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Abstract

The stability of circulating miRNAs, their non-invasive sampling techniques and deregulation in
diseases make them potential candidate biomarkers of biological effect. Here, we profiled the
level of 84 plasma miRNAs in 30 smokers, 20 non-smokers and 20 ex-smokers. A robust
statistical strategy was applied with replicate samples to account for reproducibility of the
results. We identified differential expression of miR-124 and let-7a between the smoking and
control groups. We further explored the dose–response relationship of miR-124 and let-7a with
two biomarkers of tobacco exposure and found that this relationship was affected by
adjustments based on age, pack-year and gender.
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Introduction

MicroRNAs (miRNAs) are a family of small, endogenous,

non-coding functional RNA molecules of 18–25 nucleotides

in length. These regulatory molecules function to modulate

the activity of specific mRNA targets either by translational

repression or by mRNA degradation (Takahashi et al., 2013).

The sequences of miRNAs are evolutionarily conserved

across species which suggests an important biological function

(He & Hannon, 2004). miRNAs are key regulators of various

biological processes including development, differentiation,

proliferation, cell death and metabolism (Shen et al., 2013).

More than 940 mature miRNAs have been characterized to

date in humans (Duttagupta et al., 2011) and it has been

hypothesized that nearly 30% of protein-coding genes could

be regulated by miRNAs through post-transcriptional mech-

anisms (Leidinger et al., 2011). The expression of many

miRNAs is tissue specific and altered miRNA profiles may

reflect abnormalities in developmental regulation or tissue

functions (Mi et al., 2013; Sharma et al., 2010).

The presence of miRNAs in circulating body fluids such as

plasma or serum was first reported in 2008 (Mitchell et al.,

2008). Plasma miRNAs were found to be highly stable even

after exposure to severe conditions such as high temperatures,

low or high pH, prolonged storage at room temperature and

multiple freeze thaw cycles (Creemers et al., 2012). This

stability has been attributed to packaging of miRNA into lipo-

protein complexes such as exosomes, microvesicles and apop-

totic bodies which prevents their degradation (Valadi et al.,

2007; Zernecke et al., 2009). Since the discovery of extracel-

lular miRNA in body fluids, a number of studies have reported

the association of levels of specific circulating miRNA in

blood with various pathophysiological conditions including

multiple sclerosis (Fenoglio et al., 2013), coronary artery

disease (Fichtlscherer et al., 2010), colorectal cancer (Huang

et al., 2010) and liver disease (Wang et al., 2009). Evidence

also indicate that unique patterns of altered miRNA expression

provide valuable information such as tumor origin, tumor stage

and other pathological factors (Iorio & Croce, 2009).

Additionally, the predictive value of circulating miRNAs has

been reported in breast cancer (Krell et al., 2012), rheumatoid

arthritis (Duroux-Richard et al., 2014) and early stage non-

small cell lung cancer (Foss et al., 2011). These findings

demonstrate the potential for using the levels of specific

miRNA expression in body fluids as biomarkers of biological

effects that could potentially be predictive of disease.

Cigarette smoking is a high-risk factor for diseases such as

lung cancer (Shields, 1999), chronic obstructive pulmonary

disease (COPD) and cardiovascular disease (CVD)

(Takahashi et al., 2013). MicroRNAs have been reported to

be deregulated in smoking-related diseases (Banerjee &

Luettich, 2012) and their expression profiles differ between

healthy and diseased tissues. Examples include association of

plasma miR-21 (Wei et al., 2011) and miR-155, miR-197 and

miR-182 as potential biomarkers for early diagnosis of lung

#Oscar M. Camacho is responsible for statistical analysis. E-mail:
Oscar_M_Camacho@bat.com
This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/Licenses/by-nc-nd/4.0/), which permits
non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered,
transformed, or built upon in any way.

