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THE BIGGER PICTURE Medical professionals are increasingly looking to AI-based methods to help inter-
pret medical data and provide more accurate or timely diagnoses for patients. Current AI methods, how-
ever, may not always perform consistently for different patient sub-groups or disease sub-types. Under-
lying dataset imbalances and inhomogeneous inter-class similarity often cause these issues.
Underrepresented classes may be less well learned by the AI model, and, in some cases, the presence
of particular classes in a dataset can actually interfere with the AI’s ability to learn other classes. In
this paper, the authors study this issue in detail in the context of diagnosing heart arrhythmias, a common
and sometimes life-threatening cardiac disorder, and show that an AI framework that mimics the
reasoning of experienced cardiologists can better diagnose arrhythmia sub-types that are sensitive to
this kind of interference.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Arrhythmias can pose a significant threat to cardiac health, potentially leading to serious consequences
such as stroke, heart failure, cardiac arrest, shock, and sudden death. In computer-aided electrocardio-
gram interpretation systems, the inclusion of certain classes of arrhythmias, which we term ‘‘aggressive’’
or ‘‘bullying,’’ can lead to the underdiagnosis of other ‘‘vulnerable’’ classes. To address this issue, a
method for arrhythmia diagnosis is proposed in this study. This method combines morphological-char-
acteristic-based waveform clustering with Bayesian theory, drawing inspiration from the diagnostic
reasoning of experienced cardiologists. The proposed method achieved optimal performance in
macro-recall and macro-precision through hyperparameter optimization, including spliced heartbeats
and clusters. In addition, with increasing bullying by aggressive arrhythmias, our model obtained the
highest average recall and the lowest average drop in recall on the nine vulnerable arrhythmias. Further-
more, the maximum cluster characteristics were found to be consistent with established arrhythmia diag-
nostic criteria, lending interpretability to the proposed method.
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INTRODUCTION

Millions of people around the world suffer from cardiac arrhyth-

mias,1 which increase the risk of complications such as stroke or

heart failure and can lead to cardiac arrest, shock, and sudden

death.2 The electrocardiogram (ECG or EKG) is the simplest spe-

cific test for cardiologists to diagnose arrhythmias. Since the

introduction of computer-aided interpretation over 50 years

ago, it has become increasingly important in the clinical ECG

workflow, providing decision support to cardiologists in many

clinical scenarios.3 Over the past decade, deep learning has

been successfully applied inmany fields.4With its powerful infer-

ential capability for complex mappings, deep learning has

become the mainstream method for computer-aided ECG inter-

pretation in arrhythmia diagnosis.5

Abundant deep-learning-based models have been developed

for ECG denoising, feature extraction, optimization, and classifi-

cation. Hannun et al. developed a deep neural network (DNN) to

classify 12 arrhythmias using 91,232 single-lead ECGs from

53,877 patients.6 Yildirim proposed a new model for deep bidi-

rectional long short-term memory (LSTM) network-based

wavelet sequences for classifying ECG signals.7 In addition,

other types of deep learning methods, such as multilayer per-

ceptrons,8 deep belief networks,9 and recurrent neural net-

works,10 have also been employed in computer-aided ECG

interpretation. However, variances exist in the diagnostic accu-

racy of different arrhythmias within computer-aided interpreta-

tion models. To facilitate clarity, we introduce two comparative

concepts: ‘‘aggressive arrhythmias’’ and ‘‘vulnerable arrhyth-

mias.’’ Within a specific system and dataset, aggressive arrhyth-

mias exhibit a relatively high recall rate, whereas vulnerable ar-

rhythmias demonstrate a relatively low recall rate. Regarding

individual samples, patients with vulnerable arrhythmias were

less likely to be correctly diagnosed than patients with aggres-

sive arrhythmias. Moreover, in the context of a particular system,

the recall rate of vulnerable arrhythmias experiences a significant

decline as aggressive arrhythmias are added during training.

This rapid decrease in recall is referred to as the phenomenon

of ‘‘bullying,’’ whereby aggressive arrhythmias exert a suppres-

sive influence on vulnerable arrhythmias.

The imbalanced distribution of data is considered to be a

contributing factor to the prevalence of bullying from aggressive

arrhythmias against vulnerable arrhythmias. In the aforemen-

tioned studies, deep learning models were trained on large and

balanced ECGdatasets, andminority arrhythmiaswere removed

from the training dataset and not covered by the diagnosis field

of the model. However, the idealized data environment is difficult

to construct in real clinical scenarios. The heterogeneity of ECG

data among different sources stifles the possibility of construct-

ing large and balanced datasets through the cooperation of mul-

tiple centers. The ECG data of common arrhythmias can be

easily collected, but rare arrhythmias, such as ventricular

escape, are difficult to gather at single centers. Therefore, in

real clinical scenarios, the available data for the computer-aided

interpretation of ECG are likely to be large but imbalanced. Data

augmentation for rare arrhythmias is a potential method to alle-

viate data imbalance. There are two main kinds of augmentation

for time series data: one is to train a generative model from the

given data11 and the other is to increase the diversity of the
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data by applying augmentation operations to the data.12,13 How-

ever, in the first approach, generative models aim to solve the

issue of limited samples, but paradoxically require a substantial

amount of scarce data to be effectively trained. The second

approach may amplify the noise, alter the timing or duration of

the signal, and the periodicity of ECG is underutilized.14

In deep learning models, the imbalanced distribution of data is

not the only contributing factor in the diagnostic performance of

each arrhythmia.6,14,15 Saxena et al. pointed out that the classi-

fication performance of each class was also influenced by the

similarity between classes.16 The classification performance of

a class is diluted by classes that are highly similar to it, and it is

difficult for deep learning models to discriminate between similar

classes.

