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ABSTRACT: Conventional nitrogen (N) fertilizers particularly urea
mineralized quickly in soil. Without sufficient plant uptake, this rapid
mineralization favors the heavy N losses. Lignite is a naturally abundant
and cost-effective adsorbent capable of extending multiple benefits as a
soil amendment. Therefore, it was hypothesized that lignite as an N
carrier for the synthesis of lignite-based slow-release N fertilizer
(LSRNF) could offer an eco-friendly and affordable option to resolve
the limitations of existing N fertilizer formulations. The LSRNF was
developed by impregnating urea on deashed lignite and pelletized by a
mixture of polyvinyl alcohol and starch as a binder. The results indicated
that LSRNF significantly delayed the N mineralization and extended its
release to >70 days. The surface morphology and physicochemical
properties of LSRNF confirmed the sorption of urea on lignite. The
study demonstrated that LSRNF also significantly decreased the NH3-volatilization up to 44.55%, NO3-leaching up to 57.01%, and
N2O-emission up to 52.18% compared to conventional urea. So, this study proved that lignite is a suitable material to formulate new
slow-release fertilizers, suiting to alkaline calcareous soils favorably where N losses are further higher compared to non-calcareous
soils.

1. INTRODUCTION
Loss of N fertilizers is one of the most critical challenge for
sustainable crop production in modern agriculture. Con-
sequently, the application of N fertilizers in excess to ensure
sustainable crop production is a common practice. However,
the plants do not utilize the excess N completely, and a
considerable portion of applied N is lost as NH3-volatilization,
NO3-leaching, and N2O emissions result in the wastage of
resources and money.1 In addition, these losses lead to a
decline in nitrogen use efficiency (NUE) and environmental
pollution.2 It has been reported that NUE in alkaline
calcareous soils is much lower (15−23%)3 compared to non-
calcareous soils (30−40%).4 High soil pH, temperature, and
low cation-exchange capacity (CEC) and organic matter
content are the main causes of lower NUE in alkaline
calcareous soils.5 Besides, the very low NUE in alkaline
calcareous soils, research studies encountering this issue are
very limited. Therefore, finding an efficient solution to
minimize N losses in alkaline calcareous soils is imperative.
Many research studies have proved that the addition of

carbon-based amendments can reduce the NO3−N-leaching,6

NH3-volatilization,
7 and N2O emission8 and enhance the N

retention in soil.9 Therefore, the declining NUE in alkaline

calcareous soils would require the maintenance of soil organic
carbon to improve the NUE in a sustainable way.10 Therefore,
there is strong evidence to hypothesize that integrating
conventional N fertilizers like urea with carbon-based materials
(lignite) as slow-release fertilizers (SRFs) could reduce
fertilizer N losses and enhance the NUE. We know that the
intervention of SRFs is an efficient option to delay the N
hydrolysis and to ensure the N supply for a much longer period
of time by matching the crop needs.11 However, the high cost
of SRFs is a major impediment to their general acceptance and
widespread soil application. Recent research efforts are mostly
focused on finding a suitable, affordable, and efficient carrier to
synthesize the SRFs.
Lignite, often known as brown coal, is a widely available

carbon-based material across the world. Predominantly the
alkaline nature of biochar as a N carrier may not suit the
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alkaline calcareous soils. Lignite differs in its N retention
behavior compared with biochar because, unlike biochar,
lignite is generally acidic. Furthermore, the availability of
biochar is limited, and relatively high cost of $500−3000 per
ton,12 while lignite is readily available in many countries at
lower costs.13 Therefore, lignite could be an alternative
material with properties that make it appealing to use as a N
fertilizer carrier for the development of novel and efficient
lignite-based slow-release N fertilizer (LSRNF), especially for
alkaline calcareous soils. Lignite has a greater number of
functional groups (hydroxyl, carboxylic, ketone, etc.) than
biochar, resulting in higher cation-exchange-capacity CEC.14

