query: PHG[Division] NOT
txid1198980[Organism] (where the Taxonomy ID listed is that for Pbunavirus). In total
over 500000 individual records were retrieved, including partial and complete sequences.
The informativity values are visualized in later figures as heatmaps that were produced in
Excel.

RESULTS AND DISCUSSION
Identifying informative genes
The new metric described here, Informativity or I, provides a quantifiable means of
identifying if a particular taxonomical group is present/absent within a sequenced
community. Developed specifically for the detection of viral sequences in complex
community metagenomic data sets, I captures the likelihood of a sequence belonging
to taxa. Described in greater detail within the Methods, Fig. 2 provides an overview of how
informative genes are identified. Users must supply the query sequence(s) (likely a contig
or set of contigs from a sequenced community), at least two representative sequences for a
taxon of interest, and lastly a set of sequences representative of ‘non-relatives’ (sequences
belonging to other taxa of, e.g., viruses). The taxon of interest can be, e.g., a species, a
genus, or a subfamily.

Informative genes for Caudovirales taxa
All protein coding sequences were collected for species belonging to 70 tailed-virus
(Caudovirales) taxa identified by NCBI Taxonomy (see Methods). Using the ICTV type
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Figure 2 Process for calculating informativity. In Stage 1, users supply their assembled contigs which
are processed, predicting ORFs. Users must supply at minimum two sequences for the taxon of interest
(preferably spanning the diversity of sequences within the taxon) and sequences of ’non-relatives’ for the
calculation of the phylogenetic signal threshold T in Stage 2. Each gene’s informativity is calculated in
Stage 3.

species as a representative of the taxa, each gene sequence (x) of the type species’ genome
(X) was compared to all other gene sequences for species of the same taxa. For each gene,
the sequence identity S1 and query coverage of the match Q1 for the most dissimilar
homologous gene sequence within the taxa is calculated. This captures the sequence
variation for the gene within the species of the taxon. Thus, the S1 and Q1 scores for one
gene x i may be from homology detected in one species of the taxa, while the scores for
another gene x j may be to a homolog in another species’ genome. If the gene is unique to
the type species’ genome, then S1 = Q1= 0. The sequence identity, S2, and query coverage,
Q2, scores were next calculated for each gene in the type species’ genome; each gene was
compared to: (1) genes belonging to species classified within other genera within the order
Caudovirales and (2) genes belonging to species of other taxonomic orders. In contrast to
the S1 and Q1 scores, the S2 and Q2 scores are for the best hit or the most similar homolog
found. Using these two values, the taxonomic signal threshold T can be calculated (see
‘Methods’). This threshold value signifies how reliable the particular gene is as an indicator
of the presence/absence of the species. Genes which are found in multiple species and taxa
would thus have a low threshold value T and perform poorly as an indicator of the taxon.

Figure 3 illustrates the thresholds for Myoviridae and Podoviridae type species;
Siphoviridae is included in Fig. S1. (Type species names and accession numbers as well
as scores are listed in Table S1). In these maps, each gene’s taxonomic signal threshold is
shown; dark gray boxes indicate uninformative genes; these uninformative genes either
exhibit greater homology to species belonging to other phage taxa or lack homology to
other representative genomes of the taxon of interest (i.e., are present only within the
type species’ genome). Also listed for each taxon is the number of genome sequences
included in the comparisons. Those taxonomical groups with more phylogenetic diversity
represented within available genome sequences tend to have less informative genes. This is
quite prominent when evaluating the 10 Podoviridae taxon: the well sampled subfamily of
Autographivirinae species have significantly less informative genes than the undersampled
Podoviridae genera of, e.g., F116virus and Bpp1virus. It is important to note, however, that
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Figure 3 Taxonomic signal threshold value T for each gene within phage type species of taxonomic
groups belonging to the family Podoviridae andMyoviridae. For each taxonomical group belonging to
the viral family (A) Podoviridae and (B)Myoviridae, the number of genome sequences examined (includ-
ing the type strain) is indicated in parentheses.

taking into consideration numerous genome sequences does not necessarily mean that
the phylogenetic diversity of the taxon was examined. In contrast to classifying unknown
sequences by a single marker, the informativity metric provides a multiple gene marker
strategy. Thus, taxonomical ‘calls’ for a sequence can be made with greater confidence by
reporting the aggregate of informative markers found, not just the presence/absence of a
single gene.

Targeting specific phages in environmental samples
The Pseudomonas phage PB1 was selected for examination. Each gene annotated for the
PB1 genome (Accession Number: NC_011810) (Ceyssens et al., 2009) was compared first to
the set of genes for the most distant relative of PB1 within its genus Pbunavirus (previously
called Pbunalikevirus), Burkholderia phage BcepF1 (Accession Number: NC_009015). For
each gene the S1 and Q1 values were computed. Next, all 93 annotated PB1 genes were
compared to all genes from phage species—other than those classified as Pbunaviruses (see
‘Methods’). Homologous sequences were identified, the S2 and Q2 values. The similarity
observed (the S2 andQ2 values) for each of the PB1 genes is shown in the heatmap of Fig. 4.
Several PB1 gene sequences (as indicated by the color scale) exhibited sequence homology
to genes within phage genomes of other taxa. Dark gray blocks in the heatmap signify that
no homologs were detected. The upper chart in Fig. 4 details the percent sequence identity
(bars) and percent query coverage (circles) values observed for the best hits to GenBank
records. PB1 genes with homologies to other phage taxa include conserved genes (e.g., gp47
= tail fiber component and gp50 = DNA ligase), amongst other conserved ‘‘hypothetical
proteins’’.

