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Abstract: The present work aimed to compare the small, neutral and monoaromatic oxime,
isatin-3-oxime (isatin-O), to the commercial ones, pralidoxime (2-PAM) and obidoxime, in a search
for a new potential reactivator for acetylcholinesterase (AChE) inhibited by the pesticide paraoxon
(AChE/POX) as well as a novel potential scaffold for further synthetic modifications. The multicriteria
decision methods (MCDM) allowed the identification of the best docking poses of those molecules
inside AChE/POX for further molecular dynamic (MD) studies, while Ellman’s modified method
enabled in vitro inhibition and reactivation assays. In corroboration with the theoretical studies,
our experimental results showed that isatin-O have a reactivation potential capable of overcoming
2-PAM at the initial moments of the assay. Despite not achieving better results than obidoxime,
this molecule is promising for being an active neutral oxime with capacity of crossing the blood–brain
barrier (BBB), to reactivate AChE/POX inside the central and peripheral nervous systems. Moreover,
the fact that isatin-O can also act as anticonvulsant makes this molecule a possible multipotent
reactivator. Besides, the MCDM method showed to be an accurate method for the selection of the
best docking poses generated in the docking studies.

Keywords: acetylcholinesterase; neutral oxime; molecular modeling; multicriteria decision making;
TOPSIS-AHP; Ellman’s method
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1. Introduction

The intoxication by organophosphate compounds (OPs) remains a threat to human health,
with thousands of deaths every year [1]. The toxicity of these compounds is due to the inhibition of the
enzyme acetylcholinesterase (AChE; EC 3.1.1.7), leading to the accumulation of the neurotransmitter
acetylcholine (ACh), and subsequent over-activation of cholinergic receptors in many parts of the body.
Poisoning by OPs causes physiologic consequences on the central and peripheral nervous systems
(CNS and PNS). Thus, miosis, bronchorrhea, bronchoconstriction, bradycardia, emesis, skeletal muscle
contraction, tachycardia, seizures, respiratory arrest and other symptoms may occur, leading to
death [2].

The treatment for OPs poisoning is based on the administration of some drugs combined:
an anticholinergic agent (e.g., atropine), an anticonvulsant drug (e.g., diazepam) and a mono- or
bispyridinium AChE reactivator (e.g., pralidoxime, obidoxime, or trimedoxime) [3]. Extensive studies
have investigated the mechanism of action of the oxime group in the reactivation of AChE inhibited
by OPs [4–17]. Due to its structural and molecular properties, oximes are considered the most potent
reactivators for AChE inhibited by OPs up to the present moment. The high affinity for AChE
and nucleophilicity of these compounds allows the displacement of the OP from the catalytic site,
enabling the reactivation of AChE. Pralidoxime (2-PAM) (Figure 1) is a monoquaternary oxime and
one of the most employed as antidote today, although research indicates that bisquaternary oximes
are more effective in the reactivation process [18]. 2-PAM is commonly used in the United States,
while bispyridinium oximes, such as obidoxime (Figure 1), are used in European countries [19].
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Despite being used commercially, quaternary oximes still present serious disadvantages. Due to
their permanent charge, they poorly cross the blood–brain barrier (BBB), limiting their efficiency as
AChE reactivators in the CNS and PNS [20]. Moreover, there is no universal oxime. They have highly
variable efficiency depending on the nature of the OP [21]. For this reason, studies are focused
on looking for oximes that could be efficient against a larger number of OPs, conjugated with
an appropriate penetration in the BBB. In this sense, neutral oximes (Figure 2) have been proposed and
studied by several authors [11,18,22–25].

Isatin (1H-indole-2,3-dione) and its derivatives have been reported in the literature with vital
importance in medicinal chemistry. These molecules have presented pharmacological activities
such as anticancer, antiviral, antimicrobial, antifungal, anti-inflammatory, antioxidant, analgesic,
anticonvulsant, HIV reverse transcriptase inhibition, and antidiabetic [26–30]. Recently, they were also
used to design some new compounds for the treatment of neurodegenerative diseases and new AChE
inhibitors, demonstrating to also be able to interact with cholinesterases. One of the characteristics of
this group of molecules is the possibility of crossing the BBB [31,32].