The complicated intra-particle pore structure, with abundant
micropores, provides a great surface area with active sites
having an extensive capacity for the adsorption of soil nutrients
and other compounds.15 The deashing of lignite has the ability
to remove the minerals and ash under 0.5% making it
environment-friendly and further suitable for higher adsorption
of N by enhancing microporosity and surface area. The acid
leaching of lignite also removed the potential contaminants,
including volatile organic compounds, polyaromatic hydro-
carbons, heavy metals, etc.16 Moreover, lignite is pathogen
free; therefore, it is not as potentially dangerous as a soil
amendment instead it improves the physical, chemical, and
biological properties of soil and increases water retention
capacity.17 Many research studies have demonstrated that
lignite is an effective soil amendment18 and soil conditioner
because of its high humic-acid contents.19 Compared to
previously developed SRFs, lignite as N-carried for the
development of new SRFs, have the capacity to extend many
supplementary benefits such as carbon (C) sequestration,
nutrients retention, soil structure improvement, reduction in
greenhouse gases, delivery of humic substances, etc. Other
SRFs, on the other hand, mostly use inert materials as carriers
which do not have any additional benefits instead increase the
cost of SRFs, while lignite due to many supplementary benefits
saves the cost of crop production.
The mechanisms of minimizing the NH3-volatilization,

NO3-leaching, and N2O-emission by lignite could be due to
the sorption of N via functional groups, high CEC, surface
area, and abundant porosity.20 Lignite as a novel N carrier
needs extensive exploration because the literature regarding the
use of lignite as a nutrient carrier is either not available or very
limited. Therefore, it was hypnotized that lignite as an N-
carrier to produce novel carbon-based LSRNF can result in a
low-cost alternative to chemical fertilizers with improved
environmental performance. It has also great potential to
minimize the N losses and consequently enhance N retention
in soil for crop uptake for the entire growing season after a
single application. To counter the adequate knowledge gaps, a
study was designed to prepare LSRNF and its evaluation to
extend N release and control the N losses compared to
conventional urea (CU).

2. RESULTS AND DISCUSSION
2.1. Characterization of Raw and Deashed Lignite.

The physicochemical properties of the raw lignite (RL) and
deashed lignite (DL) are shown in Table 1. The results showed
that deashing significantly decreased the pH of lignite by 3.65%
and electrical conductivity (EC) by 31.65%. The deashing of
lignite significantly increased the CEC by 10.40%. The volatile
matter (VM) and ash (A) contents decreased significantly by
10.13% and 40.65%, respectively, while the fixed carbon (FC)

was enhanced by 10.60%. Similarly, deashing significantly
increased the surface area and pore volume by 81.39 and
97.07%, respectively.
The modification of lignite by acid leaching significantly

decreased the pH and EC of lignite because acid leaching
removed the ash contents and alkaline minerals which is
responsible for decreasing the pH and EC.21,22 In addition,
acidic pH and low EC are attributed to the abundance of weak
acidic oxygen-containing carboxylic and phenolic functional
groups. The Fourier transform infrared (FTIR) of DL showed
the abundance of acidic function groups in this study. The acid
leaching also enhanced the CEC of lignite due to the insertion
of new binding sites, the development of new pores, and the
widening of the original pores.23 These changes in the
structure of lignite were confirmed during the characterization
of lignite in this study.
The deashing significantly decreased the VM and A contents

and increased the FC of lignite. During deashing, acid
solubilized the inorganic compounds (ash) which were leached
with sequential leaching. The removal of ash consequently
increased the surface area and porosity as well. It was also
reported that acid leaching presumably affects the Brunauer−
Emmett−Teller (BET) values in two ways; first, inert mass
(ash) was removed, resulting in an automatic increase in
surface area per unit weight (because the weight decreased due
to ash loss); second, the ash removed was probably blocking
some of the pores otherwise available for N adsorption.24 The
increase in the surface area was due to the widening of existing
pores or the creation of new pores.25 The deashing might have
loosened the structure so that the volatiles removal opened the
micropores present in the structure by diffusing ash out from
the inner zones.26

