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Abstract: Inexpensive and no-maintenance biodegradable soil moisture sensors could improve
existing knowledge on spatial and temporal variability of available soil water at field-scale.
Such sensors can unlock the full potential of variable-rate irrigation (VRI) systems to optimize
water applications in irrigated cropping systems. The objectives of this study were to assess (i) the
degradation of soil moisture sensor component materials and (ii) the effects of material degradation
on maize (Zea Mays L.) growth and development. This study was conducted in a greenhouse at
Colorado State University, Colorado, USA, by planting maize seeds in pots filled with three growing
media (field soil, silica sand, and Promix commercial potting media). The degradation rate of
five candidate sensor materials (three blends of beeswax and soy wax, balsa wood, and PHBV
(poly(3-hydroxybutyrate-co-3-hydroxyvalerate))) was assessed by harvesting sensor materials at four
maize growth stages (30, 60, 90, and 120 days after transplanting). All materials under consideration
showed stability in terms of mass and dimension except PHBV. PHBV was degraded entirely within
30 days in soil and Promix, and within 60 days in sand. Balsa wood did now show any significant
reduction in mass and dimensions in all growth media. Similarly, there was no significant mass loss
across wax blends (p = 0.05) at any growth stage, with a few exceptions. Among the wax blends,
3:1 (beeswax:soy wax) was the most stable blend in terms of mass and dimension with no surface
cracks, making it a suitable encapsulant for soil sensor. All materials under consideration did not
have any significant effect on maize growth (dry biomass, green biomass, and height) as compared to
control plants. These results indicated that 3:1 beeswax:soy wax blend, PHBV, and balsa wood could
be suitable candidates for various components of biodegradable soil moisture sensors.

Keywords: soil moisture sensors; degradability; maize growth and development

1. Introduction

Variable-rate irrigation (VRI) is a tool of precision agriculture that is aimed at optimizing water
use by applying the right amount of water, at the right place, at the right time, in the right manner.
Crop producers already possess the VRI technology that can control water application at a fine spatial
and temporal resolution. However, producers lack the technology to measure plant-available soil
water at a spatial and temporal resolution that is required to fully harness the capability of VRI systems
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to optimize water use. A major roadblock in developing a highly optimized variable rate irrigation
system is the lack of ability to measure soil moisture at spatially and temporally dependent scales.

We have come a long way in the field of soil moisture measurement from direct gravimetric
measurement to the use of various sensor-based measurements, such as neutron probes [1,2], microwave
sensors [3], dielectric techniques [4], optical sensors [5], thermal sensors [6], and tensiometric sensors [7].
With technological advancements, moisture sensors are becoming smaller, cheaper, and more reliable;
however, placement of such sensors in the field at high density to collect data at a spatially dependent
scale (i) is cost-prohibitive, (ii) results in significant electrical and plastic waste in soil, and (iii) requires
labor-intensive retrieval and maintenance, rendering them unsuitable for high resolution soil moisture
data collection.

A possible solution to resolve the abovementioned issues of current soil moisture sensors is to
develop cheap sensors from biodegradable components that could eliminate electrical and plastic
waste, maintenance, and retrieval requirements, as well as provide reliable soil moisture data at high
spatial resolution. However, developing biodegradable soil sensors is easier said than done. There are
numerous concerns that need to be addressed, such as (i) selection and screening of suitable materials,
(ii) drift in measurement due to degradable components, and (iii) effect of component materials in
crop growth and development. Recently, patents have been filed [8,9], indicating a possibility of
developing biodegradable sensors by using biodegradable materials apart from a conductive bioinert
circuit and antenna.

Although biodegradable sensors have long been studied and used in other disciplines such as
medicine [10–14] and engineering [15,16], few efforts [17] have been made to develop sensors that
are suitable for agricultural use. Jiang et al. [17] utilized a biodegradable encapsulation material
coated in different thickness onto bioinert electrodes to time the degradation so that a series of
identical electrodes can be sequentially exposed to soil to extend the functional lifetime of the sensor.
We propose a capacitive soil moisture sensor with a hydrophobic encapsulant, which will sense
the dielectric constant change of the surroundings and will read by a radio frequency identification
(RFID) reader. A thin layer of the encapsulant will not completely block the electric field generated
by the electrodes; thus, the dielectric constant change of the soil due to water content variation
can still be measured. We choose a hydrophobic material as the encapsulant because we intend
to use biodegradable materials as the electrical conductor for the moisture sensor (e.g., zinc) to
further reduce the impact to the environment. The slow-degrading hydrophobic encapsulant can
protect the biodegradable conductor from premature degradation. Ideally, the sensor will be buried
deep in the soil; the antenna, however, will stay above ground to reduce loss in signal strength.
The sensor and the antenna will be electrically connected using a conductor which will be done by
using wax-encapsulated zinc. The results of this preliminary study could be a stepping stone for
producing low-cost, maintenance-free, biodegradable soil sensors for use in precision agriculture.
The main advantage of having biodegradable sensors is that there will be no maintenance cost because
the sensors will degrade after the cropping season. Moreover, the sensors will be developed in
such a way that there is no need for batteries and other electrical waste. Being extremely small
(few centimeters), inexpensive (<$1), and without maintenance and retrieval requirement, these sensors
could revolutionize the way we farm and irrigate.

