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Mammalian target of rapamycin complex 1 (mTORC1) plays a 
major role in cell growth, proliferation, polarity, differentiation, 
development, and controls transitioning between anabolic and 
catabolic states of the cell. It collects almost all extracellular 
and intracellular signals from growth factors, nutrients, and 
maintains cellular homeostasis, and is involved in several 
pathological conditions including, neurodegeneration, Type 2 
diabetes (T2D), obesity, and cancer. In this review, we 
summarize current knowledge of upstream signaling of 
mTORC1 to explain etiology of T2D and hypertriglyceridemia, 
in which state, the role of telomere attrition is explained. We 
discuss if chronic inhibition of mTORC1 can reverse adverse 
effects resulting from hyperactivation. In conclusion, we 
suggest the regulatory roles of telomerase (TERT) and 
hexokinase II (HKII) on mTORC1 as possible remedies to treat 
hyperactivation. The former inhibits mTORC1 under nutrient- 
rich while the latter under starved condition. We provide an 
idea of TOS (TOR signaling) motifs that can be used for 
regulation of mTORC1. [BMB Reports 2017; 50(12): 601-609]

INTRODUCTION

The mammalian target of rapamycin (mTOR), is conserved in 
all eukaryotes including plants, worms, flies, and mammals 
(1). mTOR comprises two complexes, mTORC1 and mTORC2, 
among which mTORC1 is directly regulated by nutrient status 
of the cell. mTORC2 is indirectly regulated by RTK and 
activation occurs after activation of mTORC1 (2, 3). Mammalian 
mTORC1 is mainly composed of mTOR, Raptor, and GL; the 
complex serves as a staple hub for upstream signaling (4). 

Nutrient-rich conditions facilitate translocation of mTORC1 to 
the lysosome, and thus regulate activation of this complex (5, 
6). This complex receives intracellular and extracellular signals 
and controls cell size, growth, and proliferation by performing 
the anabolic function of protein synthesis, lipid synthesis, and 
mitochondrial metabolism (7-9).

mTORC1 activity is regulated by a plethora of upstream 
signaling elements. It collects upstream signals from growth 
factors, stress, energy, oxygen, glucose, and amino acids and 
promotes synthesis of proteins, lipogenesis, lysosome biogenesis, 
and activates energy metabolism (7, 8, 10). Newly discovered 
elements TERT and HKII inhibit mTORC1 activity under amino 
acid and glucose starvation, respectively (Fig. 1) (11, 12).

Diabetes is associated with obesity linked with prolonged 
intake of high energy diet. Dietary proteins generate 
circulating amino acids that activate the mTORC1 (13-15). The 
condition causes mTORC1 hyperactivation that over a 
prolonged period leads to insulin resistance, hypertrigly-
ceridemia, and hyperlipidemia (16).

Loss of chromosomal DNA by telomere attrition has 
deleterious effect on numerous cellular functions. Telomere 
shortening leads to DNA damage, cellular senescence, and 
apoptosis that is linked with aging disorders (17). Short 
telomeres play an important role in pathogenesis and disease 
progression of T2D. Short telomeres increase probability of 
beta-cell senescence, reduce insulin secretion, and exhibit 
mitochondrial dysfunction (18, 19).

The purpose of this review is to discuss signaling molecules 
and external factors that affect mTORC1 regulation. We 
summarize current knowledge of how mTORC1 hyper-
activation leads to T2D diabetes and hypertriglyceridemia. We 
added the role of telomerase attrition in T2D. Finally, we 
discussed a possibility if pharmacological inhibition of 
mTORC1 can reverse incidence of T2D. We suggested that 
inhibition of mTORC1 as well as restriction of mTORC1 may 
be useful in treating hyperactivation of this complex in T2D.

UPSTREAM REGULATORS OF mTOR COMPLEX 1

Amino acids
Amino acids regulate mTORC1 through different signaling 
elements. Among amino acids, leucine plays an important role 
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Fig. 1. mTOR signaling pathway and its 
upstream elements. Amino acids, glu-
cose, fatty acids, Wnt ligand, growth
factors, hormones, stresses, energy status,
and oxygen are key factors that affect 
mTORC1 activity. Upon activation,
mTORC1 facilitates the synthesis of 
protein, lipids, and energy metabolism. 
It inhibits autophagy.

in mTORC1 activation by inhibiting Sestrin 1/2 (20, 21). 
mTORC1 is stimulated by leucine and glutamine in Rag 
GTPase-dependent and independent fashion, respectively. 
Glutamine stimulates mTORC1 in RagA and RagB double 
knockout cells while existence of v-ATPase (proton pump) is 
required. Glutamine-mediated stimulation of mTORC1 requires 
adenosine diphosphate ribosylation factor (ARF)-1 GTPase for 
appropriate regulation (22).