Unlike deep learning models, cardiologists learn aggressive

arrhythmias and vulnerable arrhythmias fairly in training. Cardiol-

ogists can learn a new arrhythmia from just one or a handful of

examples.17 Moreover, based on inductive learning, cardiolo-

gists can transfer the learned experience to similar diseases.18,19

Identifying morphological characteristics of ECGwaveforms and

matching findings with previous diagnostic experience are two

main steps for cardiologists to make diagnostic decisions. The

presence or absence of P waves, the length of the PR interval,

etc., are morphological features that cardiologists focus on.20

Compared with less experienced cardiologists, more experi-

enced cardiologists rely on their skills to recognize the visual

signal patterns of different cardiac abnormalities, providing a

more accurate ECG interpretation.21

Inspired by the diagnostic thinking of cardiologists, this study

proposes an arrhythmia diagnosis method that combines

morphological characteristic-based waveform clustering and

Bayesian theory. Unsupervised clustering was utilized to simu-

late cardiologists to identify morphological characteristics of

ECGwaveforms. Waveforms with the samemorphological char-

acteristics were grouped and encoded identically. The diag-

nostic experience of cardiologists was simulated by the prior

probability in Bayesian theory. Furthermore, heartbeat splicing

was used to exhaustively enumerate the possible heartbeat

combinations, which made the Bayesian model more stable.

Our method was validated in the GDPH ECG-Arrhythmia Data-

set, a real-world-collected dataset that covers 17 types of ar-

rhythmias and is extremely imbalanced. We hope that the use

of a cardiologist-like model framework can alleviate the bullying

of vulnerable arrhythmias by aggressive arrhythmias.

RESULTS

Data distribution and inter-similarity
The GDPH ECG-Arrhythmia Dataset22 was collected at the

Guangdong Provincial People’s Hospital, Guangzhou, Guang-

dong, China, from August 2014 to October 2021. The dataset

comprises 48,063 participants (Figure 1). Each participant is

labeled as normal or as having 1 of 17 kinds of arrhythmia

(Table S1) based on the ECG report by a cardiologist and has

been verified by another senior cardiologist. The 17 kinds of

arrhythmia are premature ventricular contraction (PVC), intra-

ventricular block (IV block), ventricular tachycardia (VT), ventric-

ular escape (VE), atrial flutter (AFL), atrial tachycardia (AT), atrial

fibrillation (AF), premature atrial contraction (PAC), premature



Figure 1. Flowchart of study identification

and inclusion and exclusion criteria
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junctional contraction (PJC), junction escape (JE), junction

tachycardia (JT), junction escape rhythm (JER), atrioventricular

block (AV block), sinoatrial block (SA block), sinus tachycardia

(ST), sinus bradycardia (SB), and sinus arrhythmia (SA).

As a real-world dataset, the GDPH ECG-Arrhythmia Dataset is

extremely imbalanced (Figure 2A). ST has the largest sample size

(n = 20,273), and VE has the smallest sample size (n = 10). The

standard deviation of the sample sizes for all arrhythmia cate-

gories is 5,249.63. The mean and median of the sample sizes

are 2,670 and 106, respectively. The imbalance of the dataset

in terms of sample size makes it difficult for the model to learn

all arrhythmia categories equally. The inter-similarity matrix, as

depicted in Figure 2B, is normalized to the range [0, 1] through

unity-based normalization. Each element in the matrix repre-

sents the similarity score between two arrhythmia categories

computed using dynamic time warping (DTW).23 A high value

in the DTW calculation indicates low similarity between the two

series.24 As illustrated in Figure 2B, SB, JER, SA, JE, AV block,

PJC, PVC, AT, and AF are relatively similar, whereas the similar-

ity score between VT and PVC is 1, indicating the lowest similar-

ity between these two arrhythmias.

Hyperparameter optimization
The overall modeling framework is shown in Figure 3. The ECG

signal is subjected to preprocessing techniques aimed at elimi-

nating interferences. Subsequently, the P-QRS-T localization al-

gorithm is implemented to identify the key points. Upon detec-

tion of these key points, the preprocessed ECG signal is

disintegrated into multiple heartbeats, which are then further

segmented into six sections. Each of these segments is encoded

using the cluster number obtained from the segment clustering

algorithm. The heartbeat splicing approach is adopted to in-

crease the sample size. Finally, categorical naive Bayes is

applied as a classifier to diagnose arrhythmias, based on the en-

coded vector.
A grid search was used in our study to

perform hyperparameter optimization (Fig-

ure 4A). Themacro-recall of all 18categories

guided the grid search algorithm. There

were two hyperparameters in the configura-

tion: the number of splicing heartbeats

and the number of clusters. The model with

five heartbeats in splicing and 20 clusters

in segment clustering obtained the best

performance (macro-recall, 71.55% [95%

CI 68.29%–74.61%]; macro-F1 score,

54.97% [95% CI 49.63%–56.39%]; macro-

precision, 52.93% [95% CI 50.11%–

55.73%]). Regardless of the number of

splicing heartbeats, themacro-recall initially

increased with the number of clusters, but

after 15 or 20 clusters, it decreased with

the number of clusters. However, the three

groups with different numbers of splicing
heartbeats had no significant difference in the macro-recall (p =

0.777). The receiver operating characteristic (ROC) curve of the

optimal hyperparameters is shown in Figure 4B.

