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Abstract

Herbicides have revolutionised weed management, increased crop yields and improved profitability allowing for an increase in
worldwide food security. Their widespread use, however, has also led to a rise in resistance and concerns about their environmental
impact. Despite the need for potent and safe herbicidal molecules, no herbicide with a new mode of action has reached the market
in 30 years. Although development of computational approaches has proven invaluable to guide rational drug discovery pipelines,
leading to higher hit rates and lower attrition due to poor toxicity, little has been done in contrast for herbicide design. To fill this gap,
we have developed cropCSM, a computational platform to help identify new, potent, nontoxic and environmentally safe herbicides.
By using a knowledge-based approach, we identified physicochemical properties and substructures enriched in safe herbicides. By
representing the small molecules as a graph, we leveraged these insights to guide the development of predictive models trained
and tested on the largest collected data set of molecules with experimentally characterised herbicidal profiles to date (over 4500
compounds). In addition, we developed six new environmental and human toxicity predictors, spanning five different species to
assist in molecule prioritisation. cropCSM was able to correctly identify 97% of herbicides currently available commercially, while
predicting toxicity profiles with accuracies of up to 92%. We believe cropCSM will be an essential tool for the enrichment of screening
libraries and to guide the development of potent and safe herbicides. We have made the method freely available through a user-
friendly webserver at http://biosig.unimelb.edu.au/crop_csm.
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Introduction
Herbicides are widely used chemical agents capable of
killing or inhibiting growth of unwanted plants, including
weeds and grass types, that might compromise crop
yields. Over the years, their adoption has revolutionised
weed management, increased crop yields and improved
profitability allowing for an increase in worldwide food
security.

Their widespread use, however, has also led to a rise in
resistance [1]. Without appropriate measures to bring
herbicides with new modes of action to the market,
combined with a concerted global effort at product
stewardship and regulation, herbicide resistance could
reduce world food production in the coming years by 20–
40%, leading to a global food security crisis [2]. Although

agricultural practices have improved, decades of success
by glyphosate and spiralling costs have stymied herbicide
development. Designing potent herbicides is particularly
challenging considering toxicity concerns, and currently
available and widely used weed control compounds have
shown to be potentially harmful for the environment,
livestock and human health. Exposure to agrochemicals
has been, for instance, shown to be one of the potential
drivers to the decline of pollinators worldwide [3]. Despite
the need for novel potent and safe herbicidal molecules,
no herbicide with a new mode of action has reached the
market in 30 years [4].

Developing herbicides, much like pharmaceuticals,
involves a careful balance between efficacy and safety. In
the pharmaceutical industry, drug development pipelines
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Figure 1. Modelling small molecule activity using graph-based signatures. Small molecules are modelled as unweighted, undirected graphs where nodes
represent atoms and edges represent chemical bonds, with atoms labelled via pharmacophore modelling (left panel). All-pairs shortest paths distances
(d) are calculated between different label types (middle panel) to represent molecules, their geometry and physicochemical properties as cumulative
distributions (right panel, considering different cutoff/distance values).

have tackled these challenges by modelling and optimis-
ing these important parameters early in the development
process, which has been assisted by the implementation
of computational pipelines. This has led, in general,
to increased hit rates and decreased attrition due
to poor toxicity profiles and, in the process, reduced
development time, costs and animal testing [5–10].
Although many computer-aided approaches have proven
invaluable for drug development, in contrast little has
been done to aid the development of safe and potent
agrochemicals. A relevant recent development has been
the work of Oršolić et al. to establish structure–activity
relationships linking herbicides with modes of action and
weed selectivity [11].

To fill this gap, here we describe the design of the first
computational method to support and guide rational
development of safe and potent herbicides, cropCSM,
using the largest curated small molecule database of
experimentally characterised herbicidal activity to date.
Our method uses the concept of graph-based signatures,
represented as a cutoff scanning matrix (CSM) (Figure 1),
to model small molecule physicochemical properties
coupled with machine learning to train and validate pre-
dictive tools capable of accurately identifying molecules
with potent herbicidal activity, as well as characterise
their environmental and human toxicity profiles.