Among the derivatives of isatin, isatin-3-oxime (isatin-O), presented in Figure 1, was identified as
an anticonvulsant [33,34]. This characteristic is essential for the treatment of OP poisoning, once current
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treatments require the use of the three combined drugs mentioned above (an anticonvulsant,
an anticholinergic and an oxime). However, the use of this combined therapy increases the
concentration of drugs in the organism, and may result in undesirable side effects. Thus, the use of
a multipotent drug with more possible actions, such as anticonvulsant and AChE reactivator, could
contribute to minimize this problem.Molecules 2018, y, x  3 of 18 
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In this way, aiming to contribute for the discovery of new active neutral oximes, that could also
act as anticonvulsants, and a potential scaffold for further synthetic modifications, we conducted in
silico and in vitro studies of the isatin-O on AChE from Electrophorus electricus inhibited by the OP
paraoxon (EeAChE/POX), and compared our results to those of the commercial oximes 2-PAM and
obidoxime. These references were chosen due to their efficacy as in vivo AChE reactivators and for
being the most commonly used oximes for the treatment of OP poisoning [20]. They have also been
used as standards of comparison in several published works [6,15,20,35–39]. Besides, the choice of
these oximes allowed us to compare the results with two structurally different references, 2-PAM,
which is more similar to isatin-O, and obidoxime with a larger molecular chain (see Figure 1). Another
critical aspect on this choice is the known fact that bisquaternary obidoxime is a more potent reactivator
for pesticide-inhibited AChE than monoquaternary 2-PAM [35].

In the in silico studies, we used docking and molecular dynamic techniques and a new approach
for evaluation and selection of poses generated in the molecular docking. Due to the large number
of poses produced in the molecular docking step, the process of evaluation and selection is complex.
Thus, we suggest the use of decision support methods that consider multicriteria to generate broader
and more reliable solutions. The use of an efficient method in this step is important because the chosen
pose is typically used to represent the behavior of the molecule in the docking studies and as initial
parameters for the molecular dynamic studies. Thereby, in this work, we suggest the adoption of
a multicriteria decision making methods (MCDM) to select the best poses.

For the in vitro studies, we used an Ellman’s [40] modified method [41]. Since its first publication,
this is the most common and relevant assay for investigating AChE activity [42,43]. The method
was developed in the early 1960s [40] and it is still in use today, with some further improving
modifications [41,44]. Despite some limitations eventually found, such as the lack of low detection
limit and frequent background perturbations, this method has been extensively used [42] due to its
simplicity, accuracy, low cost and the large number of validated and published assays.
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2. Results and Discussion

2.1. Reactivation Tests

Figures 3 and 4 present the results of the reactivation tests for isatin-O, 2-PAM and obidoxime,
at concentrations of 10 and 100 µmol/L respectively.

Molecules 2018, y, x  4 of 18 

 

initial parameters for the molecular dynamic studies. Thereby, in this work, we suggest the adoption 
of a multicriteria decision making methods (MCDM) to select the best poses. 

For the in vitro studies, we used an Ellman’s [40] modified method [41]. Since its first 
publication, this is the most common and relevant assay for investigating AChE activity [42,43]. The 
method was developed in the early 1960s [40] and it is still in use today, with some further improving 
modifications [41,44]. Despite some limitations eventually found, such as the lack of low detection 
limit and frequent background perturbations, this method has been extensively used [42] due to its 
simplicity, accuracy, low cost and the large number of validated and published assays. 

2. Results and Discussion 

2.1. Reactivation Tests 

Figures 3 and 4 present the results of the reactivation tests for isatin-O, 2-PAM and obidoxime, 
at concentrations of 10 and 100 μmol/L respectively. 

 
Figure 3. Reactivation efficacy of the oximes for EeAChE/POX at 10 μmol/L. 

 
Figure 4. Reactivation efficacy of the oximes for EeAChE/POX at 100 μmol/L. 

Figure 3. Reactivation efficacy of the oximes for EeAChE/POX at 10 µmol/L.

Molecules 2018, y, x  4 of 18 

 

initial parameters for the molecular dynamic studies. Thereby, in this work, we suggest the adoption 
of a multicriteria decision making methods (MCDM) to select the best poses. 

For the in vitro studies, we used an Ellman’s [40] modified method [41]. Since its first 
publication, this is the most common and relevant assay for investigating AChE activity [42,43]. The 
method was developed in the early 1960s [40] and it is still in use today, with some further improving 
modifications [41,44]. Despite some limitations eventually found, such as the lack of low detection 
limit and frequent background perturbations, this method has been extensively used [42] due to its 
simplicity, accuracy, low cost and the large number of validated and published assays. 

2. Results and Discussion 

2.1. Reactivation Tests 

Figures 3 and 4 present the results of the reactivation tests for isatin-O, 2-PAM and obidoxime, 
at concentrations of 10 and 100 μmol/L respectively. 

 
Figure 3. Reactivation efficacy of the oximes for EeAChE/POX at 10 μmol/L. 