Performance comparison with alternative models
In this section, our method was compared with K-nearest neigh-

bors (KNN),25 random forest (RF),26 extreme gradient boosting

(XGBoost),27 one-dimensional convolutional neural network (1D

CNN),6 and LSTM7 in performance (Figure 5A). The macro-recall

of our method was higher than those of alternative models (1D

CNN, 38.42% [95% CI 36.43%–42.65%], LSTM, 26.33% [95%

CI 25.21%–29.57%], KNN, 22.44% [95% CI 20.14%–24.33%],

XGBoost, 18.10% [95% CI 18.81%–19.74%], RF, 17.09%

[95% CI 15.01%–21.51%]). The alternative models did not

perform poorly for all arrhythmias. For example, all alternative

models achieved over 99.93% recall for the normal class, and

1D CNN and LSTM achieved a similar recall compared with our

method for ST. The advantage of our method was mainly re-

flected in some cases of arrhythmia that alternativemodels failed

to recognize, such as JE, SAblock, JT, AF, AT, JER, PJC, andVE.

According to the recalls of the18categories, the first ninearrhyth-

mias with lower recalls were defined as vulnerable arrhythmias,

and the rest were defined as aggressive arrhythmias.

The correlation coefficients (CC) between the recall of the 18

categories and the data distribution (or sample size) of these cat-

egories are shown in Figure 5B. The CC of our method was

0.3626, which suggests that there was only a weak positive cor-

relation between our method and the data distribution. However,

the XGBoost had a moderate positive correlation with the data

distribution (CC = 0.5561). The CCs of the other alternative

models were in the range [0.6, 1], which suggested a strong pos-

itive or a very strong positive correlation. The CCs between the

recall of the 18 categories and their inter-similarity are shown

in Figure 5C. Our method, KNN, LSTM, and RF had similar

CCs, about 0.2, suggesting that there was a weak positive
Patterns 4, 100795, September 8, 2023 3
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Figure 2. The GDPH ECG-Arrhythmia Dataset

(A) The data distribution (or sample size) of each arrhythmia category in the GDPH ECG-Arrhythmia Dataset.

(B) The inter-similarity matrix of arrhythmia categories. Each element in thematrix represents the similarity between two arrhythmia categories. The inter-similarity

is the average similarity of all pairs of ECG signals from two arrhythmia categories. Dynamic time warping (DTW) was used to measure the similarity between two

ECG signals. The inter-similarity matrix was normalized to the range [0, 1] and was sorted from minimum to maximum.
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correlation between these models and the inter-similarity. In

contrast, the CCs of 1D CNN and XGBoost were in the range

[0.3, 0.5] and had a moderate positive correlation with the in-

ter-similarity.

Bullying from aggressive arrhythmias against
vulnerable arrhythmias
In this section, two experiments to explore ourmethod’s ability to

protect vulnerable arrhythmias from being bullied by aggressive

arrhythmias are described. In the first experiment, the trainingda-

taset included nine vulnerable arrhythmias and one aggressive

arrhythmia, ‘‘normal’’ (Figure 6A). The sample size of the nine

vulnerable arrhythmias did not change. The sample size of

‘‘normal’’ was respectively set to 1,000, 2,000, 3,000, 4,000,

5,000, 6,000, and 6,388 during training. Regardless of the sample

size of ‘‘normal,’’ the recall of some vulnerable arrhythmias in

alternative models was still 0, for example, SA block, PJC, and

VE. Meanwhile, the recall of some vulnerable categories in

several alternative methods gradually tended to 0 with the in-

crease in sample size of ‘‘normal,’’ such as the recall of JT in 1D

CNN (Figure S1). In contrast, our method achieved good perfor-

mance in vulnerable arrhythmias, which shows that our method

had a protective effect on vulnerable arrhythmias.

In the second experiment, themodels were still trained by nine

vulnerable arrhythmias and aggressive arrhythmias (Figure 6B).

The number of aggressive arrhythmias was set from 0 to 8,

with 0 indicating that no aggressive arrhythmias were added.

The order of addition was AV block, AFL, VT, PVC, IV block,
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SB, SA, and ST, which were sorted from the lowest to the highest

level of aggressiveness. The average/average drop in recall for

all models on the nine vulnerable arrhythmias were 13.21%/

30.75% (1D CNN), 6.23%/50.64% (KNN), 9.66%/41.13%

(LSTM), 1.68%/36.64% (RF), 4.73%/25.04% (XGBoost), and

38.25%/28.96% (our method) (Figure S1). Considering the high

recall of ourmodel, the drop in recall of ourmodel with increasing

aggressive arrhythmias was relatively low.