Rag family of GTPases is one of the crucial links between 
amino acids and mTORC1. First group consisting of RagA and 
RagB binds to GTP while the second group of RagC and RagD 
has affinity for GDP. Upon nutrient provision, each member of 
the group can make heterodimer only with a member of 
another group (RagA-RagC or RagA-RagD; RagB-RagC or 
RagB-RagD) (23, 24). Sestrin1/2 interacts with GATOR2 to 
inhibit mTORC1 signaling (Fig. 1) (21, 25, 26). In this context, 
SLC38A9 is one of the strong candidates for sensing arginine at 
lysosome (27).

Growth factors
In higher eukaryotes, cell growth and proliferation rely on 
long-range communication to coordinate distribution of 
nutrients (1, 28). Phosphatidylinositol 3-kinase (PI 3-kinase)- 
dependent pathway regulates mTORC1 and is affected by 
insulin. Thus mTORC1 mediates crosstalk between amino 
acids and insulin signaling (Fig. 1) (29). Communication is 
mediated by growth factors such as insulin, PDGF, VEGF, 
EGF, and IGF1 (30). Insulin and IGF, when binding to 
receptors, activate mTORC1 through PI3K and AKT. Insulin 
and other growth factors bind RTK stimulating recruitment and 
activation of PI3K. Phosphatidylinositol-3,4,5-trisphosphate 
(PIP3) is generated by action of PI3K activity, that activates 

AKT (30).
AKT phosphorylates TSC2 and inactivates its complex with 

TSC1 (31). The active complex has GTPase activity and 
converts Rheb-bound GTP into GDP and thus inactivates 
Rheb-mediated activation of mTORC1 (32). ERK inhibits 
TSC1/2 to relieve activity of mTORC1 activity as well as 
activates RSK (ribosomal s6 kinase) resulting in phosphorylation- 
mediated increased activity of RAPTOR (30). AKT phosphory-
lates TSC2 and inactivates its complex formation with TSC1 
(31).

Glucose, fatty acid, and energy status
All cellular processes need energy in the form of ATP. Being a 
major regulator of growth and proliferation, it is logical that 
mTORC1 activity must be under the control of energy status of 
the cell (33). Glycolysis, citric acid cycle, -oxidation, and 
oxidative respiration all lead to conversion of nutrients into 
ATP (34-36). Upon nutrient scarcity, ATP level of cells quickly 
fall and AMPK is stimulated (37), subsequently activates and 
inactivates TSC2 (38) and Raptor (39), respectively. This 
mechanism provides an AMPK-facilitated pathway for mTORC1 
to sense ratio of AMP/ATP.

mTORC1 signaling inhibits fatty acid oxidation. Ketone 
bodies are produced as a result of acetyl-CoA released from 
-oxidation, that either enter TCA cycle or, under nutrient 
deficiency into the liver (40). Glucose passes through 
transporters and after being converted into energy, inhibits 
AMPK, subsequently reviving mTORC1 (41, 42). Fatty acids 
are transported through specific transporters such as 
fatty-acid-transport protein (FATP) and fatty-acid-binding 
protein (FABP) families, eventually entering the citric acid 
cycle to produce energy and activate mTORC1 (Fig. 1) (43-45).
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Fig. 3. Insulin resistance by inhibition 
of IRS under constitutive activation of 
mTORC1. mTORC1 is activated from 
high energy diet through uptake of 
amino acids and glucose. High activity
of mTORC1 over a long period inhibits
IRS through p70S6K. Thus, IRS loses 
its capability for transfer of glucose 
transporters to the cell surface.

Fig. 2. mTORC1 interacting proteins and external factors that 
affect activity of this complex. mTORC1 is regulated by a 
plethora of gene products. AMPK, TERT, HKII, and p53 have 
inhibitory effect while Rheb, AKT, and ERK activate the effect on 
this complex. Almost all kinds of stress and nutrients regulate 
activity of mTORC1. Cellular nutrients, energy status, and growth 
factors affect mTORC1 activity.