 
Figure 4. Reactivation efficacy of the oximes for EeAChE/POX at 100 μmol/L. Figure 4. Reactivation efficacy of the oximes for EeAChE/POX at 100 µmol/L.

The results of Ellman’s tests [40,41] show that isatin-O can reactivate EeAChE/POX at 10 and
100 µmol/L. At 10 µmol/L, it reached around 8% reactivation in the initial 10 min. At this concentration
and time, 2-PAM reached close to 6% reactivation. This shows a good performance of isatin-O at short
times and low concentrations, better than the results achieved by 2-PAM. Considering literature reports
that 5% to 10% of reactivation is enough for the survival of the neurotoxic-intoxicated victims [45–47],
this result points to isatin-O as a potential AChE reactivator. At 100 µmol/L, despite showing lower
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reactivation capacity over time, when compared to 2-PAM and obidoxime, isatin-O reached around
23% reactivation in the initial 120 min.

Among the oximes tested, the one with the highest potential for reactivation was obidoxime.
This result converges with other publications [9,10,44,48]. The test performed with this oxime at
100 µmol/L indicates that the reactivation reaches a higher level after 30 min (over 90%). After this time,
the reactivation rate decreases slightly. In the lower concentration range (10 µmol/L), the reactivation
starts later and does not reach a maximum value before 120 min. Thus, at higher concentrations,
the reactivation is more effective, allowing to reach the optimal value in a shorter time. In silico studies
complemented and better explained the results of the in vitro tests and the molecular interactions
present in the enzymatic reactivation.

2.2. Molecular Docking Studies

To validate the docking protocol, redocking studies were performed using 2-PAM from the
crystallographic structure as reference. The best conformation obtained (Figure 5), chosen according
to the criterion of better superposition of the non-hydrogen atoms, presented random mean square
deviation (RMSD) of 0.535 Å, intermolecular energy of −79.97 Kcal/mol, and hydrogen bonding
energy of −2.03 Kcal/mol. Since a RMSD value under 2.0 Å is considered acceptable [48], this result
validates the docking protocol used.
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After validation, molecular docking studies were performed for the oximes inside EeAChE/POX,
and most of the results obtained corroborated the in vitro assay. Table 1 presents a summary of the
docking results for the best poses selected for each oxime. The following parameters were considered:
(1) distance between the oxygen atom of the oxime and the phosphorus atom of POX; (2) intermolecular
energy; (3) energy of interaction related to H-bonds; (4) residues involved in H-bond interactions
and, in the last column; and (5) the in vitro results of percentage of reactivation promoted by the
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oximes at 10 min, and at the concentration of 10 µmol/L. The choice of 10 min of reactivation time
was made to evaluate the initial action of the reactivator in a possible intoxication treatment [35].
The best poses for each oxime were chosen using the MCDM [49–51] hybrid method: Technique for
Order Preference by Similarity to Ideal Solution–Analytic Hierarchy Process (TOPSIS-AHP) [52–57].
The results are discussed in the next section. Obidoxime presented the lowest binding and H-bond
interaction energies. This suggests higher affinity for the active site in comparison to 2-PAM and
isatin-O. The highest energy values observed for 2-PAM point to an advantage for isatin-O over 2-PAM
in terms of potential reactivation at the first moments of intoxication and corroborate the in vitro
results. In addition, isatin-O showed the shortest O(oxime)-P(POX) distance. This means that this oxime
can get closer to POX than the commercial oximes, to trigger the reactivation reaction.

Table 1. Docking results for the oximes inside EeAChE/POX.

Oxime Distance
O(oxime)-P(POX) (Å)

Intermolecular
Energy

(kcal/mol)

H-Bond
Energy

(kcal/mol)

Interaction
Residues

% Reactivation
(Mean in 10 min—
Conc. 10 µmol/L)

Isatin-O 4.03 −75.22 −1.60 Ser125 6.37

Obidoxime 4.60 −122.48 −11.54 Ser203 Tyr124
Tyr337 Asp74 24.55

2-PAM 8.14 −87.18 −2.03 His447 4.13

Obidoxime presented the highest number of H-bond interactions, probably due to the two oximate
groups present on its structure. Results for the O(oxime)-P(POX) distance, intermolecular and H-bond
energies, and residues of interaction, point to this oxime as the best reactivator, followed by isatin-O,
and finally 2-PAM. This is in corroboration with the better reactivation results presented by obidoxime,
and suggest that isatin-O is a potential reactivator for AChE/POX. However, after 10 min, 2-PAM
presented better reactivation results than isatin-O. This fact may occur due to the interaction of 2-PAM
with one of the residues of the catalytic triad, His447, and also because 2-PAM is a positively charged
molecule, a fact that favors interactions in the active site and, in consequence, the stabilization of the
compound inside the enzyme. Figure 6 shows the best poses for isatin-O, obidoxime and 2-PAM.
These poses were selected using the MCDM [49–51] hybrid method TOPSIS-AHP [52–57].
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2.3. MCDM Method