Materials and methods
cropCSM development was divided into four main steps,
including (i) data acquisition, which involved obtaining
data relating small molecules to their herbicidal activity
as well as human and environmental toxicity profiles; (ii)

feature engineering, which involved calculating molec-
ular properties and performing graph-based modelling
to extracting relevant information used as evidence in
the next steps to (iii) identify what makes up potent and
safe herbicides, identifying enriched substructures and
qualitatively assessing molecular properties and to (iv)
train and test predictive model using supervised learning
algorithms.

Data for herbicidal activity
A dataset of 4513 experimentally characterized, struc-
turally diverse small molecules and their herbicidal
activity profiles was obtained from Sukhoverkov et al.
[12]. These were labelled either as active (997 molecules)
or inactive (3516 molecules). They had an average
molecular weight of 380 Da and logP of 2.4 (Figure S1). A
database of 356 commercial herbicides was also used to
evaluate cropCSM [12].

Data for environmental and human toxicity
We have developed new predictors based on six environ-
mental and human toxicity data sets with
experimentally characterised molecules. Environmental
toxicity data sets included (a) honey bee (Apis mellifera)
toxicity, which was composed of 247 toxic and 353 atoxic
molecules [13]; (b) avian toxicity, composed of 461 small
molecules and their effects on mallard duck (66 toxic and
395 atoxic) [14] and (c) flathead minnow toxicity, with
lethal concentration values (LC50) for a diverse set of
554 molecules [15]. Human toxicity data sets included (1)
AMES toxicity, with compounds labelled based on their
carcinogenic potential (4632 carcinogenic and 3470 not
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Figure 2. cropCSM: predicting safe and potent herbicides. Using chemical substructure mining, we identified common enriched substructures in
compounds with herbicidal activity (A-left). Active compounds presented similar molecular properties of approved drugs (A-right). Performance of
herbicide and environmental-toxicity predictors is shown in (B). Our herbicide predictor was able to accurately identify active compounds with
AUC > 0.85 on cross-validation and blind test. Three environmental toxicity models have been developed and were capable of successfully measuring
minnow toxicity (as a regression task, centre graph) as well as identifying potentially harmful compounds for Bees and Mallard (right-hand side graph).
Sensitivity refers to the true positive rate, whereas specificity to the true negative rate.

carcinogenic) [16]; (2) oral acute toxicity in rats, denoted
as lethal dose (LD50) values for 10 145 compounds
[17] and (3) oral chronic toxicity in rats values for 567
compounds [18].

Graph-based signatures and feature engineering
Graph modelling is an invaluable tool to model biological
entities, including small molecules [19–22]. Over the
years we have proposed and developed the concept
of graph-based signatures (based on CSM concept
[23]) to represent physicochemical and geometrical
properties of a range of macromolecules [24–29] and their
interactions [30–37]. These have also been successfully
adapted to represent small molecules pharmacokinetics,
toxicity and bioactivity [38–41]. Figure 1 depicts the main
steps involved in feature engineering with graph-based
signatures. Small molecules are modelled as unweighted,
undirected graphs where nodes represent atoms and
edges represent covalent bonds. Via pharmacophore
modelling [38], atoms/nodes are labelled based on
their physicochemical properties. This atomic graph

representation of small molecules accounts for both
their shape and composition, from which information
is extracted as distance patterns. To do so, all-pairs
shortest paths distances are calculated, and molecules
are then represented simply as cumulative distribution
functions of atom distances. These distances are further
categorised based on their respective physicochemical
properties (pharmacophores) and converted as a feature
vector used as evidence to train and test predictive
methods. Complementary physicochemical properties
are calculated and included using the RDKit cheminfor-
matics library [42] and included in the feature vector.