Address for correspondence: Anisha Banerjee, BAT, Group Research
and Development, Regents Park Road, Southampton SO15 8TL, UK.
Tel: +44 2380 588 481. E-mail: Anisha_Banerjee@BAT.com



cancer (Zheng et al., 2011). The role of circulating miRNAs

has also been suggested in tobacco-related inflammatory dis-

eases such as COPD and CVD (Akbas et al., 2012; Dickinson

et al., 2013). The increasing diversity of nicotine delivery

products and regulatory scrutiny for safer alternatives to

combustible cigarettes is driving the discovery of biomarkers

that could be used to evaluate adverse biological effects in the

absence of epidemiological evidence. Therefore, our objective

was to conduct a miRNA screen to identify differentially

expressed plasma miRNA among healthy smokers, ex-smokers

and non-smokers and potential novel biomarkers of biological

effect. In order to identify the most robust miRNA candidates,

we implemented a design where duplicate samples were

processed and normalized to mitigate the effect of operator

and day of collection. Finally, we investigated the correlation

of differentially expressed miRNAs with tobacco exposure

biomarkers of internal dose (total nicotine equivalent

(TNEQ) in urine) and effective dose Cyanoethyl valine

(CEVal), an acrylonitrile haemoglobin adduct.

Materials and methods

Clinical study design

A detailed clinical protocol has been described previously in

Shepperd et al. (2013) and the study was registered in the

Current Controlled Trials database under the reference

ISRCTN81286286. In brief, never-smokers (n¼ 20), ex-

smokers (n¼ 20) and current smokers (n¼ 30) were recruited

from Hamburg (Germany). Inclusion criteria for the smoking

groups were that their age was between 23 and 55 years,

current smokers of between 10 and 30 (6–8 mg) ISO tar

cigarettes per day (CPD) and smokers for at least 5 years

before screening. Criteria for the ex-smoking group were that

their age was between 28 and 55 years, not having smoked for

at least 5 years but having been a regular smoker of between

10 and 30 CPD for at least 5 years. Inclusion criteria for the

never smoking group were that their age was between 28 and

55 years, never having smoked more than 100 cigarettes

during his/her lifetime and none in the previous 5 years.

Subjects who participated in the study were monitored

over a period of 6 months. Participants recorded in electronic

diaries daily cigarette consumption, exercise, diet and medi-

cations. Cigarette butts were also collected and compared

with cigarette per day reported in the diaries. Five in clinic

evaluations for smokers and three for non- and ex-smokers

were also conducted over the 6 months period where total

nicotine equivalent (nicotine + five metabolites) was mea-

sured in 24 h urine. All the smokers were provided with a

7 mg ISO Tar Lucky Strike cigarette for the duration of the

study to have consistency with the ISO Tar band of the

product used. Two plasma samples were collected, the first at

day 182 and the second at day 183 for the smokers and the

first at day 163 and the second at day 164 for the non-

smokers. One plasma sample was collected for ex-smokers at

day 163. Corresponding 24 h urine samples and whole blood

samples were collected for TNEQ and CEVal biomarkers

analysis. Different days were used for these groups for

practical reasons including clinical capacity and sample

collection. Operator one processed the samples from days

163 and 182 and operator two processed the samples from

days 164 and 183. The samples from each smoking status

group were divided into random batches and were processed

independently by the two operators at different times.

This study was conducted in compliance with the ethical

principles of the Declaration of Helsinki, Good Clinical

Practice and German Law, including informed consent and

was approved by the Ethics Committee of Arztekammer

Hamburg, Germany, 29 November 2011 Ref.: PV3824

(Scherer et al., 2014).

miRNA analysis

Blood was collected in an EDTA-containing tube. The

samples were immediately centrifuged at 1000g for 10 min

at 4 �C. The plasma was collected and stored in K2 EDTA

tubes at �80 �C until further use.

Total RNA containing small miRNA was extracted from

200 ml of plasma using the miRNeasy� Serum/Plasma kit

(Qiagen, Hilden, Germany) which combines phenol/guan-

idine-based lysis of samples and silica membrane-based

purification. At the beginning of this extraction phase, a

carrier MS2 RNA (used to increase the extraction yield) and

an exogenous spike in control (Caenorhabditis elegans

miR-39 which enables normalization of non-specific losses

incurred during miRNA purification) was added to the

samples. The subsequent phase separation, phenol extraction

and filter cartridge elution steps were carried out according to

the instructions of the manufacturer (Qiagen, Hilden,

Germany). Total RNA including miRNA was purified from

the aqueous phase using ethanol and eluted from the column

with 14 ml RNAse free water.