2.2. X-ray Diffractometer, FTIR, and Scanning
Electron Microscopy Characterization of Raw Lignite,
Deashed Lignite, and LSRNF. The X-ray diffractometer
diffractograms (Figure 1) showed that the peaks appeared
approximately at 2θ = 49.42, 64.3, and 77.52° were common in
RL, DL, and urea-loaded lignite, representing feldspar, quartz,
and graphite. Similarly, other common peaks that appeared at
2θ = 44.02 and 69.14° were recognized as halite. However, the
X-ray diffraction (XRD) pattern of urea-impregnated lignite
displayed some new peaks attributed to the coating of urea. A
sharp peak of urea was recognized at 2θ angle 22.0° and few
other peaks of urea appeared at 2θ angle (19.72, 24.36, 28.98,
31.48, 35.28, and 36.92°). The XRD patterns showed that the
intensities of some mineral peaks either disappeared or were
reduced due to the loss of minerals by acid leaching. The XRD
pattern of urea-loaded lignite confirmed the presence of urea.
The results, therefore, directed the formation of the complex of
urea with lignite and binders. Almost similar results have been
reported by Bakshi et al.27 Liu et al.28 found in his study that

Table 1. Characteristics of Raw and Deashed Lignite

characteristics raw lignite deashed lignite

chemical pH 3.84 ± 0.04 3.70 ± 0.04
EC (d Sm−1) 0.79 ± 0.01 0.54 ± 0.01
CEC (cmol+ kg−1) 71.77 ± 0.24 80.10 ± 0.28

proximate volatile matter (%) 49.37 ± 0.63 44.37 ± 0.92
ash (%) 2.14 ± 0.04 1.27 ± 0.03
fixed carbon (%) 48.49 ± 0.96 54.24 ± 1.07

structural surface area (m2 g−1) 2.44 ± 0.04 13.11 ± 0.21
pore volume (cm3 g−1) 0.019 ± 0.00 1.33 ± 0.009
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urea reflection appeared at 2θ = 22.61, 24.95, 29.65, 31.85,
35.91, 37.33, 45.73, 49.84, and 55.24° in the XRD patterns of
biochar-based nitrogen fertilizer (BNF)-2 and BNF-4.
The FTIR patterns of RL, DL, and urea-loaded lignite are

shown in Figure 2. The asymmetric stretching vibration of

silica (SiO2) observed at 914 and 1000 cm−1, at 1592 cm−1

deformation vibration of amide II band (C−N), at 3680 cm−1

amine (N−H) stretching were diagnosed in RL. There was no
change in the distribution of functional groups in DL.
However, a considerable change in functional groups occurred
after impregnating the lignite with urea. The interaction of urea
with the surface of lignite showed some additional stretching
vibrations confirming the attachment of urea. A broad
stretching vibration of the hydroxyl (O−H) functional group

was seen at 3431 cm−1. At 3321 cm−1 aminoacidic (NH2)
group stretching, carboxyl functional group (C�O) at 1626
cm−1, amide II band (C−N) at 1592 cm−1, symmetric
stretching vibration of the carboxylic (C�O) group at 1460
cm−1, carbohydrate (C−O−C) vibration at 1148 cm−1, silica
(SiO2) stretching at 1000 cm−1, and aromatic (C−H)
stretching at 787 cm−1, respectively, were identified.
It was found that urea loading increased the intensity at both

higher and lower wavenumbers of FTIR. At high-wavenumber
region 4000−1600 cm−1, urea-loaded lignite had higher
intensity of peak stretches of O−H and N−H. Furthermore,
the high intensity of carbonyl stretching (C�O) in the range
of 1642−1652 cm−1 was attributed to amide groups. This
suggested the reaction of C�O in adsorbents with NH2 from
urea. Barbosa et al.29 investigated absorption band character-
istics of urea at 3428.7−3253.3 cm−1 and the characteristics of
primary amides in the NH2 group after loading of biochar with
urea. The band at 1675.8 cm−1 was characteristic of amide
carbonyl; and the band at 1675.8 cm−1 was characteristic of
amyl carbonyl. The peak at 1625.7 cm−1 was evidence of
another common fold in primary amides, which is associated
with the C�O bond of the urea molecule, and the bands at
1457.9 and 1149 cm−1 were related to C−N axial deformation.
The scanning electron microscopy (SEM) images of raw

lignite (Figure 3a) showed that the RL was dense, irregular,
and compact. However, there was a slight change in the
structure of lignite (Figure 3b) after deashing. It was observed
that sharp mineral edges found in the RL were obscured and
smoothened, revealing a reduction in mineral particles from
the lignite leading to the creation of micropores in the lignite
structure. However, these micropores were filled with molten
urea after urea loading as the SEM image of urea-loaded lignite
(Figure 3c) showed that the surface got rough and covered
with precipitated urea.
The SEM images showed that the abundance of meso- and

micropores created after acid leaching of lignite allowed
favorably to transport and store urea and water. Some urea
particles filled into the pores and exposed cavities resulted due
to leaching while some urea crystallized on the surface of
lignite showing fissures and cracks in SEM images. The urea-
loaded lignite exhibited a coarse and undulating surface which
is attributed to the loading of urea.27,28