Glucose entering cells after passing through glycolysis are 
subjected to Kreb cycle inside the mitochondria. When energy 
status of the cell is stabilized, AMPK & TSC1/2 are inhibited 
and mTORC1 activity is revived.

mTORC1 REGULATION BY ITS INTERACTING 
PARTNERS

mTORC1 is affected by a plethora of factors such as energy 

status, O2 level, cytokines, ROS and many more (30). All these 
factors affect mTORC1 signaling that leads to cellular growth 
conditions by regulating metabolic processes (Fig. 2).

mTORC1 interacting elements such as p70S6K and 4E-BP1 
bind to RPTOR (Regulatory-associated protein of mTOR) 
through their TOS motif mTOR signaling motif) (46). 
Immunoprecipitation study revealed that HK-II links to and 
restricts the autophagy suppressor, mTOR complex 1 
(mTORC1), and this binding is promoted in hypoglycemic 
condition (47). Similarly, TERT restricts mTORC1 under amino 
acid starvation (11).

mTORC1 suppression by p53 requires TSC1 and TSC2. 
Formation of TSC1/TSC2 complex is mandatory for 
p53-dependent mTORC1 inhibition. p53 stimulation has 
potential to inhibit activity of mTORC1 through a pathway 
analogous to the withdrawal of energy. This uncommon 
regulatory pathway is crucial for and contributes to tumor 
suppressive roles of p53 (48). There can be an alternative 
approach: TERT has a regulatory (like a rheostat) effect on 
mTORC1. TERT binds and restricts activated mTORC1 and it is 
detached from the inactivated complex (11). Some regulatory 
proteins need to have a TOS consensus sequence [F (D/E) 
(F/I/L/M) (D/E) (L/I)] to bind to Raptor leading to presence in 
mTORC1 (46, 47).

ROLE OF mTORC1 IN DIABETES AND 
HYPERTRIGLYCERIDEMIA

Diabetes mellitus (DM) is a heterogeneous metabolic disorder 
of chronic hyperglycemia (49). Among total diabetic patients, 
the ratio of patients with insulin dependent diabetes mellitus 
(Type 1, IDDM) is only 5-10% with a major cause of the 
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destruction of -cells of the pancreas by cell-mediated 
autoimmune responses (50). Whereas 90-95% patients are 
those with T2D having insulin deprivation or resistance are 
termed as non-insulin dependent diabetes mellitus (NIDDM) 
or adult-onset diabetes (50). Rapid increase in T2D prevalence 
worldwide has been associated with a Western, obesogenic 
lifestyle (51).

It is important to consider that diabetes is linked to more 
than one organ and diabetic cardiomyopathy is reported to 
cause heart attack, a leading cause of morbidity and mortality 
in diabetic patients. Metabolic profiles of diabetic patients are 
highly disturbed, having increased level of glucose and lipids, 
causing hyperglycemia and hyperlipidemia, respectively, as a 
result of insulin resistance (52-54).

In mammals, the liver is the main organ that controls 
physiology of the whole body in response to nutrients (55). 
Hyperactivation of mTORC1 regulates insulin and growth 
factor signaling through insulin receptor substrates (IRS) (56). 
mTORC1 has been associated with Type 1 and T2D (56). Class 
I PI3-Kinases are key components of the insulin signaling 
pathway (57, 58). Prolonged activation of mTORC1, under 
high energy diet, inhibits IRS through p70S6K (Fig. 3) (59). 
This pathway renders IRS incapable of transferring glucose 
transporters onto the cell surface, increasing blood glucose 
level (60-62). This finally leads to T2D.

Hypertriglyceridemia is triggered by activation of hepatic 
mTORC1/S6k activation (63). Intake of surplus energy in the 
form of fat and protein is the root cause of metabolic 
imbalances and metabolic disorders that promote obesity (64). 
Amino acids produced from dietary proteins, directly enter in 
the cytoplasmic circulation contribute to activation of 
mTORC1-p70S6K pathway through several signaling arrays 
(13-15). Additionally, other intracellular and extracellular 
signals, such as growth factors, oxygen (O2), tension, and 
energy levels, induce mTORC1 signalling (65). The factors are 
shown above (Fig. 2).