Model selection and validation
Different supervised learning algorithms available on the
scikit-learn Python library [43] were assessed with best
performing models (Random Forest, n_estimators = 300 for
herbicide activity). Information on learning algorithms
and hyperparameters for remaining models is available
as Table S1 and selected based on accuracy, Matthew’s
correlation coefficient (MCC) and the area under the
Receiver operating characteristic curve (ROC curve)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac042#supplementary-data
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Figure 3. Performance of cropCSM on commercially available herbicides. Our method was able to correctly classify 97% of commercial herbicides (344
out of 356, top-left graph). The figure also shows the proportion of compounds predicted to be environmental or human toxic. Molecules were more
frequently predicted as AMES toxic (17%, 60 out of 356) and minnow toxic (20%, 70 out of 356).

Table 1. Performance of cropCSM on identifying molecules with
herbicidal activity.

Data set Performance metrics

Accuracy AUC MCC

Cross-validation 87% 0.85 0.60
Blind test 87% 0.87 0.59

(AUC) for classification tasks and Pearson’s correlation
[44] and root mean squared error (RMSE) for regression
tasks. Hyperparameter tuning was performed with a grid
search method implemented in scikit-learn; however, no
significant improvement in performance was observed.
Performance was assessed under stratified 10-fold cross-
validation (obtained using scikit-learn Python library)
[29, 30, 45] as well as using nonredundant blind tests
(blind tests were composed of held out sets accounting
for 10% of molecules selected at random and used as
external validation). A feature selection step was used
to reduce dimensionality and improve performance via
a stepwise forward greedy selection approach [24, 28–30,
46–48].

Substructure mining
To identify what makes up a herbicide, molecular
substructure mining was employed to identify substruc-
tures that were enriched in the herbicidal class and
depleted in the nonherbicidal class. For this purpose, the
molecular substructure miner (MoSS) [49] tool was
used, and different minimum support/frequency cutoffs
tested. We considered 5- and 10-fold differences between
support of positive and negative classes (1%, 5%, 1–10%
and 2–10%).

Data visualization
t-distributed stochastic neighbor embedding (t-SNE)
plots were generated using the R package ‘tsne’ with
default parameters.

Results
What makes an herbicide? Correlating molecular
properties with herbicidal activity
Using experimental information on the herbicidal
activity for a collected data set of over 4500 small
molecule compounds (22% with herbicidal activity), we
investigated what physicochemical properties of the
compounds translate to herbicidal activity.

Herbicidal molecules were enriched in saturated car-
bon chains and benzene substructures, compared with
the inactive molecules (Figure 2A). The majority (90%)
of the active compounds tended to be < 517 Da, have
up to 9 acceptors and 4 donors, fewer than 9 rotatable
bonds and a logP between −1.7 and 6.1 (Figure S1) (95%
<700 Da, 11 rotatable bonds, 11 acceptors, 6 donors and
logP between −3.0 to 6.1). This is similar, although slightly
more lenient, than the widely used Lipinski’s Rule of
Five for orally bioavailable drugs. Interestingly, but con-
sistently, there was no significant distinction in physic-
ochemical properties between herbicides and approved
drugs, as illustrated in the t-SNE plot (Figure S2). Com-
pared with all U.S. food and drug administration (FDA)-
approved drugs, however, herbicides were enriched in
substructures involving chlorine.

Herbicides have been previously compared with phar-
maceuticals [10] with our analysis being consistent with
previous results across smaller datasets [50–54], which
have shown that physicochemical properties of herbi-
cides are similar to orally delivered drugs, although the
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Figure 4. Performance on cross-validation of human-toxicity predictors. Three models have been developed and were capable of accurately measuring
acute and chronic rat toxicity (as regression tasks, left and centre graphs) as well as identifying potentially carcinogenic compounds (Ames toxicity as a
classification task, right-hand side graph). For regression models, two Pearson’s correlation coefficients are shown: one obtained for the whole data set
(in black) and one on 90% of the data, after 10% of outliers or poorly predicted points are removed (in red) for analysis purposes to assess the potential
effects of outliers on performance (depicted as red dots).