Interpretability
According to Bayes’ theorem, the conditional distribution of

segment clusters over arrhythmias is the key to the decision-

making of the categorical naive Bayes. Therefore, somemorpho-

logical characteristics of arrhythmias may be implied in segment

clusters with large conditional probabilities. In Figure 7, the visu-

alization of segment clusters of four arrhythmias and three exam-

ples of the maximum cluster is shown in four rows. In the AF row,

three examples of the T-P interval show chaotic atrial activity; in

the AV block row, compared with the normal P-Q interval, the

three P-Q interval examples were prolonged by about 0.20 s;

in the SA block row, the T-P interval was approximately equal

to one cardiac cycle, which means one heartbeat was dropped;

in the PVC row, compared with the normal QRS complexes, the

three QRS complex examples were wider (>0.1 s), and the first

example had a bizarre appearance. The characteristics of the

maximum cluster mentioned above were consistent with the

diagnostic criteria of the four arrhythmias,28 which indicates

that our method has certain interpretability.



Figure 3. Overall modeling framework

The original ECG signal is preprocessed to remove interferences. Then, the P-QRS-T localization is performed. Based on those detected key points, the pre-

processed ECG signal is broken down into multiple heartbeats, and heartbeats are further segmented into six segments. Each segment is encoded with the

cluster number from the segment clustering. Heartbeat splicing is performed to augment the sample size. Finally, based on the encoded vector, categorical naive

Bayes is used as a classifier to diagnose arrhythmias.
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DISCUSSION

Due to differences in sample size and inter-similarity, arrhythmias

canbedivided intoaggressivearrhythmias andvulnerablearrhyth-

mias in computer-aided interpretation. The bullying from aggres-

sive arrhythmias against vulnerable arrhythmias makes the pa-

tients with vulnerable arrhythmias likely to be underdiagnosed.

To end this, and inspired by the diagnostic thinking of cardiolo-

gists, this study proposes a framework for arrhythmia diagnosis

that combines ECG segment clustering and Bayesian theory.

The GDPH ECG-Arrhythmia Dataset was used to validate our

method. With optimization of the hyperparameters, including the

number of spliced heartbeats and the number of clusters, the pro-

posedmethod outperforms alternativemodels, achieving the best

performance in terms of macro-recall (71.55%, 95% CI 68.29%–

74.61%), macro-F1 score (54.97%, 95% CI 49.63%–56.39%),

andmacro-precision (52.93%, 95%CI 50.11%–55.73%). In addi-

tion, with increasing bullying from aggressive arrhythmias, our

model obtained thehighest average recall (38.25%)and the lowest

averagedrop in recall (28.96%)on theninevulnerablearrhythmias.

Deep learning has shown outstanding performance in the inter-

pretation of ECG in the past few years. Its hierarchical architecture

enables higher-level features to beobtained, and its strong feature

extraction ability helps to fit complexmappings.29Due to the char-

acteristics of vulnerable arrhythmias, it is difficult for deep learning

models to treat vulnerable arrhythmias as fairly as aggressive ar-

rhythmias during training. In this study, a possible way was
explored to protect vulnerable arrhythmias from being bullied by

aggressive arrhythmias. The morphological characteristics of

ECG signals are key information for cardiologists to diagnose ar-

rhythmias. Inspired by this, we used segment clustering to distin-

guish ECG signals with different morphological characteristics.

The permutation of the ECG signal at the beat level could effec-

tively enrich the sample size of vulnerable arrhythmias. An ECG

is a typeof periodic electrophysiological signal, with one heartbeat

constituting one cycle.30 As a result, splicing multiple original

heartbeats does not significantly affect themorphological charac-

teristics of theECG.Furthermore, the typical signsofmostarrhyth-

mias are usually present within the heartbeat.28 Our method does

notdamage theheartbeatduring thesegmentationofECGsignals,

therebyeffectively preserving the information related toany under-

lying arrhythmias. On the other hand, compared with a single

heartbeat, the splicing ofmultiple heartbeats increases the dimen-

sionof theECGsignal,whichmay increase thedistanceofdifferent

arrhythmias in the representational space. As shown in Figures 5

and6,ourmethodcould indeedalleviate thebullyingbyaggressive

arrhythmias of vulnerable arrhythmias to a certain extent.

In the study, there are two main types of alternative models:

feature engineering + classifier models and end-to-end models.

The former utilizes commonly used feature extraction tech-

niques31 and three classifiers. The latter includes 1D CNN and

LSTM32 models, which have achieved state-of-the-art perfor-

mance in several ECG datasets.33–35 Our method is compared

with these alternative models and is found to fail to
Patterns 4, 100795, September 8, 2023 5
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Figure 4. The hyperparameter optimization of our method and the confusion matrix of the optimal hyperparameters

(A) The hyperparameter optimization was performed by a grid search, and the performance metric was the macro-recall of all 18 categories.