Expression of the sodium-coupled neutral amino acid 
transporter (SNAT2) provokes the mTORC1-p70S6K pathway 
and increases serum triglycerides (TGs) while reducing 
adipose lipoprotein lipase (LPL). Similarly, expression of 
hepatic Rheb (Ras-homolog enriched in brain) or active-S6K 
produces the same metabolic effects, while expression of 
dominant-negative-p70S6K inhibits increase of hepatic TG in 
liver-specific SNAT2-expressing mice. Hypertriglyceridemia 
and adipose LPL up-regulation are transduced between liver 
and adipose tissue using a neuronal passage comprising 
afferent vagal and efferent sympathetic nerves (65). Unsaturated 
AA’s stimulate mTORC1 involved in developing insulin 
resistance and obesity (66). Activation of mTORC1 for a 
lengthy time promotes insulin resistance and potentially 
exacerbating obesity triggering lipid deposits (7).

Association of the mTORC1-p70S6K pathway with lipid 
metabolism is the point of interest that contributes to fatty acid 
biosynthesis (66). mTORC1 is mandatory for denovo lipid 

synthesis in murine liver (67). mRNA and protein expression of 
main gluconeogenic enzymes, in specimens of human liver, 
revealed that levels of only pyruvate carboxylase protein have 
strong relation with glycaemia. Pyruvate carboxylase specific 
antisense oligonucleotide (ASO) does not disturb de novo 
synthesis of fatty acid, lipolysis, or fatty acid oxidation of liver 
cells (68). High-fat diet increases endogenous glucose pro-
duction (69).

Excessive synthesis of very-low-density lipoproteins (VLDL), 
accompanying greater release of triglyceride & apolipoprotein 
B100 (apoB100), is central to excess plasma VLDL-TG levels 
in insulin-resistant diabetic patients (70). Prolonged hyper-
insulinemia predisposes liver for insulin resistance that leads to 
inability of insulin to trigger an increased signal at insulin 
receptor substrate-2 (71). Up-regulation of sterol regulatory 
element-binding protein 1c (SREBP-1c) occurs leading to 
increased lipid synthesis (71). Thus, hyperinsulinemia may be 
a pivotal cause of hepatic insulin resistance associated with 
steatosis. Failure of insulin action on skeletal muscle and the 
liver leads to hyperglycemia (7).

At least three outcomes are implicated with over 
nutrition-mediated prolonged hyperactivation of mTORC1. As 
the first outcome, IRS stops responding to insulin signaling, 
leading to high blood glucose and consistent production of 
glucose in liver cells (59). Second, there is increased hyper-
lipidemia and hypertriglyceridemia, causing insulin resistance 
and overproduction of hepatic glucose that at later stages are 
converted into fatty acids and cellular lipids deposits (72, 73). 
Third, liver communicates to brain through vagal nerve and 
then to white adipose tissues through sympathetic nerves. As a 
result of this inter-tissue communication, lipoprotein lipases in 
the blood stream decreases and triglyceride level increases 
(63).

TELOMERE ATTRITION AND DIABETES

Telomeres are maintained by a plethora of factors including 
epigenetic, genetic, environmental, and several unknown 
events (74, 75). Specific diets such as grains, vegetables, and 
fruits have antioxidant and anti-inflammatory properties and 
may positively reduce telomere shortening (76-79). Increasing 
body mass index (BMI), through increased inflammation, has 
inverse relation with telomere length (80). Telomere length has 
been decreasing by 7 base pairs per unit increase in BMI 
(kg/m2). It decreases with increase of C-reactive protein (CRP), 
revealing that inflammation plays a major role in telomere 
attrition (81). Several studies have revealed that erosion of the 
telomerase system is associated with both types of diabetes. 
Short leukocyte telomere length (LTL) is associated with T1D 
(82). Increasing of oxidative stress, increases aging and obesity 
that is directly proportional to telomere attrition in T1D and 
T2D (83). Chronic hyperglycemia and nutritional overload act 
together to increase oxidative stress leading to increase in 
activity of the protein kinase C pathway. This affects insulin 
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Protein TOS motif Bioinformatics Co-IP with Raptor Effect on mTORC1