Reverse transcription was performed using the miScript�

reverse transcription kit (Qiagen, Hilden, Germany) in a 10 ml

reaction. All procedures were performed following the

instructions of the manufacturer.

Pre-amplification was carried out using the miScript�

PreAmp PCR kit (Qiagen, Hilden, Germany) in a 25-ml

reaction by means of a 12-cycle PCR reaction. Since the

concentration of input cDNA was unknown, pre-amplification

control experiments were performed with representative

samples to determine the optimal dilution factor for pre-

amplified cDNA, according to the instructions of the

manufacturer (Qiagen, Hilden, Germany) and based on what

was described by Kroh et al. (2010).

The expression of miRNAs was determined by quantitative

real-time PCR using the SYBR� green-based detection tech-

nology (Applied Biosystems, Waltham, MA). A 20-fold

dilution of pre-amplified cDNA was used as the input for a

40-cycle qRT-PCR reaction with miRNA-specific primers.

A custom pathway focused panel of miRNA containing 84 pre-

dispensed miRNA targets commonly found in plasma was used

for this purpose (miRNA name and gene card references repor-

ted as Supplementary information in Table 1). All 25ml

reactions were performed on the Applied Biosystems� 7500

Fast Real-Time PCR system (Applied Biosystems, Waltham,

MA) using the comparative CT (DDCT) method of quantitation.

Gene expression data analysis

After completion of the qRT-PCR, the CT values were

visually inspected using the fast PCR 7500 software v.2.0.5
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(Applied Biosystems, Waltham, MA). An automatic baseline

setting of 3–15 and a threshold of 0.03 were applied by

default and were manually adjusted when required to ensure

maintenance of optimal sensitivity.

Normalization of the plasma miRNA expression level

There are currently no standard endogenous controls for

serum miRNA studies (Mo et al., 2012). Therefore, as a

first step, the CT values obtained using the spike-in control

(C. elegans miR-39) was used to calibrate the data sets.

A mathematical correction factor was calculated for

each plasma sample using the difference between the

groups’ mean CT values of the spike-in control (C. elegans

miR-39). This was followed by normalization using the

mean of commonly expressed miRNA targets across all

the samples. For further data analysis, only those miRNAs

with a CT value equal to or below 30, a cut-off

recommended by the manufacturer (Qiagen, Hilden,

Germany), were taken into account. All CT values above

30 were truncated to 30 to ensure that fold changes are not

over-represented.

Biomarkers of exposure

TNEQ and CEVal quantification in urine and blood, respect-

ively, was described in Scherer et al. (2014).

Statistical analysis

Distributions of samples’ expression were assessed by oper-

ator for outlier detection. After outlier removal, datasets were

merged and normalized by operator to account for an

observed shift of samples’ distributions. Hierarchical cluster-

ing based on the Euclidean distance algorithm of the

normalized expression data (DCt) and principal component

analysis (PCA) were performed to assess potential groups

among samples. Differences between the levels of miRNA

expression on cigarette smoke exposure were tested using a

mixed model analysis with the smoker group and adjusting by

age and gender as fixed effects; and day of sample processing

and subject as random effects (DCt¼B0 + smoking sta-

tus + age + gender +�2
sample processing þ �2

subject + �2
subject + ").

Statistical significance was adjusted using Bonferroni correc-

tion across miRNAs. Additionally, we assessed the effects of

using a less stringent statistical method (FDRq value Storey).

A DDCT method of relative quantification was used to

calculate the difference in the expression levels between non-

smokers relative to smokers and ex-smokers as a measure of

biological relevance. Fold change was calculated as: 2�DDCt

where DDCt is the DCt gene of interest–DCt reference

for each comparison of interest. An arbitrary 2-fold change

cut-off was applied to identify the most significantly down- or

up-regulated miRNAs.

Similarly, relationships between miRNAs and biomarkers

(TNEQ and CEVal) were assessed using a linear mixed model

with age, gender and pack years as fixed effects and subject

as a random effect. JMP� Genomics 6.0 software (SAS

Inc, Cary, NC) was used to perform the miRNA expression

and statistical analysis to determine the differences between

the groups.