(B) The receiver operating characteristic (ROC) curve of the optimal hyperparameters: five heartbeats in splicing and 20 clusters in segment clustering.
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comprehensively outperform end-to-end models for diagnosing

aggressive arrhythmias. However, our model exhibits superior

performance in the diagnosis of vulnerable arrhythmias. More-

over, the correlation between our model’s performance and

data distribution and the inter-class similarity is lower than that

of the alternative models. The existence of periodicity in the

data is a fundamental requirement for the effective implementa-

tion of heartbeat clustering and splicing procedures. As a result,

our approach has significant potential for extension to other

types of periodic medical time-series data, including gait data,

among others. Furthermore, our method may be potentially

beneficial in mitigating bullying in clinical settings, where the

aggressive category targets the vulnerable category. The appli-

cation of our approach in such cases may protect the vulnerable

group and potentially facilitate the development of a computer-

aided diagnosis system characterized by exceptionally high

diagnostic accuracy for the vulnerable population.

Thecomputer-aided interpretation systemofECGwith explan-

atory ability will bemore reliable and acceptable to cardiologists.

In ourmethod, features are encoded from the number of segment

clusters with clear practical meaning. Diagnostic decisions are

made based on the conditional probabilities of the arrhythmia

sub-segments, which are a simplified mathematical description

of the cardiologists’ previous diagnostic experience. Therefore,

some morphological characteristics of arrhythmias may be
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implied in the segmented clusters with high conditional probabil-

ities. Some morphological characteristics found by our model

can match the current diagnostic criteria of arrhythmias, such

as the typical segments for the four arrhythmiasshown inFigure7.

Although there were some unmatched findings according to cur-

rent diagnostic criteria, they might imply new diagnostic markers

for arrhythmias. The joint conditional probabilities ofmultiple seg-

mentsmaybe a feasibleway todiscover newdiagnosticmarkers.

One of the main limitations of our study is that our method was

not validated on multiple sites. In addition, the hyperparameters

were set based solely on our dataset, which may affect the

generalizability of our findings. Nonetheless, ourmethod demon-

strated good performance in protecting against vulnerable ar-

rhythmias, while the deep learning model still holds a significant

advantage in diagnosing aggressive arrhythmias. Future work

could explore the potential benefits of combining the advantages

of our method with deep learning technologies such as trans-

formers and generative pretrained transformer (GPT) in timing

analysis. Compression, computational efficiency, transmission,

and power effectiveness with precision are the key performance

indicators of computer-aided interpretation systems.36,37 There-

fore, measuring and then optimizing the efficiency of our model

are also part of our future work. Moreover, cardiologists can

apply their experience to new arrhythmias, and this could be

simulated in our future work.
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Figure 5. Performance comparison with alternative models

(A) The recalls of our method aswell as of alternativemodels. The labels on the x axis are the 18 categories and ‘‘Macro,’’ which indicates themacro-recall of all 18

categories. The categories are arranged from left to right based on their average recall.

(B) The CCs between the recall of the 18 arrhythmias and the data distribution of those. The labels on the x axis are the value of the CC. The string ‘‘a VS. b’’

indicates the CC between ‘‘a’’ and ‘‘b’’.

(C) The CCs between the recall of the 18 categories and the inter-similarity of those. The inter-similarity of a specific arrhythmia is defined as the sum of the inter-

similarity between the arrhythmia and other arrhythmias.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for this article is Huiying Liang at lianghuiying@hotmail.com.

Materials availability

Correspondence and requests for materials should be addressed to Huiying

Liang (lianghuiying@hotmail.com).

Data and code availability

The related code and some ECG data are available on Zenodo22 (ECG data:

https://zenodo.org/record/7902431#.ZFYgSnbP2Po, https://doi.org/10.5281/

zenodo.7902431). Due to confidentiality agreements, the full ECG data can

be made available subject to a non-disclosure agreement. For further informa-

tion, you may contact Huiying Liang (lianghuiying@hotmail.com). Any data use

will be restricted to non-commercial research purposes.

GDPH ECG-Arrhythmia Dataset

The ECG data utilized in this study were collected at the Guangdong Provincial

People’s Hospital, located in Guangzhou, Guangdong, China, from August
2014 to October 2021.22 Due to the limited acquisition area of the chest in pe-

diatric patients, signals were absent in leads V2, V4, and V6 for many partici-

pants, resulting in only the signal from the first nine leads being included in this

investigation. The NIHON KOHDEN ECG-2550 was used as the testing ECG

machine, with a sampling frequency of 500 Hz and a sampling time of 10 s.

Each participant was labeled as normal or one of the other 17 kinds of arrhyth-

mias based on the ECG report by a cardiologist and was verified by another

senior cardiologist. According to the location of the occurrence, the 17 types

of arrhythmias can be grouped into four super-categories: the sinus (including

SA block, ST, SB, and SA), the atrial (including AFL, AT, AF, and PAC), the

atrioventricular junction (including PJC, JE, JT, JER, and AV block), and the

ventricular (including PVC, IV block, VT, and VE).

Some ECG cases were excluded for the following reasons: (1) ECG cases

were distorted seriously due to lack of signal or excessive noise. Since the

ECG records the electrical activity of the heart through electrodes placed on

the skin, large movements and a noisy surrounding environment may add irre-

movable noise to the signal. Moreover, this kind of distortion is more common

in children’s ECGs. (2) The label of the ECG case was unavailable or uncertain.