2.3. N Release Patterns of LSRNF. The results (Figure
4a,b) showed that LSRNFs significantly delayed the N release
in both soils compared to urea and C-SRF. It was noted that
urea showed the fastest release rate, and 100% of N from urea
was hydrolyzed within 24 h in both soils. The C-SRF, however,
restricted the hydrolysis of N somewhat and lasted for 20 days
in both soils. On the other hand, the N release from all
formulations of LSRNF delayed N release significantly. It was
noticed that LSRNF (1:1) released all N in 70 days in fine-

Figure 1. XRD patterns of raw lignite, deashed lignite, and urea-
impregnated lignite.

Figure 2. FTIR patterns of raw lignite, deashed lignite, and urea-
loaded lignite.

Figure 3. SEM images of (a) raw lignite, (b) deashed lignite, (c) urea-loaded lignite, and (d) digital image of granules of LSRNF.
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textured soil and in 60 days in coarse-textured soil. All N from
LSRNF (1:2) was released in 30 days in both soils. The N
release from LSRNF (2:1) was 75% in fine-textured soil and
83% in coarse-textured soil during 70 days of the incubation
period. So, on the basis of the N release pattern considering
general crop needs, LSRNF-1 (1:1) was selected for further
evaluation.
The extended N release from LSRNF into soils was due to

the network structure of polyvinyl alcohol (PVA) and starch
with lignite. Lignite can adsorb N to slow down its release rate,
while the synergetic effects between binders further strengthen
the slower release characteristics. Extended N retention by
LSRNFs was also due to N adsorption on the surface of lignite.
The urea first dissolved and then released through dynamic
water exchange of adsorbed N via hydrogen bonding and
surface complexation with oxygen-containing functional
groups.41 Liu et al.28 indicated that urea reacted with acidic
functional groups or bound to specific sites on the surface of
biochar.

2.4. NH3-Volatilization. The results (Figure 5) show that
on all sampling days in fine-textured soil, NH3-volatilization
from control (untreated), urea, C-SRF, and LSRF ranged from
0.0−0.0, 0.41−7.92, 0.51−3.69, and 0.61−2.17 mg kg−1,
respectively. It was observed that there was a rapid increase
in NH3-volatilization from the 3rd to 7th day in all treatments
regardless of N fertilizers, and then, there was a decreasing

trend. On the 3rd day of incubation, urea emitted the
maximum NH3-volatilization (7.92 mg kg−1), followed by the
C-SRF emitted 3.69 mg kg−1 NH3 on the 4th day. However,
LSRNF emitted the highest NH3 (2.17 mg kg−1) on the 7th
day of incubation. It was further noticed that urea and CSRF
showed a sharp decline in NH3-volatilization after attaining the
peak, whereas LSRNF demonstrated a slow decrease in NH3-
volatilization after attaining the peak. Similarly, in coarse-
textured alkaline calcareous soil, NH3-volatilization from urea
and C-SRF ranged from 0.56−7.81 mg kg−1 and 0.43−5.83 mg
kg−1, respectively. The NH3-volatilization, on the other hand,
from LSRNF ranged from 0.47−2.41 mg kg−1. Beginning with
a slow rise, NH3-volatilization significantly increased from day
3−6 after the application of urea and C-SRF, while in LSRNF,
NH3-volatilization grew gradually until the 6th day and
subsequently fell down following almost the same pattern.
The maximum cumulative NH3-volatilization (23.02%) of
applied N was recorded in urea, while it was decreased to
20.38% and 13.25% in fine-textured soil following the addition
of C-SRF and LSRNF, respectively. Similarly, in coarse-
textured soil, LSRNF significantly decreased the cumulative
NH3-volatilization of applied N to 14.20% compared to 25.61
and 22.18% from CU and C-SRF, respectively (Figure 6).
The introduction of LSRNF, as opposed to CU, significantly

reduced NH3-volatilization in alkaline calcareous soils. This
was due to the complexation of N onto the surface of lignite.