Results

Outlier detection and normalization

Two operators processed the randomized non-smoker,

ex-smoker and smoker samples collected at a two day

interval. Total RNA was extracted, reverse transcribed, and

84 miRNA quantified by qRT-PCR as described in the

‘‘Material and methods’’ section. Distributions of the samples

miRNA expression were plotted separately per operator.

Visual inspection highlighted six outliers out of which two

were from the first operator and four were from the second.

After outlier removal, samples from both operators were

merged (Figure 1A). There was a clear shift of the sample

distributions by operator. Samples were normalized by

operator (z-score) to correct this effect. Since each operator

processed samples collected on a specific day, we cannot

discriminate whether the shift was due to operator or day of

collection. Nevertheless, the normalization performed miti-

gates the effect arising from operator/day.

Post-normalization, expression data across all samples

appeared to be similar (Figure 1B). There were no strong

distinct patterns and the miRNA expression profile obtained

by both the operators seemed to be appropriately corrected.

Profiling of the plasma miRNA profiles of smokers,
non-smokers and ex- smokers

Unsupervised cluster analysis based on the Euclidean distance

was used to visualize the patterns on the expression of the 84

miRNA genes. Hierarchical clustering (Figure 2) illustrated

the distinct levels of miRNAs detected in human plasma with

abundant miRNA in green, miRNA detected at a moderate

levels in black, absent miRNA or miRNA present in very low

quantities in red. No clustering based on the smoking status

was observed indicating that overall all three groups shared a

similar miRNA profile. These results were confirmed by the

absence of clusters in a PCA plot reported in Supplementary

Figure 1.

miR-124 is differentially expressed in smokers
compared to non-smokers and ex-smokers

Hierarchical clustering is useful to distinguish patterns of

expression but is not designed to detect discreet but signifi-

cant changes in a large pool of data. Therefore, we assessed

differences between smoking statuses using a mixed model

ANOVA. Fold change of untransformed expression data was

also used for biological significance criterion. The following

pairwise comparisons for each miRNA were considered:

smokers versus non-smokers; smokers versus ex-smokers and

ex-smokers versus non-smokers. A single miRNA, miR-124,

was significantly different (p¼ 0.05, adjusted for the

Bonferroni method) between non-smokers and smokers. A

greater than 2-fold increase in expression was observed in

smokers relative to non-smokers (Figure 3A). A similar

increase was observed in smokers compared with ex-smokers

for miRNA-124 (Figure 3B). No miRNA was differentially

expressed when ex-smokers and non-smokers were compared

(Supplementary Figure 2).

Another less stringent adjustment method (FDRq Storey)

was used to explore if there were other potential differentially
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expressed miRNAs of interest. A mixed model ANOVA

adjusted for days at which the samples were collected was

used to assess differences between smokers’ groups

(q50.05). Analysis by this method showed that in addition

to miR-124, let-7a was also differentially expressed between

smokers and ex-smokers. However, let-7a did not appear to be

statistically different between smokers and non-smokers.

Association of differentially expressed miRNA with
biomarkers of exposure

Next, we wanted to evaluate the potential relationship of

miRNAs with biomarkers of cigarette exposure – TNEQ and

CEVal. For this, we selected only the miRNAs that were

differentially expressed between smokers and non-smokers or

ex-smokers.

Regression models were fit between the expression of miR

let-7a and miR-124 versus CEVAL and TNEQ. Only data

from the smoking group was used since inclusion of the non-

smokers and the ex-smokers improved the correlation based

on baseline levels.

Our results indicate a significant dose–response relation-

ship (p¼ 0.0197, R2¼ 0.6102217) between miR-124 expres-

sion and CEVaL with no adjustment for any confounding

variables (Table 1A). However, this relationship became non-

significant after adjusting for age and gender (p¼ 0.0797,

R2¼ 0.63) and for age, gender and pack-years (p¼ 0.2217,

R2¼ 0.65) (Table 1B and C). No significant correlation was

observed between miR-124 and TNEQ irrespective of any

adjustments.