TOS motif F (D/E)(F/I/L/M) (D/E)(L/I ) (62)
Raptor No ---DLLGRFLDLGPWAV---a,b NA Agonist (95)
S6K Yes ---MAGVFDIDLDQPE---c Yes (97) Substrate (60)
4EBP1 Yes ---EESQFEMDI- -- Yes (97) Substrate (46)
HKII Yes ---RRGDFDIDIVAVV--- Yes (62) Antagonist (47)
Sqstm1 No ---LGIEVDIDVEHGG--- Yes (5) Agonist (5, 6)
TRAF6 No ---YDVEFDPPLESKY--- Yes (6) Agonist (5)
mTOR No ---LIYVFDVESRELE--- Yes (99) Agonist (99)
TERT No ---SSGLFDVFLRFMC--- Yes (94) Antagonist (11, 12)
Rag A (GTP) No ---LIYVFDVESRELE--- Yes (21) Agonist (23, 100)
Rag C (GDP) No ---PDMNFEVFIHKVD--- Yes (21) Agonist (23, 100)
Rag B (GTP) No ---NTKTFDVEHSHVR--- Yes (21) Agonist (23, 100)
Rag D (GDP) No ---TDINFEVFIHKVD--- Yes (21) Agonist (23, 100)
Deptor No ---GAQQRELERMAEV- Yes (102) Antagonist (101)
PRAS40 No ---NGGLFVMDEDATL--- Yes (102, 103) Antagonist (102)
mLST8 No ---LWCVETGEIKREY--- Yes (102) Not yet found (95)
Rheb No ---SIKSFEVIKVIHG--- Yes (104) Agonist (103)
Hsp90 No ---RRAPFDLFENRKK--- Yes (105) Agonist (104)

aThe amino acid differing from the TOS motif are underlined.
bYellow highlighted motifs differ from TOS motif with respect to one or more amino acids.
cGreen highlighted motifs exactly match with TOS motif.

Table 1. Raptor- interacting proteins

signaling, as well as secretes pro-inflammatory cytokines (84).
In brief, we can say that short telomeres implicate with 

diabetes, and may play an important role in pathogenesis and 
severity of T2D. Shorter telomeres increase probability of 
beta-cell senescence, leading to reduced cell mass and 
decreased insulin level (85). Mice with short telomeres reveal 
disturbed metabolism through mitochondrial dysfunction (85). 
In this context, deletion of TERC exhibited a prominent effect. 
Additionally, telomere shortening may attenuate calcium- 
mediated insulin exocytosis (85). Finally, inhibition of p53 
activity can reverse cellular senescence of adipocyte and 
insulin resistance (86).

CHRONIC INHIBITION AND RESTRICTION OF 
mTORC1 BY TERT AND HKII

Rapamycin partially protects against insulin resistance, in vivo 
(87). It was suggested that rapamycin may serve as a promising 
drug to control hyperactive mTORC1 and insulin resistance in 
obesity. But prolonged suppression of mTORC1-p70S6K 
signaling by rapamycin treatment upsets lipid and glucose 
metabolic rate (88). Chronic intake of rapamycin causes 
hyperlipidemia and stimulates glucose intolerance (89-91). In 
conclusion, rapamycin induces a diabetic condition, pro-
moting insulin resistance and dropping -cell function and 
mass (91, 92).

TERT binds and restricts mTORC1, but binding decreases 

when mTORC1 is alternatively inhibited by use of rapamycin 
(11, 93, 94). This indicates that TERT predominately binds to 
the activated form of mTORC1. Recently, mTORC1 inhibiting 
effect of TERT has been explored (11, 12). In this context, we 
may choose an example of TERT with a regulatory effect on 
mTORC1. Similarly, the restricting effect of HKII (47) can be 
used to control hyperactivation of mTORC1. Similarly, HKII 
binds and inhibits mTORC1 upon glucose starvation where its 
TOS motif is required for this activity (47). It is important to 
note that restriction of mTORC1 by TERT and HKII follows 
opposite nutrient status. It appears that TERT will work under 
high nutrient status and HKII will be effective under starvation. 
In addition to TERT and mTORC1, the function of TOS motifs 
of Deptor and PRAS 40 can be tested for regulatory effect on 
kinase activity of the complex (Table 1). 

We conclude that mTORC1 hyperactivation may lead to 
insulin resistance, hypertriglyceridemia, and diabetes. Chronic 
inhibition of mTORC1 exacerbates the pathological condition. 
Therefore, we propose that hyperactivation of mTORC1 can 
be controlled by using a specific domain or full length TERT 
and/or HKII. Further studies are required to identify functional 
domains of TERT and HKII. This may lead to an effective drug 
discovery that can regulate mTORC1 activity. 
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