Figure 4. Cumulative N release (%) in (a) fine-textured soil and (b) coarse-textured soil after application of different N-fertilizers [urea,
commercial slow-release fertilizer (C-SRF) and lignite-based slow-release nitrogen fertilizer (LSRNF-1, 2, and 3]. Error bars represent the standard
error of three replicates.

Figure 5. NH3-volatilization (mg kg−1) in (a) fine-textured soil and (b) coarse-textured soil after application of different N-fertilizers (urea, C-SRF,
and LSRNF). Error bars represent the standard error of three replicates.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c01611
ACS Omega 2023, 8, 22732−22741

22735

https://pubs.acs.org/doi/10.1021/acsomega.3c01611?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01611?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01611?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01611?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01611?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01611?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01611?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01611?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c01611?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The adsorption of urea was confirmed by SEM, XRD, and
FTIR characterization of LSRNF. These results support the
findings of other researchers who found that adsorption of urea
with carbon-based materials reduced NH3-volatilization by
23.1% in calcareous sandy loam soil.30 In the present study, the
lignite having acidic pH after urea adsorption and the
introduction of acidic fertilizer reduced the soil pH and
ultimately reduction in NH3-volatilization. In addition, acidity
(low pH), high CEC, and high hydrogen ion buffering capacity
of lignite could have reduced the NH3-volatilization in alkaline
calcareous soils.31 The findings of this study back up Chen et
al.,32 who found that adding lignite to soil decreased NH3-
volatilization from cattle manure by 60−68%.

2.5. NO3-Leaching. The results (Figure 7) show that the
application of LSRNF significantly decreased the NO3-leaching
compared to urea in both soils. It was also noticed that NO3-
leaching was higher at the start of the incubation period
followed by a declining trend. It was further noticed that NO3-
leaching was higher in the first three leaching events in urea
and C-SRF, while higher in LSRNF in the last four leaching
events in both soils. Among all N fertilizers, urea showed the
highest NO3-leaching followed by C-SRF in both soils. This
trend of NO3-leaching clearly indicated a slow mineralization
of N by LSRNF, compared to urea and C-SRF. In fine-textured
soil, compared to urea, the percent decrease in cumulative

NO3-leaching of applied N by C-SRF and LSRNF was 20.29
and 53.32%, respectively (Figure 8). Similarly, the percent
reduction in cumulative NO3-leaching by C-SRF and LSRNF
of applied N in coarse-textured soil was 26.65 and 57.01%
compared to urea, respectively.

Due to the potential of lignite to hold N and delay its
mineralization, the addition of LSRNF significantly reduced
the NO3-leaching compared to CU. Joseph et al.33 reported
that NO3-capture followed by pyrogenic C application could
be due to a series of complex reactions involving the migration
of urea to lignite pores, surface adsorption, and integration into
an organo-mineral layer. The characterization of LRSNF in this
study showed effective adsorption of urea on lignite which
inhibited the fast release of urea in different soils and
minimized its losses.

2.6. N2O-Emission. The results showed that LSRNF
significantly decreased the N2O-emission compared to urea
and C-SRF in both soils (Figure 9). In fine-textured soil, the
maximum N2O flux (296 and 209 μg kg−1 soil day−1) was
measured on the 4th day in urea and CSRF treatments which
declined sharply after the 4th day. However, in LSRNF, the
maximum N2O flux (57 μg kg−1 soil day−1) was recorded on
the 7th day, which declined slowly and gradually afterward,

Figure 6. Decrease (%) in NH3-volatilization after application of
different N-fertilizers (urea, C-SRF, and LSRNF) in fine- and coarse-
textured soils. Error bars represent the standard error of three
replicates. Different letters within the same column indicate that the
mean significantly differs according to Tukey’s honestly significant
difference test (Tukey’s HSD) at p < 0.05.

Figure 7. NO3-leaching (mg kg−1) in (a) fine-textured soil and (b) coarse-textured soil after application of different N-fertilizers (urea, C-SRF, and
LSRNF). Error bars represent the standard error of three replicates.