There was no evidence of a relationship between let-7a and

the two tested biomarkers of exposure when not adjusted for

any confounding variables. After adjusting for age and gender

variables, let-7a showed a significant relationship with TNEQ

(p¼ 0.0199, R2¼ 0.41) (Table 1B). This association of let-7a

remained significant when adjusted for age, gender and pack-

years (p¼ 0.0413, R2¼ 0.43) (Table 1C). No significant

correlation was observed between let-7a and CEVaL regard-

less of any adjustments.

Discussion

Circulating miRNAs have gained attention as potential

biomarkers for detecting and monitoring different physio-

logical and pathological conditions due to their stability, and

the presence in biofluids such as sputum and plasma (Mitchell

et al., 2008). In this report, we investigated the differential

abundance of a panel of 84 miRNA in the plasma of smokers

(n¼ 30), non-smokers (n¼ 20) and ex-smokers (n¼ 20) as

potential early biomarkers of biological effect. The panel of

84 miRNA was representative of the most common miRNAs

found in human plasma and serum. Samples were collected at

two time points and analysed by qRT-PCR independently. To

investigate the association of candidate miRNAs with two

biomarkers of tobacco exposure, urinary total nicotine

equivalent (TNEQ) and acrylonitrile haemoglobin adduct

(CEVal) were collected for each subject at each time point.

Following qRT-PCR, outlier exclusion and data normal-

ization (Figure 1), we determined whether subjects were

grouped by smoking status based on their miRNA profile

using hierarchical clustering (Figure 2). No clustering by

smoking status groups was observed suggesting that

ex-smokers, non-smokers and smokers share a similar

miRNA profile. Since hierarchical clustering typically

distinguishes patterns of expression and not necessarily

isolated significant changes in a large pool of data, we

sought to measure changes at individual miRNAs level by

plotting mean fold change between groups with statistical

significance. Interestingly, only one miRNA, miR-124, was

found to be statistically different between smokers versus

non-smokers (p¼ 0.000074) and ex-smokers versus smokers

(p¼ 0.00000154) with a fold change42 (Figure 3A and B).

Our results indicate that the level of circulating miR-124

increases following exposure to cigarette smoke. The absence

Figure 1. Sample data distribution (DCts)
prior to normalization by operator (A) and
data distribution of samples showing DCts
post-normalization by operator (B). Colours
are representative of operators. Red indicates
Operator 1 and blue indicates Operator 2.
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of any differential expression of miR-124 between non-

smokers and ex-smokers suggests the reversion of this

miRNA to its baseline level of expression on smoking

cessation (Supplementary Figure 2). Stringent statistical

thresholds were established by adjusting p values for FDR

(False discovery rate) and FWER (Familywise error rate) to

promote confidence in the validity of the detected differences

in miR-124 expression with respect to the smoker group. The

Storey method revealed that miRNA, let-7a as another

potential miRNA, was associated with smoking.

The limited number of differentially expressed miRNA

candidates in our study was in contrast with a prior Japanese

study where a significant difference in plasma miRNA

profile was noticed between smokers and non-smokers

(Takahashi et al., 2013). This group used a set of two

microarrays covering a total of 664 miRNAs and detected 44

differentially expressed miRNA which were driving the

clustering by smoking status. Seventeen of these miRNAs

were included in our panel but did not show differential

expression based on smoking status. The analytical methods,

statistical analyses and group sizes could explain at least in

part those differences. For instance, the Takahasi paper did

not report adjusted p values and only recruited a small

number of subjects (smokers n¼ 11; non-smokers n¼ 7;

ex-smokers n¼ 4) which could lead to an increased number of

false positive miRNA candidates. The microarray approach

used by Takahashi and colleagues is suitable for high-

throughput screening, but it is often recommended to verify

Figure 2. Hierarchical cluster representing the gene expression profiles of 84 miRNAs commonly found in plasma of 120 subjects including smokers
(n¼ 30 at days 182 and 183), non-smokers (n¼ 20 at days 163 and 164) and ex-smokers (n¼ 20 at day 163). Columns represent individual subjects and
rows represent miRNA. Green black and red indicate high signal intensity, moderate signal intensity and low to no signal intensity in normalized gene
expression data (DCT).
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the differentially expressed candidates by qRT-PCR. miRNA

qRT-PCR has been proven to perform better for sensitivity

and specificity when compared with microarrays (Chen et al.,

2009). In our study, we opted to screen a smaller panel of

miRNA candidates by qRT-PCR and including a larger

number of subjects with replicate samples collected in a two

day period and processed independently in order to identify

the most robust miRNA candidate(s).