This work adopted a hybrid multicriteria MCDM [49–51] hybrid method TOPSIS-AHP [52–57].
AHP method [55–57] was used to define the criteria weights and TOPSIS method [52–54] was used for
the general assessment of poses from the docking studies. The methodology used in the docking
calculations allowed the generation of 300 poses for each oxime studied (isatin-O, 2-PAM and
obidoxime), totalizing 900 poses. This shows the importance of having an appropriate method to
select the best poses, which will serve as the basis for evaluation of the interactions of these oximes in
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the active site, and further molecular dynamics simulations. Although the MCDM methods [49–51]
are efficient, 300 poses generate a very large evaluation matrix, resulting in extensive and laborious
calculations. Thus, to reduce the number of poses and to optimize the calculations, a screening
was done. The following elimination criteria were considered in the screening: (1) positive interaction
energy; (2) positive H-bond energy; (3) complete absence of interaction with active site residues;
and (4) similarity. In addition, from the remaining poses, one per docking run was selected to remain
in the evaluation, considering the lowest O(oxime)-P(POX) distance, and the lowest interaction energy.
As 10 docking runs were done per each oxime, at least the best 10 poses remained to be evaluated.

The evaluation steps described in the TOPSIS methodology [52–54] were followed. First,
the performances of the poses were obtained using the docking method described. A decision matrix
(DM) was constructed for each oxime, as shown in Table 2, considering the following criteria: distance
O(oxime)-P(POX), intermolecular energy, H-bond energy and interaction residues (H-bonds). Table 2
reveals the values for the criteria weights as well as when the criterion is increasing or decreasing,
represented by max and min values, respectively. The poses with better performances, according to the
evaluation using the hybrid MCDM method TOPSIS-AHP [52–57], are highlighted and shown in bold.

Table 2. Decision matrix (isatin-O and obidoxime). The poses with better performances are shown
in bold.

Criterion Distance
O-P (Å)

Intermolecular
Energy (kcal/mol)

H-Bond Energy
(kcal/mol)

Interaction
Residues

Max/Min Min Min Min Max
Weight 0.633 0.228 0.044 0.095

Isatin-O
Dock1 5.19 −81.13 −4.92 2
Dock2 4.50 −94.18 −2.65 2
Dock3 3.75 −84.51 −0.6 1
Dock4 5.76 −81.33 −7.76 3
Dock5 4.68 −93.39 −2.53 3
Dock6 5.44 −71.62 −2.25 2
Dock7 3.76 −76.95 −2.18 1
Dock8 4.50 −78.03 −0.96 3
Dock9 4.60 −92.04 −3.77 3

Dock10 4.50 −85.00 −0.24 2
Obidoxime

Dock1 5.28 −123.99 −8.78 4
Dock2 4.62 −125.10 −7.71 3
Dock3 5.42 −103.54 −5.33 2
Dock4 5.3 −111.45 −11.7 3
Dock5 5.29 −122.32 −5.20 3
Dock6 5.15 −122.76 −8.67 4
Dock7 5.3 −118.75 −7.22 3
Dock8 4.6 −122.48 −11.54 4
Dock9 5.28 −121.38 −7.73 3

Dock10 5.12 −111.4 −10.23 2

The weights of the criteria defined for the evaluation were determined using the AHP
method [55–57]. Four specialists (authors) evaluated the importance of the criteria presented.
The weight evaluation matrix was generated with the geometric mean of the evaluations of each
specialist, using the aggregation of individual judgments (AIJ), which transforms individual pairwise
comparison matrices (PCMs) into a PCM group from which the group priorities are then derived [58].
Table 3 presents the individual PCMs of the four specialists who participated in the evaluation of the
criteria, the PCM of the group, calculated with the AIJ aggregation method [59], and the CRs of the
matrices. As can be seen, all the evaluation matrices, both individual and of the group, presented
CR < 0.1, a result which confirms the good quality and approves the evaluation matrices. Therefore,
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the values of the weights calculated with the AHP method [55–57] present in Table 3 could be used
with reliability in the TOPSIS method [52–54] for evaluation of the poses.

Table 3. Pairwise Comparison Matrices (PCMs).