Figure 8. Decrease (%) in NO3-leaching after application of different
N-fertilizers (urea, C-SRF, and LSRNF) in fine- and coarse-textured
soils. Error bars represent the standard error of three replicates.
Different letters within the same column indicate that the mean
significantly differs according to Tukey’s HSD at p < 0.05.
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instead of a fast decline as it occurred in urea and C-SRF. The
urea had the highest N2O emission (757 μg kg−1), which was
about nine times greater than the control and significantly
higher than the cumulative N2O emission from all other
treatments. In coarse-textured soil, urea had the highest N2O
flux (179 μg kg−1 day−1), followed by 119 μg kg−1 day−1 in
CSRF occurred on the 4th day. These values were 11 and 7
times greater than the control. N2O flux in these treatments
declined sharply after attaining this peak, while in control,
N2O-flux was quite low, never exceeding 16 μg kg−1 soil day−1.
The highest N2O emission (504 μg kg−1) was recorded in urea
following 423 μg kg−1 in C-SRF. However, in LSRNF, the
maximum N2O flux (81 μg kg−1 day−1) was recorded on the
7th day. In fine-textured soil, compared to CU where 0.67% of
applied N was lost as N2O, the N2O loss was decreased to 0.57
and 0.27% of the applied N in CSRF and LSRNF treatments,
respectively. In coarse-textured soil, 0.47% of applied N was
emitted as N2O in CU, but it was reduced to 0.39 and 0.29% of
applied N by C-SRF and LSRNF, respectively (Figure 10).
The N2O-emission was decreased significantly by LSRNF.

The decrease in N2O-emission could be due to slower N
release and lower NO3 availability during the incubation
period. The reduction in N2O emissions from the lignite-
amended soil could be the result of the slower release of urea-

N and reduced availability of NO3 during the incubation
period.15

3. CONCLUSIONS
This research addressed the new LSRNF, using lignite as a N
carrier. The lignite as a N carrier helped extend the N release
period. It also offered a specific SRF to counter the N losses in
alkaline calcareous soils which was missing earlier. The
mechanisms that extended these benefits were extensive
surface area, porosity, CEC, and diversity of functional groups
of lignite which complexed the urea and enhanced N retention
in soils. The LSRNF also significantly reduced the N losses
(NH3 by 45%, NO3 by 57%, and N2O by 52%) compared with
CU. The acid leaching further enhanced the urea adsorption
capacity of lignite by reducing the pH, EC, and ash contents
while FC, surface area, CEC, and pore volume were enhanced.
This research will offer a new N carrier for the synthesis of
cost-effective and eco-friendly SRFs because lignite is widely
available across the world.

4. MATERIALS AND METHODS
4.1. Materials. The lignite was collected from Choa Saiden

Shah Coal Mines, Chakwal (Pakistan). All the chemicals used
in this experiment were of reagent grade. The urea, boric acid,
starch, and PVA were purchased from VWR International
(USA), and C-SRF was purchased from Fatima Fertilizer
Limited, Pakistan.

4.2. Characterization of Raw and Deashed Lignite
and Urea-Loaded Lignite. The pH of RL, DL, and LSRNF
was determined in a mixture (1:25, w/v) in deionized water
using a digital pH meter. The samples were extracted to
measure the EC using a digital EC meter.34 The VM, A, and
FC of RL and DL were measured following the standard
procedure, developed by the American Society for Testing and
Materials (ASTM).35 The structural stability was identified by
XRD. The BET surface area and pore volume were determined
by the ASAP-2020 surface area and pore volume analyzer
(Micromeritics, Norcross, GA, USA). The CEC was measured
by the method described by Takaya et al.36 The surface
structure of RL, DL, and urea-loaded lignite was analyzed using
an inspect S-50 scanning electron microscope (FEI, The
Netherlands) at a magnification of 50 μm and HV 30,000 kv.

4.3. Preparation of LSRNF. Lignite was crushed and
passed through a 0.5 mm sieve and leached by soaking in 0.1
M HCl for 24 h under continuous shaking to remove the

Figure 9. N2O-emission in (μg kg−1) (a) fine-textured soil and (b) coarse-textured soil after application of different N-fertilizers (urea, C-SRF, and
LSRNF). Error bars represent the standard error of three replicates.