Table 2. Performance of cropCSM on identifying
environmentally toxic compounds as a regression task

Environmental Toxicity Cross-validation

Pearson’s (r) RMSE

Minnow toxicity (LC50)
cropCSM 0.86 0.74
pkCSM 0.74∗ 0.84
admetSAR 0.57∗ 0.67
Oral rat chronic toxicity
cropCSM 0.75 0.56
pkCSM 0.68∗ 0.74
admetSAR 0.50∗ 0.73
Oral rat acute toxicity (LD50)
cropCSM 0.79 0.62
pkCSM 0.66∗ 0.68
admetSAR 0.61∗ 0.32

∗Denotes a statistically significant performance difference obtained via a
Fisher r − to−z transformation, by calculating the z value, using a threshold of
P ≤ 0.05 for significance. The table presents performance assessed on cross-
validation.

Table 3. Performance of cropCSM on identifying
environmentally toxic compounds as a classification task

Environmental toxicity Cross-validation

Accuracy AUC MCC

Honey bee toxicity
cropCSM 87% 0.81 0.65
Wang et al. 84% 0.84 0.60
Avian toxicity
cropCSM 92% 0.83 0.65
Zhang et al. 91% 0.91 NA
AMES toxicity
cropCSM 87% 0.94 0.74
pkCSM 84% 0.91 NA
admetSAR 85% 0.91 NA

The table presents performance assessed on cross-validation. NA: Not
available.

former tend to be smaller, with fewer proton donors,
lower partition coefficient [53, 54].

These insights were used as a platform to build a
supervised machine learning predictive model to identify
herbicidal compounds, where the small molecule struc-
ture was represented as a graph-based signature, termed
CSM, in which the atoms are represented as nodes, and
covalent interactions between them as edges [38, 45].
Under stratified 10-fold cross-validation, we were able
to correctly identify 82% of the active molecules with
an overall accuracy of 87%, area under the ROC curve
(AUC) of 0.85 and MCC of 0.60 (Figure 2B and Table 1).
For compounds over 500 Da, cropCSM achieved an AUC of
0.81, illustrating the robust performance of the approach
on larger compounds. A precision-recall curve (PR
curve) was also calculated (Figure S3) to investigate the
compromises between type I and type II errors. cropCSM
achieved a PR AUC of 0.93, demonstrating a well-tuned
model, with good performance and balance between type
error I and II. When the model was evaluated against a
blind test set of 106 active and 345 inactive molecules, we
achieved comparable performance (87% accuracy, AUC
of 0.87 and MCC of 0.59). This provided confidence that
the approach can be generalized and used with unknown
sets of putative herbicidal molecules active against a
target of interest.

To further validate the cropCSM models and demon-
strate their real-world applicability, they were applied
to a set of 356 commercial herbicides [12]. Over 97%
were correctly identified as herbicidal (Figure 3). Of those
that were not, they included the natural fatty acid oleic
acid and fragment-like molecules such as dazomet and
pentachlorophenol.

Predicting environmental toxicity
Agrochemicals have been linked to a range of unwanted
negative effects on both health and the environment,
including glyphosate-free herbicides such as benza-
lkonium chloride [55]. To help identify safe herbicides,
complementary models were developed to capture the
impact of a small molecule on honey bee (A. mellifera),

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac042#supplementary-data
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Figure 5. cropCSM web server. (A) Depicts the landing page for the resource. By clicking on ‘Prediction’ at the top menu, users are directed to the job
submission page (B). There users have the options to either provide a set of molecules as a SMILES file (1) or individual molecules as a SMILES string (2).
After clicking on ‘Run prediction’, and once calculations are complete, users are redirected to a results page (C) where predictions for herbicidal activity
as well as toxicity profiles are presented in tabular format (3). Users have the options to download the results (4).

mallard (Anas platyrhynchos) and flathead minnow
(Pimephales promelas) toxicity, in addition to measures
of human health, including AMES toxicity, rat LD50
and oral chronic toxicity. Although assessing molecu-
lar substructures enriched in toxic compounds (based on
these datasets), (Figure S4), we identified a prevalence
of complex ring structures. Of note, structures rich in
chlorine, while enriched in herbicides, were also enriched
in compounds that were toxic for mallard and minnow,

highlighting a potential inherent difficulty in optimising
potency and safety when designing herbicides.