Our candidate miRNA biomarker miR-124 was first

reported to be highly expressed in neuronal cells (Makeyev

et al., 2007). Emerging evidence indicates that miR-124 is

significantly down-regulated in several types of human cancer

(Ando et al., 2009; Furuta et al., 2010; Lujambio et al., 2007),

which can affect tumor initiation and maintenance. In the

context of smoking, miR-124 was reported to be down-

regulated in lung cancer tissues (Yanaihara et al., 2006).

Recent studies revealed the tumor-suppressive function of

miR-124 in nasopharyngeal carcinoma (Peng et al., 2014)

and its prognostic value in patients with non-small cell

lung cancer (Berghmans et al., 2013). miR-124 was also

one of the most remarkably down-regulated miRNAs in the

lungs of rats exposed to environmental cigarette smoke

Figure 3. (A) Volcano plot showing the
difference in miRNA expression between
smokers and non-smokers is plotted on the
x-axis (log2 scale) (dotted vertical line marks
the 2-fold increase threshold), and false
discovery rate (FDR)-adjusted significance is
plotted on the y-axis (�log10 scale) (dotted
horizontal line marks the p-value¼ 0.05
threshold). Up-regulated miR-124 is indi-
cated in red. (B) Volcano plot showing the
difference in miRNA expression between
smokers and ex-smokers is plotted on the
x-axis (log2 scale) (dotted vertical line marks
the 2-fold increase threshold), and false
discovery rate (FDR)-adjusted significance is
plotted on the y-axis (�log10 scale) (dotted
horizontal line marks the p value¼ 0.05
threshold). Up-regulated miR-124 is indi-
cated in red.
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(Izzotti et al., 2009). Those results suggest that miR-124 is

associated with lung diseases and tobacco exposure; however,

those reports indicated a down-regulation of miR-124 rather

than an increase as observed in our study. This difference can

be explained by a variety of factors. First, the cited work used

biopsies of diseased or healthy lung rodent tissues for miRNA

screening while we used plasma from healthy smokers. It is

plausible that an increase in plasma miRNA reflects systemic

stress of the respiratory tract leading to miRNA leakage in the

blood stream and hence an increase of miR-124 in plasma.

Second, a decrease in miR-124 could be a consequence of

tumor cells escaping regulation from a variety of tumor

suppressors, which might not be observed in healthy tissues or

tissues at a pre-disease stage. It might be of interest to

correlate lung and plasma samples from the same subjects in

future. The second miRNA candidate that was identified in

our screen, let-7a, is also a tumor suppressor (Long et al.,

2009), which plays an important role in lung cancer

development (Osada & Takahashi, 2011).

In order to establish whether there was an association

between miR-124, let-7a and smoking, we looked at the

correlation between our miRNA candidates and two bio-

markers of cigarette smoke exposure that can be used as

surrogates of tobacco consumption (Table 1). The selected

biomarkers of tobacco smoke exposure TNEQ in urine and

CEVal (haemoglobin adduct of acrylonitrile) have very

different half-life/blood residency time. While TNEQ has a

short half-life of approximately 14–16 h (Hukkanen et al.,

2005), CEVal has a blood residency time of 4 months

(Scherer et al., 2014). Therefore, urinary TNEQ represents the

smoking behaviour over a couple of days, while CEVal is

representative of the smoking behaviour over multiple months

and is, therefore, not subject to occasional changes in smoking

habits. Furthermore, miRNAs have a plasma residency time

that varies between hours and weeks based on their sequence

(Ruegger & Grosshans, 2012); therefore, it is of interest to

perform correlations with biomarkers of smoke exposure with

different body residency times. We used a linear mixed model

analysis to estimate confounder-adjusted associations of the

differentially expressed miRNAs (miR-124 and let-7a with the

biomarker of exposure – haemoglobin adducts of acrylonitrile

(CEVal) and urinary total nicotine equivalents (TNEQ)).