Figure 10. Reduction (%) in N2O emission after application of
different N-fertilizers (urea, C-SRF, and LSRNF) in fine and coarse-
textured soils. Error bars represent the standard error of three
replicates. Different letters within the same column indicate that the
mean significantly differs according to Tukey’s HSD at p < 0.05.
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indigenous minerals.37 After filtration through a 0.45 μm
screen, sequential leaching with distilled water was carried out
till the constant pH. The salient characteristics of RL and DL
are presented in Table 1. The synthesis of LSRNF was carried
out by mixing the DL and urea solution at the ratio of 1:1
(adsorbent: adsorbate) on a w/w basis under consistent
shaking for 24 h.38,39 After urea loading, the material was dried
at 65 °C, and starch and PVA (1:1) were added at 10% (w/w
basis) as binders to formulate the granules of LSRNF following
the previously reported method.40 The composition of LSRNF
and other N fertilizers is presented in Table 2.

4.4. Collection of Soil. A bulk soil (0−20 cm deep) was
collected from two different locations: (i) Pindorian series,
33°55′55.4″N, 72°27′27.6″E (fine-textured soil) and (ii)
Gujranwala series 33°56′06.4″N, 72°26′49.4″E (coarse-
textured soil). The collected soils were air-dried and passed
through a 2 mm screen, and a physicochemical analysis of both
soils was carried out in the laboratory before using in
experiments (Table 3).

4.5. N Release Patterns of LSRNF. An incubation
experiment was conducted at 25 ± 2 °C to assess the N
release behavior of N fertilizers in different soils. For this
purpose, three different LSRNFs at a weight ratio of lignite and
urea including LSRNF-1 (1:1), LSRNF-2 (1:2), and LSRNF-3
(2:1) were prepared. The treatments of the experiment were
consisting of; (i) urea, (ii) C-SRF, (iii) LSRNF-1 (1:1), (iv)
LSRNF-2 (1:2), and (v) LSRNF-3 (2:1), respectively. N
contents equivalent to 1 g urea from each fertilizer were
embedded into a polypropylene mesh bag (5 × 5 cm) tied with
a label showing the name of fertilizer. These mesh bags were
buried beneath the 2−3 cm of soil surface into plastic
containers filled with 150 g of soil. The diameter of the micro
holes was 0.2 mm, and the distance between micro holes was
0.5 cm. The soil moisture contents were maintained at 60% of

field capacity by weighing and adding distilled water if
necessary. The experiment was laid in a completely
randomized design (CRD) having three replications in two
different textured alkaline calcareous soils (coarse and fine
texture). After 1, 3, 5, 10, 20, 30, 40, 50, 60, and 70 days of the
incubation period, one mesh bag from each treatment was
retrieved, and the total N was determined after being dried at
room temperature to a constant weight. The loss in total N was
subtracted from the initial contraction to assess the N release.
This method was adopted by Wen et al.41 with some
modifications. N was determined by the Kjeldahl method.42

The best-performing LSRNF out of three different formula-
tions was selected and evaluated for further estimations.

4.6. NH3-Volatilization. The enclosure technique was
adopted to trap and quantify the NH3-volatilization, as
reported earlier by Liu et al.43 The experiment was conducted
with treatments including (i) control, (ii) urea, (iii) C-SRF,
and (vi) LSRNF, respectively, with three replications arranged
in the CRD layout. The application rates of different N
fertilizers were 200 kg N ha−1. Briefly, screw-lid plastic jars
were filled with 500 g of soil. The treatments were mixed at the
top 5 cm layer of each jar. About one-half of the space in the
jars was left vacant for the production of NH3. Distilled water
was slowly sprinkled on the surface of the soil to bring the soil
moisture level up to 60% of water holding capacity, and a vial
containing 10 mL of 4% boric acid, mixed with methyl red and
bromocresol green indicators, was placed in every jar as NH3-
trap and lids were screwed and airtight. All jars were incubated
at 25 ± 2 °C. The experiment was repeated on two different
textured alkaline calcareous soils. The experiment was executed
soon after wetting the soil. The boric acid vials were removed
and replaced daily until the color of the mixed indicator did
not change, and the trapped NH3 was measured by titrating
with 0.01 M H2SO4.