Tables 2 and 3 depict the performance of cropCSM
models for identifying toxic molecules as regression and
classification tasks, respectively, assessed during cross-
validation. Overall, we were also able to identify toxic
molecules as classification and regression tasks with
accuracies of up to 92% and Pearson’s correlations of
up to 0.86, outperforming previous predictive approaches

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac042#supplementary-data
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[13, 14, 38, 56], including pkCSM, admetSAR and the
works from Wang et al. and Zhang et al. Regarding envi-
ronmental toxicity models, the minnow toxicity (LC50)
model achieved a Pearson’s correlation of 0.86 (RMSE of
0.74), a performance that increases to 0.93 on 90% of
the data (after removing 10% outliers – these are only
removed for analysis purposes to assess the potential
effects of outliers on performance), whereas honeybee
and avian toxicity classifiers achieved AUCs of 0.81 and
0.83 (Figure 2B). For human health toxicity predictors,
cropCSM achieve Pearson’s correlation coefficients of
0.79 and 0.75 for oral rat acute and chronic toxicity,
respectively, and an AUC of 0.94 while predicting AMES
compounds (Figure 4).

Using these validated methods, we set out to assess the
toxicity profiles of currently commercially available her-
bicides. The list of 356 commercial herbicides was sub-
mitted to the predictors as an independent test. Figure 3
depicts a large proportion of compounds predicted to
be environmental or human toxic, with molecules more
frequently predicted as either AMES toxic (17%, 60 out of
356) or minnow toxic (20%, 70 out of 356). Interestingly,
widely used herbicides glyphosate and glufosinate were
predicted as nontoxic to humans. This is interesting, as
while glyphosates have been proposed to be carcinogenic,
there is growing support that it is the inert products
that are responsible for damage to human beings and
the environment [57], which would be consistent with
the predictions from cropCSM. When grouping commer-
cial herbicides based on their mode of action, a signifi-
cant proportion of minnow toxic compounds belonged to
the class of inhibitors of acetyl CoA carboxylase (14/24,
58% versus 20% overall), AMES toxic compounds were
enriched in the class of Inhibitors of cell division (10/28,
36% versus 17% overall) and compounds involved in
Rat Chronic toxicity were more frequent in the class
of inhibitors of lipid synthesis (7/19, 37% versus 14%
overall). These results add credence to the tool to rapidly
identify potentially hazardous molecules early in the
development process, which has the potential to signifi-
cantly reduce costs and failure rates.

The cropCSM web server
The backend of the cropCSM web server was developed
using the Python Flask framework version 0.12.3 and
the front end using Bootstrap framework version 3.3.7.
The system is hosted by a Linux server running Apache.
Figure 5A depicts the cropCSM web interface. Users can
submit molecules to the server either individually as
SMILES strings or in batch as SMILES files (Figure 5B).
Prediction results are displayed in tabular format
(Figure 5C), which are also made available to download
as a comma-separated file.

Conclusions
Here we described cropCSM, the first free and easy-to-
use in silico platform dedicated to assist the development

of herbicides that are potent, but also nontoxic and
environmentally safe. cropCSM is optimally designed to
evaluate the herbicide potential and toxicity of small
molecular compounds up to 2 kDa, consistent with the
training and validation data sets. We employed graph-
based signatures to model small molecule physicochem-
istry of the largest collected data set of molecules with
experimentally characterised herbicidal profiles to date
and demonstrated their efficacy. We anticipate future
iterations of cropCSM that will draw upon larger datasets
and as a result will have a higher predictor capability,
allowing for a greater increase in accuracy and correla-
tion. We believe cropCSM will be an invaluable tool to
assist rational design of new potent herbicidal molecules
that are also safe for humans and the environment.
The tool has been made available as a user-friendly web
interface at https://biosig.unimelb.edu.au/crop_csm.

Key Points

• Although very little has been done to assist the designing
of potent and safe herbicides computationally, cropCSM
fills this gap.

• cropCSM can accurately identify small molecules with
potential herbicidal activity as well as characterise their
toxicity and safety profiles.

• A web server conveniently provides cropCSM’s models in
a free and easy-to-use interface.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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