DM1 Crit 1 Crit 2 Crit 3 Crit 4 DM2 Crit 1 Crit 2 Crit 3 Crit 4

Crit 1 1 5 9 7 Crit 1 1 4 9 7
Crit 2 1/5 1 5 4 Crit 2 1/4 1 7 4
Crit 3 1/9 1/5 1 1/3 Crit 3 1/9 1/7 1 1/4
Crit 4 1/7 1/4 3 1 Crit 4 1/7 1/4 4 1

CR = 0.09 CR = 0.09

DM3 Crit 1 Crit 2 Crit 3 Crit 4 DM4 Crit 1 Crit 2 Crit 3 Crit 4

Crit 1 1 5 9 7 Crit 1 1 4 8 6
Crit 2 1/5 1 5 3 Crit 2 1/4 1 5 4
Crit 3 1/9 1/5 1 1

4 Crit 3 1/8 1/5 1 1/3
Crit 4 1/7 1/3 4 1 Crit 4 1/6 1/4 3 1

CR = 0.08 CR = 0.08

GrPCM Crit 1 Crit 2 Crit 3 Crit 4 Wi = Weights

Crit 1 1 4.47 8.74 6.74 0.633
Crit 2 0.22 1 5.44 3.72 0.228
Crit 3 0.11 0.18 1 0.29 0.044
Crit 4 0.15 0.27 3.46 1 0.095

CR = 0.083

Crit 1, Distance O(oxime)-P(POX); Crit 2, Intermolecular energy; Crit 3, H-bond energy; Crit 4, Interaction residues;
DM, decision maker/expert; GrPCM, Group pairwise comparison matrix.

All calculations described in the methodology for the evaluation of poses were done using the
TOPSIS method [52–55] with spreadsheets elaborated in excel software©. Figure 7 shows the results
of the similarity coefficient calculations, for s = 2, of isatin-O and obidoxime. It was thus possible
to select the best pose for each molecule, since the MCDM method employed generates, as a result,
ordered poses, from the closest to the most distant solution, allowing the identification of the ideal
solution. As 2-PAM was submitted to redocking, with its conformation present in the crystalline
structure removed from the PDB, it was not necessary to carry out the selection of pose calculations,
since, in this case, the selection met the redocking criterion. The best poses of each oxime studied
were selected, as presented in Table 2 and Figures 6 and 7, and then used in the further molecular
dynamic simulations.



Molecules 2018, 23, 2954 9 of 18

Molecules 2018, y, x  9 of 18 

 

 
Figure 7. Results for the evaluation of poses through the hybrid MCDM TOPSIS-AHP method. (Left): 
Isatin-O; (Right): Obidoxime. 

2.4. Molecular Dynamic Study 

MD simulations were performed with the best poses obtained from docking studies. Results 
show that, for all systems, the total energy tends to stabilize after 2.5 ns of simulation, with the 
average values for all complexes around −9.82 × 105 kJ/mol, as shown in the total energy plots for the 
complex EeAChE-POX/isatin-O in Figure 8. In addition, the temporal RMSD plots for all systems, 
shown in Figure 9, confirm these results. All values obtained were below 0.3 nm (3 Å) for the protein, 
and below 0.05 nm (0.5 Å), for the ligands, except for obidoxime. 

 

Figure 8. Energy plot for the complex EeAChE/POX/isatin-O during 20 ns of MD simulation. 

Figure 7. Results for the evaluation of poses through the hybrid MCDM TOPSIS-AHP method.
(Left): Isatin-O; (Right): Obidoxime.

2.4. Molecular Dynamic Study

MD simulations were performed with the best poses obtained from docking studies. Results show
that, for all systems, the total energy tends to stabilize after 2.5 ns of simulation, with the average
values for all complexes around−9.82× 105 kJ/mol, as shown in the total energy plots for the complex
EeAChE-POX/isatin-O in Figure 8. In addition, the temporal RMSD plots for all systems, shown in
Figure 9, confirm these results. All values obtained were below 0.3 nm (3 Å) for the protein, and below
0.05 nm (0.5 Å), for the ligands, except for obidoxime.
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Studies of H-bond prevalence among enzyme and ligands were performed. Results suggest that
the H-bond with residue Ser125 is an important contribution for the stabilization of isatin-O inside
EeAChE-POX. This was observed in both docking and MD studies. Asp74 plays the same role in the
complex EeAChE-POX/Obidoxime. Figure 10 shows the H-bond profiles for all systems during the
simulation time. It is important to notice that isatin-O presented a higher average number of H-bonds,
with a higher number of interacting residues than Obidoxime and 2-PAM. Besides, isatin-O was the
only compound presenting at least one H-bond during the whole simulation time. The results obtained
for average number of H-bond interactions and main residues of interaction for isatin-O, 2-PAM and
Obidoxime, are summarized in Table 4.
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Table 4. Summary of MD results for all complexes EeAChE/POX/ligands. The interacting residues
observed also in docking studies are shown in red.