(3) For participants with multiple ECG tests, to avoid introducing bias in the
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Figure 6. The performance of our model in protecting weak arrhythmias (related to Figure S1)

(A) The recalls of the nine vulnerable arrhythmias with the sample size of ‘‘normal’’ increasing. The model was trained by nine vulnerable arrhythmias and the

aggressive class ‘‘normal.’’ The sample size of the nine vulnerable arrhythmias did not change. The sample size of ‘‘normal’’ was respectively set to 1,000, 2,000,

3,000, 4,000, 5,000, 6,000, and 6,388 during training.

(B) The recalls of the nine vulnerable arrhythmias with the number of aggressive arrhythmias increasing. Themodel was still trained by nine vulnerable arrhythmias

and aggressive arrhythmias. The number of aggressive arrhythmias was set to 0 to 8. The order of addition was AV block, AFL, VT, PVC, IV block, SB, SA, and ST.
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participant, only the last ECG test was used in our study, and other ECG tests

were excluded. After exclusion, 48,063 participants remained. The whole da-

taset was randomly divided into the training dataset and the test dataset in a

ratio of 4:1 at the level of each arrhythmia.

ECG signal preprocessing

TheECGsignal isaweakphysiological signal,which iseasilydisturbedduring the

acquisition process, so it is necessary to preprocess the ECG signal before anal-

ysis. The threemostcommon interferencesofECGsignals areelectromyography

(EMG) interference, power frequency interference, andbaselinedrift.Our prepro-

cessing was performed based on the three interferences mentioned above.

EMG is also a kind of physiological signal and is the main noise in the ECG

signal. The frequency of EMG is related to the type of muscle, generally in the

range of 30–300 Hz, while the frequency of the ECG signal is mainly in the

range of 5–20 Hz. Therefore, the EMG signal can overlap with the ECG signal.

In our study, the Butterworth low-pass filter was used to remove EMG sig-

nals.38 The Butterworth low-pass filter has the flattest bandpass frequency

response curve and gradually drops to zero as the stopband is adjusted.More-

over, the amplitude of the diagonal frequency decreases monotonically, and

the higher the filter order, the faster the amplitude decay in the stopband.

Power frequency interference is ubiquitous with the existence of a power

supply network, while the interference signal with a frequency of 50 Hz is the

most common one. In this study, the 50 Hz finite impulse response (FIR) notch

filter with the Kaiser Windows function was used to eliminate the power fre-

quency signal.39 FIR filters have the linear phase characteristics required for

ECG signal processing and can achieve the best filtering performance with

minimal waveform distortion. Taking into account the population differences

of the samples, the Kaiser moving window is a window function close to the

optimal structure,40 which can adaptively adjust the parameters of the filter ac-

cording to different settings.
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Finally, the removal of ECG baseline drift is accomplished by an infinite im-

pulse response zero-phase shift digital filter. As a routine preprocessing step

for ECG analysis, it prevents the introduction of artifact information that could

distort the true oscillatory phase. As shown in Figure S2, after the preprocess-

ing, the main noise was removed while the key information of the ECG signal

was preserved.
Inter-similarity

In our study, the similarity between two arrhythmia categories was defined as

inter-similarity, which was measured using the DTW algorithm. To improve the

efficiency of DTW calculation, 1,000 ECG signals were sampled repeatedly

from two different arrhythmias, forming 1,000 pairs of ECG signals. In each

ECG signal, the first and last 2 s were removed, and the remaining signal

was downsampled to 100 Hz.

DTW is an algorithm used to measure the similarity between two series. It

can handle sequences of different lengths and speeds by warping the time

axis to find the best match. The DTW algorithm calculates similarity by con-

structing a cost matrix and finding the minimum cumulative cost path through

dynamic programming. Given two series, X = fx1; x2;/; xng and Y = fy1;y2;
/;ymg, the steps to calculate DTW similarity are as follows.

Construct a cost matrix C with the shape n3m, where C½i; j� is the distance

between the ith element of sequence X and the jth element of sequence Y .

Euclidean distance is commonly used as the distance metric:

C½i; j� = �xi � yj
�2

. (Equation 1)

Initialize the dynamic programming matrix D, setting D½0; 0� as C½0;0�. Fill in
each element of matrix D using dynamic programming. For i = 1; 2;/; n and

j = 1;2;/;m:



Figure 7. The visualization of segment clusters in four arrhythmias

The first column is the histogram of 20 segment clusters, and the maximum cluster (segment cluster with the greatest number of instances) is shown in salmon

pink. The second to fourth columns show three examples of the maximum cluster. The first to fourth rows show the clusters of the T-P interval of lead II in AF

participants, the clusters of the P-Q interval of lead I in AV block participants, the clusters of the T-P interval of lead II in SA block participants, and the clusters of

QRS complexes of lead II in PVC participants, respectively.
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D½i; j� = C½i; j�+minðD½i � 1; j�;D½i; j � 1�;D½i � 1; j � 1�Þ . (Equation 2)

Here, minðD½i � 1; j�;D½i; j �1�;D½i � 1; j � 1�Þ represents finding the path

with the smallest cumulative cost. Calculate the final DTW similarity, which is

usually the square root of D½n;m�.
P-QRS-T localization in ECG data

In our study, an adaptive and time-efficient R-peak detection algorithm was

used to determine the location of the R peak.41,42 Then, the Q peak and S

peak were found by searching on both sides of the R peak. Due to the rare

occurrence of multiple peaks in the QRS complexes, a moving window of

250 ms was used to iteratively query both sides. The minimum value in the first

window on the left is the position of the Q peak. The minimum value in the first

window on the right is the S peak.