Regression analysis indicated a significant dose–response

relationship between miR-124 expression and CEVal with no

adjustment for any confounding variables (Table 1A).

However, when adjusted for factors such as age, gender and

pack-years, this relationship became non-significant (Table

1B and C). Regardless of any adjustment, no significant

relationship was observed between miR-124 and TNEQ. let-

7a, in contrast to miR-124, did not show any dose–response

relationship with either of the two biomarkers when not

adjusted for any variables (Table 1A). However, a significant

association was seen with TNEQ when adjusted for age,

gender and pack-years (Table 1B and C). These results

indicate that the miRNA versus biomarker relationship is

dependent on other confounding factors, those could be

related to polymorphisms, diet, exercise and other lifestyle

factors. Interestingly, while let-7a was found to have a

correlation with TNEQ in urine, miR-124 showed a more

consistent trend with CEVal indicating that there is a potential

relationship with both long- and short-term smoking behav-

iour. Therefore, it would be of interest to investigate whether a

larger cohort could reduce the influence of the confounding

factors and add clarity to these conclusions. It is also worth

noting that differential miRNA expression could be driven by

specific smoke toxicants. For instance, differences in plasma

miRNA expression have been associated with PAH exposure

(Deng et al., 2014). Thus, better correlations might be

obtained if a toxicant driving the miRNA response can be

identified. Nevertheless, this is the first time to our knowledge

that the correlation between miRNAs differentially expressed

in smokers and biomarkers of exposure with very different

half-life has been investigated. Based on our assessment, we

would recommend using a variety of biomarkers of exposure

with different body residency times to establish correlation

with plasma miRNA.

Although our results appear promising and a robust

methodology and statistical approach was used, there are

also some limitations: (i) the panel of biomarkers were

selected from a limited number of miRNA candidates, from

Table 1. Correlation between miRNAs and biomarkers of cigarette smoke exposure.

miRNA CEVal (p-values) TNEQ (p-values)

(A) Not adjusted for any variables.
miR-124 0.0197* 0.2124
let-7a 0.5632 0.0692

Variables let-7a (p-values) miR-124 (p-values) Variables let-7a (p-values) miR-124 (p-values)

(B) Adjusted for age and gender.
CEVal 0.2708 0.0797 TNEQ 0.0199* 0.2103
Age 0.1341 0.6079 Age 0.0802 0.3441
Gender 0.7346 0.4345 Gender 0.3145 0.2237

(C) Adjusted for age and gender and pack years.
CEVal 0.5796 0.2217 TNEQ 0.0413* 0.5481
Age 0.1020 0.8705 Age 0.3134 0.7499
Gender 0.7699 0.4633 Gender 0.2789 0.3321
Pack years 0.4547 0.6334 Pack years 0.6352 0.5677

Bold values with * sign indicate a significant dose response relationship between miRNA and biomarkers of cigarette
smoke exposure.

DOI: 10.3109/1354750X.2014.1000970 Quantification of plasma microRNAs 129



which other important miRNAs involved in smoking-related

diseases might be excluded. Therefore, it might be worthwhile

in the future to use a more comprehensive panel of candidate

miRNAs. (ii) The effect of haemolysis on the quantification

of miRNAs in plasma has not been investigated in great

detail. The plasma samples were checked for haemolysis just

by visual assessment. Based on the number of papers which

have indicated that haemolysis of plasma and serum samples

can be a major cause of variation in altering miRNA levels

(Blondal et al., 2013; Kirschner et al., 2011), it might be

desirable to assess haemolysis by other analytical techniques

in future studies.

Conclusion

We have successfully identified differential serum levels of

miR-124 and let-7a between the smoking groups and non-

smokers. These miRNAs could be promising as potential

biomarkers of biological effect after cigarette smoke expos-

ure. It would be interesting to explore a larger sample number

at different time points and also use a lung model as a tissue

source to examine modified expression of miR-124 and let-7a.

Although miR-124 and let-7a show a correlation with

haemoglobin adduct biomarkers of tobacco exposure, we

found that the relationship is dependent on other confounding

factors. In future, it might be worth investigating the

correlation in a larger group of subjects with a larger

biomarker of exposure panel representing different chemical

families.
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