Oxime Average H-Bond Number Interaction Residues

Isatin-O 3

Leu76
Tyr77
Thr83
Asn89
Ser125

Obidoxime 2

Asp74
Thr83
Asn89
Glu202

2-PAM 1 His441

3. Experimental Section

3.1. Synthesis of the Oximes

Isatin-O was synthesized as follows [26,34]: (i) 1 mmol of the isatin was dissolved in 1 mL of
water, followed by addition of 2 mmol hydroxylamine hydrochloride (NH2OH.HCl); (ii) the system
was heated in a microwave Biotage Initiator at 120 ◦C for 30 min (variable power, pre-agitation of 60 s,
high irradiation level); (iii) the reaction was monitored through thin layer chromatography (eluent
3:7 ethyl acetate: hexane, UV exposure and basic potassium permanganate solution); and (iv) the
product was isolated through vacuum filtration, and washed with ice water, leading to the pure
oxime (yield 98%). The structure and purity of the product was confirmed through spectroscopic data.
1H-NMR (DMSO-d6, δ-ppm, 400 MHz): 6.88 (d, 1H, 7.78 Hz), 7.02 (t, 1H, 7.58 Hz), 7.35 (t, 1H, 7.63 Hz),
7.95 (d, 1H, 7.49 Hz), 10.68 (s, 1H), 13.28 (s, 1H); 13C-NMR/DEPT-Q (DMSO-d6, δ-ppm, 100 MHz):
110.70, 116.41, 122.49, 127.53, 132.49, 143.07, 144.69, 164.99; GC/MS-CI (CH4): MW 162, [M + H]+

163 m/z; MP: 234–236 ◦C (decomposition). Sixty-five milligrams (with 50% yield) of obidoxime
dichloride were synthesized and purified as described before in the literature [46,60]. 1H-NMR
(DMSO-d6, δ-ppm, 400 MHz): 6.15 (s, 4H), 8.26 (d, 4H, 6.24 Hz), 8.43 (s, 2H), 9.14 (d, 4H, 6.37 Hz),
13.09 (s, 2H); 13C-NMR (DMSO-d6, δ-ppm, 100 MHz): 86.17, 124.39, 144.89, 145.63, 150.90. 2-PAM was
purchased from Sigma-Aldrich Brazil (São Paulo, Brazil).

3.2. Modified Ellman Method

The Ellman method was employed on the biochemical evaluation of AChE activity, being
a classic method of enzymatic evaluation [40]. In this study, the method was adapted to microscale
to work with small doses of OPs as well as to reduce the risks of accidental intoxication [41].
In addition, scale reduction also provided significant savings in materials and reagents. Ellman’s
method were conducted in triplicate, in three different assays, by at least three different operators,
measured at 24 ± 2 ◦C. All disposable materials and glassware in contact with OP compounds were
decontaminated with aqueous solution containing 10% w/v NaOH and 10% w/v NaClO for 48 h at
room temperature before correct destination and cleaning.

3.2.1. Chemicals

Acetylthiocholine iodide, 5,5′-dithiobis-(2-nitrobenzoic) acid (DTNB), lyophilized EeAChE
(1000 U per mg protein, Type V-S, C2888), 2-PAM iodide, DMF (dry, oxygen-free sealed bottle), DMSO
(biological grade, dry, oxygen-free sealed bottle), triethylamine (dry, oxygen-free sealed bottle), acetone,
4-pyridinecarboxaldehyde, sodium hydroxide (pellets), sodium phosphate monobasic hydrate, and
sodium phosphate dibasic dihydrate were purchased from Sigma-Aldrich Brazil (São Paulo, Brazil).
Absolute ethanol was purchased from Tedia Brazil (Rio de Janeiro, Brazil). Deuterated solvents
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(CDCl3 and DMSO-d6), containing tetramethylsilane as internal standard, were purchased from CIL
(Tewksbury, MA, USA). Bovine Serum Albumin (BSA), purchased from Prime Alert BioDetection
System, GenPrime, Spokane (Washington, DC, USA), were provided by the biological defense section
of the Institute for Chemical, Biological, Radiological and Nuclear Defense (IDQBRN). Technical grade
sodium hypochlorite purchased from VETEC (Rio de Janeiro, RJ, Brasil) was provided by the chemical
defense decontamination team of the IDQBRN. Purified water was obtained from Millipore Milli-Q
system (18.2 MΩ cm at 25 ◦C, Millipore Brazil, São Paulo, Brazil). Biotage Initiator 8 (Charlotte,
NC, USA) was used for the synthesis of all oximes. TLC aluminum plates, coated with silica gel F254,
were purchased from Merck Brazil (São Paulo, Brazil). Camag TLC-MS (AuTeC, São Paulo, Brazil)
interface was used to follow up reactions. NMR spectra was obtained from Varian Unity 400 MHz and
Bruker Advance 400 MHz, and referred to tetramethylsilane for 1H and 13C NMR spectra. GC-MS data
were obtained from an Agilent 6890 GC system equipped with a 5975 C mass spectrometer detector.
Kasvi 96-wells microplates were purchased from Kasvi Brasil (São José dos Pinhais, Paraná, Brazil),
Gilson single channel were from Gilson Inc. (Middleton, WI, USA) and Eppendorf 8-channel were
from Eppendorf Brasil (São Paulo, Brazil).