Detection of the P and T waves requires time window traversal starting from

the QRS complexes. Therefore, a detection algorithm for the start and end

boundaries of the wave is needed. For this purpose, an improved boundary

detection algorithm based on the local distance transform was applied in

our study.43 The local distance transform finds the start and end points of a

wave by calculating the maximum distance between the start and the end

points of the auxiliary line segment at each point on the signal. From the

view of morphology, this point is the maximum curvature point, which is in

line with the doctor’s subjective judgment.

A 200ms timewindowwas established before theQ start point and a 400ms

timewindow after the S end point. The P peak and the T peak were detected by

the same detection algorithm used in the R-peak detection. The local distance

transform was also used here to determine the start point and the end point of

the P and T waves. A sample is shown in Figure S2. A total of 11 points were

identified in each heartbeat. The division of each heartbeat and the division of

the waves within the heartbeat were based on this.
Segment clustering

Based on the important areas identified in the previous step, the ECG signal

was divided into several periodic heartbeats. From the entire dataset, N heart-

beats (referred to as the beat-level dataset) were generated (Table S1). Each

heartbeat was then divided into six different types of segments, creating a

database of 63N segments: P wave, P-Q interval, QRS complexes, S-T inter-

val, T wave, and T-P interval. The signal between the P start point and the P

end point, for instance, is described as the P wave. See Figure S3 for more

segment definitions. Assume that the six waveforms mentioned above are

used to split 6 3 N segments into six segment-level sub-datasets. There are

undoubtedly N segments in these sub-datasets.

Consider observing a set ofN segments fx1ðl1Þ; x2ðl2Þ;.; xNðlNÞg in the spe-

cific segment-level dataset, and xn ˛RLn represents its corresponding feature

vector. Specifically, xiðliÞ˛ fx1i ; x2i ;.; xlii g denotes the ith segment, which

retrieved the ith beat signal from the beat-level dataset, and li ˛ f1; 2;.; lig de-
notes the length of the segment. The following equation can be used to deter-

mine the average length l:

l =
1

N

XN
i = 1

li . (Equation 3)

Control points and their related indices are retrieved as a representation of

the segments for easeof presentation. Empirically, a segmentwithmorecontrol

points has a longer section. The number of control points Nc can be obtained:

Nc =
1

g
l , (Equation 4)

where g denotes simulation outline parameters and l denotes the average

length of all segments in the corresponding segment dataset. To bemore spe-

cific, a low value of g reserves the segment a more detailed outline.
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In the segment dataset, control points are retrieved at regular intervals for

each segment. Consequently, the following equation can be used to determine

the value of the jth control point of the ith segment:

vði; jÞ = x
li
Nc

�j
i

, (Equation 5)

where vði; jÞ denotes the control point value, x�i denotes the feature of the index
� in the ith segment, and li

Nc
� j is the corresponding index of the jth control

point. Figure S4 displays the length distribution in each sub-dataset. The

feature details extracted from each segment are shown in Table S2. Accord-

ingly, comparable features were extracted for each of the nine leads in the

ECG data.

Based on the features of the instances, the k-means was performed to clus-

ter the segments. Euclidean distance was used to measure the distance be-

tween the instance and the centroid of the cluster. The algorithm stops

when the centroids do not change significantly in iterations. Clustering needs

to be implemented 54 (= 6 segments 3 9 leads) times for six segments and

nine leads (Figure S5). For all other clustering distributions under all leads

with different clustering configurations, see Data S3.
Heartbeat splicing and encoding

In our study, multiple original heartbeats were spliced together as a spliced

ECG signal. The spliced ECG signal can be regarded as permutations of the

original heartbeats, and repetition is allowed in the permutation44,45 (Figure S6).

The spliced ECG signal is formed by original heartbeats from the same partic-

ipant, so the spliced ECG signal can be assigned the same label as the original

heartbeat. The integration of spliced ECG signals into the training dataset is

capable of simulating ECG signals that may not exist within the original data-

set. This procedure is advantageous as it serves to enhance the comprehen-

siveness of the training dataset, thereby potentially reducing the overfitting

associated with our model.