The methodology developed here was then applied to seven freshwater DNA viromes
(Table 1); a list of the SRA datasets from each study is provided in Table S3. Each of the 56
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Figure 4 Observed similarity of each Pseudomonas phage PB1 gene to phage genes within other (non-
Pbunavirus) taxa. The percent sequence identity (bars) and percent query coverage (circles) values for the
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axis. Genes which do not show homology to non-Pbunaviruses are indicated as dark gray boxes within the
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Table 1 Freshwater DNA viral metagenomic studies retrieved fromNCBI’s SRA database.

Virome Environmental
niche

Number of
samples

Sequencing
technology

Mbp total Reference

I Lake Michigan nearshore 40 Illumina 6,909 Watkins et al. (2015), Sible et al. (2015)
II Lake Bourget 2 454 698 Roux et al. (2012)
III Kent SeaTech tilapia pond 3 454 47 Dinsdale et al. (2008)
IV Lake Limnopolar 2 454 18 López-Bueno et al. (2009)
V Reclaimed water samples 6 454 364 Rosario et al. (2009)
VI Lake Ontario 3 454 223 n/a
VII Feitsui Reservoir 5 454 86 Tseng et al. (2013)

samples examined was first assembled (see ‘Methods’ for details). The PB1 coding regions
were then compared to the 56 collections of contigs. The heatmap shown in Figure 5A
graphically represents these results; each row represents a single sample (Methods). Again,
each gene’s best hit within each virome’s sample was qualified (colored) with respect to its
conservation amongst the Pbunaviruses, the gene’s S1 and Q1 value. Nevertheless, not all
genes provide an equal signal as to the presence or absence of PB1 within the sample: some
serve as better markers. As shown in Fig. 4, there are several ‘‘non-Pbunavirus’’ species
which contain homologs to PB1 genes. Thus, the informativity I of each BLAST hit within
the seven viromes was calculated. In doing so, individual genes that provide a strong signal
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for the Pseudomonas phage PB1 can readily be identified. Figure 5B represents the results of
this computation, in which each hit to a PB1 gene is now assessed in light of the taxonomic
signal threshold T.

In an effort to assess the strength of the metric presented here, we evaluated the raw
BLAST results of the datasets and a BLAST score-based analysis. The BLAST results of
Viromes II, IV, V, and VII are publicly available through the web service MetaVir (Roux
et al., 2014). Nine of the samples from Virome I are also available through MetaVir. It is
important to note that in contrast to the uniform method in which the viral metagenomes
were preprocessed here (see ‘Methods’), the sequences submitted toMetaVir, or comparable
online resources, may be assembled or raw sequences. Furthermore, MetaVir conducts
BLAST comparisons against the RefSeq viral database (O’Leary et al., 2016), whereas here
we have included all partial and complete phage sequences from GenBank. Nevertheless,
hits to the Pbunavirus (Table S2) genomes were identified in all five MetaVir datasets;
the Lake Michigan and Lake Bourget samples (nine samples from Virome I and both
samples from Virome II, respectively) produced the most hits in MetaVir to the Pbunavirus
genomes (hundreds to thousands), many which were the best hits identified. Hits from
MetaVir metagenomic samples, including Viromes I, II, IV, V, VII and additional sampling
sites not included in our proof-of-concept work, to the Pseudomonas phage PB1 genome
are shown in Fig. S2.

Virome I, the Lake Michigan viral metagenomes generated by our group (Watkins et
al., 2015; Sible et al., 2015), includes many informative genes (Fig. 5B) indicative of the
presence of a Pbunavirus similar to PB1. Thus, with confidence, one can predict its presence
within this sample. Viromes II, V, and VII contain far fewer hits to informative genes (one,
two, and one PB1 genes respectively). Furthermore, their informativity scores are low,
{SH , QH } ≈ T. This would suggest that PB1 (or a close relative) is not present within the
sample: rather a homolog of the gene is present, within an uncharacterized species. As viral
sequence databases expand through the isolation and characterization of additional viruses,
the threshold T is likely to change thus providing greater confidence in the evaluation of
BLAST hits for OTU calling.

CONCLUSIONS
The method presented here, for extrapolating the presence/absence of microbial taxa,
is robust and versatile. By scrutinizing a set of informative genes, the effects of lateral
gene transfer and incomplete, sparse databases are reduced. Furthermore, as new genome
sequences are released, the informativity metric can be easily updated. Specifically, the
proof-of-concept investigation of seven freshwater virome datasets can be applied to
identify novel strains and species of phages with confidence and thus easily mine large
datasets for specific taxa of interest. Many of the cellular constituents of the human
microbiome are undergoing examination, and exploration of human viromes is certainly
the next frontier (Abeles & Pride, 2014; Ogilvie & Jones, 2015; Handley, 2016; Manrique
et al., 2016; Zou et al., 2016). These studies have already discovered novel phage species
(Dutilh et al., 2014; Malki et al., 2016) and will undoubtedly continue to increase our
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understanding of phage diversity. Nevertheless, improved bioinformatic tools for mining
sequences representative of complex viral communities, coupled with further physical
isolation and characterization of viral species have the potential to greatly expand our
knowledge of the viral diversity on Earth.
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