3.2.2. Inhibition Assay

In a 96-well microplate (final volume per well of 200 µL) the following was added per well:
70 µL AChE 2.14 U/mL (0.75 U/mL per well); 80 µL DTNB 0.4 mg/mL; 20 µL PBS; and 10 µL POX
200 µmol/L (11 µmol/L per well, positive control, absorbance Li). After 10 min of incubation, 20 µL of
1 mmol/L ATCI were added and, after additional 10 min, absorbance was read at 412 nm. PBS (10 µL)
was used as negative control (absorbance L0). AChE inhibition was calculated using Equation (1):

%I = [(L0 − Li)/L0] × 100 (1)

where %I is the inhibition percentage, L0 is the absorbance without inhibitor, and Li is the absorbance
with inhibitor.

3.2.3. Reactivation Assay

In a 96-well microplate (final volume per well of 200 µL) the following was added per well:
70 µL AChE 2.14 U/mL (0.75 U/mL per well); 80 µL DTNB 0.4 mg/mL; and 10 µL POX 200 µmol/L
(11 µmol/L per well, positive control). After 10 min of incubation, 20 µL of standard antidote or
test molecule were added, followed by further 10 min incubation. Then, 20 µL of 1 mmol/L ATCI
were added and the absorbance (Lr) was read after 10 min. AChE reactivation was calculated using
Equation (2):

%R = [(Lr − Li)/(L0 − Li)] × 100 (2)

where %R is the reactivation percent, L0 is the absorbance without inhibitor, Li is the absorbance with
inhibitor, and Lr is the absorbance after addition of reactivator.

3.3. Molecular Modeling Studies

Docking and MD studies were carried out to verify the binding modes of isatin-O inside inhibited
EeAChE and compared its reactivation potential to the commercial oximes 2-PAM and Obidoxime.
The model of EeAChE inhibited by POX was used in this work to be as close as possible to the
experimental in vitro test. It was constructed using human AChE (HssAChE) inhibited by POX and
complexed with 2-PAM (PDB code: 5HFA) as template. The primary (FASTA) sequences of HssAChE
and EeAChE (PDB code: 1C2O) were aligned and the different residues mutated using the software
spdbviewer [61] to obtain the model of EeAChE inhibited by POX, and complexed with 2-PAM.
Target and template presented 89% of homological identity and 100% of the active site residues
conserved. The model was further validated using the server PDBSum (www.ebi.ac.uk/pdbsum).
The 3D structures of more stable and active conformations of each oxime (2-PAM [62], obidoxime [63]

www.ebi.ac.uk/pdbsum
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and isatin-O [34]) were constructed through the program PC Spartan 08® [64] and their partial atomic
charges calculated through the RM1 (Recife Model 1) semi-empirical method [65].

3.3.1. Molecular Docking

The software Molegro Virtual Docker (MVD)® [66] was used to perform docking studies through
the algorithm MolDock Score, an adaptation of the algorithm Differential Evolution (DE) [67].
The oximes were docked in the model after a redocking procedure to validate the methodology.
The RMSD was calculated using 2-PAM as reference. The binding site was limited to a sphere with
a radius of 11 Å and residues within a 10 Å radius were considered flexible. Due to the stochastic nature
of the docking algorithm, about 10 runs were done for each compound, with 30 configurations (poses)
returned for evaluation. The best pose of each compound was selected according to the following
criteria: distance between the P atom of POX and the O atom of the oxime, interaction energy between
the oxime and inhibited EeAChE, energy involved on hydrogen bonds and total number of AChE
residues interacting with the oxime. To select the best poses of the docking study, multicriteria decision
methods (MCDM) [49–51] were employed. The pairwise comparison method (AHP) [55–57] was used
to calculate the criteria weights and TOPSIS [52–54] was used for ranking the best poses.