Assume that Nh
mðh = 1; 2;/;H;m = 1; 2;/;MhÞ indicates the number of

original heartbeats of themth ECG signal in the hth class, where H is the num-

ber of classes and Mh is the number of ECG signals in the hth class. No is the

number of original heartbeats in the splicing. For themth ECG signal in the hth

class, the number of spliced ECG signals SNh
m can be obtained by the

following equation:

SNh
m =

�
Nh

m

�No . (Equation 6)

Therefore, the number of all spliced ECG signals SN is:

SN =
XH
h = 1

XMh

m = 1

SNh
m . (Equation 7)

Substituting Equation 6 into Equation 7, we can get:

SN =
XH
h = 1

XMh

m = 1

�
Nh

m

�No
. (Equation 8)

Based on the cluster number of the segment, the spliced ECG signal can be

encoded as a vector (Figure S6). Each heartbeat has six segments in each

lead. Each segment is assigned a cluster number in the unsupervised clus-

tering step. The heartbeat can be encoded as a feature vector with 54 (= 6

segments 3 9 leads) dimensions. Therefore, the feature vector of the spliced

ECG signal has 543No dimensions.
Categorical naive Bayes

Based on the encoded features, categorical naive Bayes (CNB) is used to clas-

sify the spliced ECG signal. Assume that V = ðv1; v2;/; v543No
Þ is the feature

vector of the spliced ECG signal and y is the class variable. According to the

property of conditional probabilities, we can get:

Pðv1; v2;/; v543No ÞPðyjv1; v2;/; v543No Þ = PðyÞPðv1; v2;/; v543No jyÞ
, (Equation 9)

which can be transformed to:
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Pðyjv1; v2;/; v543No Þ =
PðyÞPðv1; v2;/; v543No jyÞ

Pðv1; v2;/; v543No
Þ . (Equation 10)

Based on the ‘‘naive’’ assumption that features are conditional independent

of each other, we can obtain:

Pðvi jy; v1;/; vi� 1; vi+1;/; v543No Þ = Pðvi jyÞ . (Equation 11)

Therefore, Equation 10 is simplified to:

Pðyjv1; v2;/; v543No
Þ =

PðyÞ
Y543No

i = 1

Pðvi jyÞ

Pðv1; v2;/; v543No Þ
. (Equation 12)

Because Pðv1; v2;/; v543No
Þ is constant among all in Equation 12 with

different classes, the classification rule can be written as:

by = argmax

 
PðyÞ

Y543No

i = 1

Pðvi jyÞ
!

, (Equation 13)

where by is the predicted label of the ECG signal. Pðvi jyÞ can be calculated by

the following equation:

Pðvi = ajy = hÞ = Niah

SMh

, (Equation 14)

where Niac indicates the number of spliced ECG signals, with the ith feature

equaling a in the hth class, and SMh indicates the number of spliced ECG sig-

nals in the hth class. The predicted label of the original ECG signal is the

average predicted label of spliced ECG signals.

Alternative models

In our study, the pattern of ‘‘feature engineering + classifier’’ was used to

construct alternative models. In total, 114 features were extracted from the

ECG signal. Ten features were defined on the nine individual lead signals

(e.g., themean value of Pwave apex values), and thus 90 (103 9) scalar features

were obtained. The remaining 24 features were associated with the recording

time (e.g., position in the temporal dimension) when the key points of segments

occurred. Feature selection was not performed in alternative models. One hun-

dred fourteen features were followed by three classic classifiers, KNN, RF, and

XGBoost. Default configuration was used for the three classifiers. Two deep-

learning-basedmodels were also used as alternative models, where the original

ECG signal was inputted. The first one was the 1D CNN, which achieved state-

of-the-art performance in the multiclassification of arrhythmia sub-types. The

second one was the LSTM, which is proposed for classifying ECG signals.

Quantification and statistical analysis

In our study, recall (sensitivity) was used to measure the diagnostic perfor-

mance of models on a certain arrhythmia. It is defined as the ratio of the true

positives (TP) to the sum of the true positives and false negatives (FN):

Recall =
TP

TP+FN
. (Equation 15)

The recall score ranges from 0 to 1, with 1 indicating perfect recall.

Moreover, the overall diagnostic performance of the models was measured

by macro-recall, which was defined as the mean of recall over all individual

classes. In macro-recall, each class has the same weight in calculating the

average recall, instead of setting the weight according to the sample size of

each class. Therefore, macro-recall is fair at the class level and is more sensi-

tive to performance in the minority class. Recall at the 95% CI was calculated

using non-parametric bootstrapping with 1,000 iterations. The linear correla-

tion between the recall of the 17 types of arrhythmias and the data distribution

or the inter-similarity of those was measured by the CC.

Experimental setup

In our study, the simulation outline parameter gwas set to 5 tomaintain the con-

tour of the ECGwhile reducing noise interference. Another twohyperparameters

were determined by the hyperparameter optimization. The number of clusters in
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the segment clusteringwas the first hyperparameter, which had 18 options: 3, 5,

8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, and 80. The number of orig-

inal heartbeats in the splicingNo was another hyperparameter to control the SN,

which had four options: 2, 3, 4, and 5. Values of SN in the training dataset corre-

sponding to the four options of No were 2,869,966, 3,021,293, 11,486,438, and

25,508,046. Analyzing such a large number of ECG signals is beyond the capa-

bilities of our computational resources, soweset the upper limit of the number of

splicedECGsignals in eacharrhythmia to1,500,000 in the trainingdataset. In the

test dataset, for each original ECG signal, 20 spliced ECG signals were selected

randomly, and the summary of the prediction of the 20 spliced ECG signals was

used as the final prediction of the original ECG signal.
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