4.7. NO3-Leaching. An incubation experiment was
conducted at 25 ± 2 °C to evaluate the impact of LSRNF
on NO3-leaching in two different alkaline calcareous soils. The
experiment was conducted with treatments including (i)
control, (ii) urea, (iii) C-SRF, and (vi) LSRNF with three
replications arranged in the CRD layout. The application rates
of different N fertilizers were 200 kg N ha−1. The PVC
columns 34 cm in height and 5 cm in diameter were fixed with
polypropylene meshed cloth at the bottom, and then, columns
were fixed on the plastic funnel having gravel in it. A layer of
3.0 cm of coarse sand was laid into every column to facilitate
leachate movement. The columns were packed with soil, and a
bulk density of 1.4 g cm−3 was maintained by gently tapping. A
4.0 cm from the top of every column was left open for ponding
of distilled water. The apparatus was clipped on a wooden
stand, and 500 mL leachate-receiving bottles were placed
under each column to receive the leachate. The columns were
saturated with distilled water, and a five pore volume of
distilled water was leached for proper conditioning. Then, the
treatments were mixed on top of every column, and one pore
volume was leached on days 1, 7, 14, 21, 28, 35, and 42.
Leachate was collected until it had totally leached out, and
then, the leachate volume was recorded. The NO3 concen-
tration in the leachate was measured and the columns were
covered with a polythene sheet to reduce evaporation, and the
outlet was plugged till the next event of leaching. The method
used in this experiment was adopted by Kanthle et al.44 with
some modifications.

Table 2. Composition of N Fertilizers

fertilizers N contents (%) pH C (%)

urea 46.0 7.22
C-SRF 26.0 6.90
LSRNF 21.0 6.47 31

Table 3. Physicochemical Properties of Soils Used in
Experiments

values

soil parameter unit coarse-textured fine-textured

soil particle size
distribution % sand silt clay sand silt clay

53 30 17 19 54 27
textural class − sandy loam silty clay loam

pH − 7.7 7.6
EC d Sm−1 1.02 1.11
OC % 0.34 0.41

total-N % 0.037 0.044
NO3−N mg kg−1 7.4 8.1
NH4−N mg kg−1 6.3 7.4
available P mg kg−1 4.7 5.4
extractable K mg kg−1 92 94

CaCO3 % 7.2 10.9
CEC cmol+ kg−1 11.3 13.1
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4.8. N2O-Emission. An incubation experiment was
conducted at 25 ± 2 °C to evaluate the impact of LSRNF
on N2O emission in two different alkaline calcareous soils. The
experiment was conducted with treatments including (i)
control, (ii) urea, (iii) C-SRF, and (iv) LSRNF, respectively,
with three replications arranged in the CRD layout. The
application rates of different N fertilizers were 200 kg N ha−1.
Plastic jars having 7.5 cm diameter and 13 cm height,
providing 250 mL headspace to a depth of 7 cm were filled
with 500 g of soil. Soil moisture was kept at 60% of field
capacity for 30 days. The jars were capped during the sampling
and remained open for the rest of the time. All the treatments
were mixed into the surface of the soil (2−3 cm deep). The
N2O measurements were made on 1, 4, 7, 10, 13, 16, 19, 25,
and 30 days, at 0 h and 2 h for the initial and final time, after
incubation using airtight 10 mL syringes. Gas samples were
immediately analyzed for N2O concentration using a gas
chromatograph equipped with an electron capture detector.
Total N2O−N emission during 30 days was calculated by
integration of actual N2O emissions on sampling days. The
method used in this experiment was adopted from a study by
Majumdar et al.45 with some modifications.

4.9. Soil Analyses. The analyses of soils used in
experiments were conducted using following parameters, soil
pH and soil EC,46 organic carbon,47 total nitrogen,48 CaCO3,

49

particle size distribution,50 available-P,51 and NH4 and NO3.
52

4.10. Data Analysis. All data were reported as means and
standard error of the means. Analysis of variance and Tukey’s
honestly significant difference test (Tukey’s HSD) at p < 0.05
were used to determine the statistical significance of different
treatment effects on N release, NH3-volatilization, NO3-
leaching, and N2O-emission.
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