3.3.2. Molecular Dynamics

The poses chosen from the docking studies were parameterized for the OPLS/AA forcefield
available in the GROMACS 5.1.4 program [68], and the parameters and topologies were
obtained from the software AnteChamber PYthon Parcer InterfacE (ACPYPE) [69]. The complexes
EeAChE-POX/oxime were simulated using GROMACS 5.1.4 [68] package in a cubic box (941.59 nm3)
containing approximated 28,522 spc216 water molecules with periodic boundary conditions.
The minimization steps were steepest descent with position restrained (PR) of ligands and protein,
with a convergence criterion of 100.00 Kcal/mol.Å, steepest descent without PR to flexibilize the system,
conjugate gradients (CG), and L-BFGS (limited-memory Broyden–Fletcher–Goldfarb–Shanno [24]),
until a minimum of energy of 1.00 Kcal/mol.Å. After that, two steps of equilibration were done.
The first one under constant number of particles, volume and temperature (NVT) and the second
under constant number of particles, pressure and temperature (NPT). The minimized complexes were
submitted to MD simulations in two parts. First, 500 ps of MD were done at 310 K, with PR for
the entire system, except the water molecules, to ensure a balance of the solvent molecules around
the residues of the enzyme. After, 20,000 ps of MD were done at 310 K without any restriction,
using 2 fs of integration time and a cut-off of 10 Å for long-distance interactions. Counter ions were
added to neutralize the whole systems. The trajectories generated after the optimization and MD
steps were visualized on VMD [70] software. Plots of total energy, distance, variation of RMSD and
H-bonds formed during the MD simulation were generated on the Grace program (Version 5.1.25,
http://plasma-gate.weizmann.ac.il/Grace/). Pictures of MD frames during the MD simulations were
generated in the PyMOL program [71].

3.4. MCDM Method

The MCDM method employed for the choice of the best docking poses is presented in the
Supplementary Materials [49–59,72,73].

4. Conclusions

In this work, molecular modeling, MCDM methods, and biochemical tests were performed to
evaluate the neutral oxime isatin-O as a potential reactivator or scaffold for AChE/POX. Two classical
oximes, 2-PAM and obidoxime were selected to serve as references in the studies. Docking and MD
studies pointed to isatin-O as a potential reactivator of AChE/POX. Both methods showed isatin-O
with higher reactivation potential than 2-PAM, although it did not exceed the obidoxime results.
These data suggest the convergence and increasing confidence in the results.

http://plasma-gate.weizmann.ac.il/Grace/
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In the same direction, Ellman’s tests also pointed to isatin-O as a potential reactivator of
AChE/POX. This neutral molecule achieved a reactivation of about 23% after 120 min at 100 µmol/L
and close to 10% at initial instants, demonstrating activity. At lower concentration, 10 µmol/L,
it reached approximately 10% reactivation from the initial instants of the assay and remained
stable during the time. As reported in the literature [45–47], these percentages are sufficient to keep
a poisoning victim alive. Comparing with traditional reference oximes, in the initial minutes of the test,
the results of isatin-O slightly exceeds 2-PAM, being overcome by obidoxime. However, the percentage
of reactivation of isatin-O did not exceed the results of the two classical oximes in longer times.

Although not as efficient as obidoxime, isatin-O and possible derivatives were expected to exhibit
higher capacity for BBB penetration and demonstrate promising in vivo reactivation ability as a result
of their nonquaternary structures [23]. Moreover, they can act as anticonvulsants, making them possible
multipotent reactivators. These results may indicate a starting point to a novel potential scaffold for
further synthetic modifications and development of more efficient centrally acting reactivators for
OP poisoning.

Regarding the adopted poses assessment methodology in the docking studies, the use of the
hybrid MCDM method TOPSIS-AHP [52–57] contributed to improving the molecular modeling
techniques. The use of this method is unprecedented in this area of study. Its application showed to be
advantageous related to the conventional forms of selection of the best poses generated in the docking
studies, since it considers multiple criteria of selection simultaneously and presents at the end the
ordering of the best poses.

The paired comparison AHP method was used at the stage where the TOPSIS method is less
efficient at the evaluation of criteria weights. Paired comparison using the Saaty scale of the AHP
method revealed to be proper for the evaluation of the criteria weights. The TOPSIS method, in its
turn, was used at the stage where it is most efficient, in the general evaluation of the decision matrix.
Therefore, the hybrid method adopted used the strengths of each technique, generating an adequate
evaluation and selection of the poses obtained from docking studies.

Supplementary Materials: The supplementary materials are available online, MCDM method.
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