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and its derivatives have long been used
in the medical field as encapsulants of drugs for delayed-release [18,19]. PHBV is a naturally occurring
biodegradable polyester with characteristic surface erosion [20], making it a suitable candidate for
biodegradable sensors [21]. PHBV has been reported to be completely biodegradable with >80%
degradation within 80 days [22] and potentially improve plant growth [23]. PHBV will act as a printing
substrate for the conductive part in the sensor. Beeswax and soy wax are natural biodegradable
substances with no known detrimental effects on the environment or plant growth. In a study
by McDonough et al. [22], more than 60% degradation occurred within 28 days in an OECD 301B
Ready Biodegradability Test. In another study by Hatzinger and Alexander [24], beeswax showed
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a linear trend in mineralization, and >40% of beeswax was degraded by 90 days, indicating that
beeswax is not persistent in the environment. Soy wax can refer to either fully (FHSBO) or partially
hydrogenated soybean oil (PHSBO). Stearic acid, which comprises 80% of FHSBO [25–27], degrades
31% in 28 days in soil in non-accelerated conditions [28]. PHSBO, which is used in this study, consists
of several long-chain fatty acids [26]. Microbes that can degrade these fatty acids have been found in
soil [29]. Blends of soy and beeswax have been used as stimulants for microbial growth in petroleum
remediation [30]. Due to differential rates of degradation of the waxes, our approach of using a blend
of beeswax and soy wax could be beneficial to avoid measurement drifts before crop maturity. Balsa
(Ochroma pyramidale) is a tropical hardwood, and it is highly popular in the timber industry due to
fast plant growth, lightweight wood, and good mechanical properties [31]. Balsa wood, structurally
made from cellulose, hemicellulose, and lignin, decomposes rapidly in the presence of water [32].
No detrimental impact of balsa wood on plant growth and development and the environment has
been studied or reported.

This study was conducted to assess (i) the degradation of biodegradable soil moisture sensor
components in different soil media and (ii) the effect of materials and their degradation on maize
growth and development.

2. Materials and Methods

2.1. Study Design and Sensor Component Materials

This study was conducted from March 2020 to July 2020 in the Plant Growth Facility (PGF)
greenhouse located at Colorado State University, Fort Collins, Colorado, USA (40◦34′018.0′′ N
105◦04′52.3′′ W). The experiment was set up as a completely randomized design in three blocks of
growing media including (i) silica sand, (ii) Promix potting soil mix (Miracle-Gro, Lawn Products Inc.,
OH, Marysville, USA), and (iii) field soil classified as fine-loamy, mixed, superactive, mesic Aridic
Haplustalf [33] and collected at 0–15 cm depth from a maize field at Colorado State University,
Agricultural Research Development and Education Center, located in Fort Collins, CO, USA
(40◦40′38.24′′ N, 104◦58′44.76′′ W). Five candidate sensor component materials Table 1, selected from
previous preliminary greenhouse and accelerated degradation studies, and a control (no materials)
were tested in each growing media to assess the degradation rate and their effects on maize growth
development. A summary of dimension of materials is presented in Table 2. The experimental layout
of the study is shown in Table 3.

Table 1. Description of candidate sensor materials used in the study.

Material Abbreviation Function in Sensor Description

Balsa wood B Structural substrate Lightweight natural substance

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) PHBV Printing substrate Rapidly biodegradable carbon polymer

1:1 Beeswax:soy wax blend W-1:1 Encapsulant Beeswax, natural wax produced by bees.
Denser than soy wax

1:3 Beeswax:soy wax blend W-1:3 Encapsulant Soy wax, natural wax produced from
soybean. Softer than beeswax

3:1 Beeswax:soy wax blend W-3:1 Encapsulant

Soy wax, Golden Brands Natural Soy Wax (444), Lone Star Candle Supply Inc., Keller, TX, USA. Beeswax, refined
beeswax, Sigma-Aldrich, MO, St. Louis, USA. PHBV, Goodfellow Corporation, Coraopolis, PA, USA. Balsa wood,
Revell, Home Depot, CO, Denver, USA.
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Table 2. Mean and standard deviation of material attributes (length, width, thickness, and weight)
before placement in the pots.

Material Attribute Mean SD

W-11

Length (mm) 14.991 0.092
Width (mm) 15.021 0.124

Thickness (mm) 5.238 0.531
Weight (g) 1.068 0.109

W-13

Length (mm) 14.977 0.099
Width (mm) 14.967 0.104

Thickness (mm) 5.473 0.499
Weight (g) 1.081 0.097

W-31

Length (mm) 15.181 0.141
Width (mm) 15.171 0.082

Thickness (mm) 5.118 0.661
Weight (g) 1.066 0.130

Balsa

Length (mm) 50.525 0.627
Width (mm) 24.963 1.101

Thickness (mm) 6.530 0.123
Weight (g) 1.174 0.162

W-11, 1:1 blend of beeswax and soy wax; W-13, 1:3 blend of beeswax and soy wax; and W-31, 3:1 blend of beeswax
and soy wax. SD, standard deviation.

Table 3. Experimental layout showing blocks and location of pots.

Soil Promix Sand

W-31-H1 B-H1 W-11-H3 W-11-H4 W-31-H2 W-11-H2 W-13-H2 B-H1 W-11-H1 W-13-H1 C1
C2 W-31-H2 B-H3 PHBV-H3 W-31-H4 W-31-H1 C2 W-11-H4 B-H4 PHBV-H1 PHBV-H3 W-31-H3

W-13-H2 W-13-H1 W-31-H3 PHBV-H2 W-31-H3 PHBV-H1 PHBV-H3 PHBV-H4 B-H2 W-11-H4 W-11-H2 C2
W-31-H4 C1 W-13-H4 B-H4 B-H2 W-13-H4 B-H4 C3 W-13-H3 W-31-H1 W-11-H3
W-11-H2 C3 PHBV-H4 W-11-H1 W-11-H3 W-13-H3 C3 W-13-H4 B-H3 W-13-H2 P HBV-H2
PHBV-H1 B-H2 W-13-H3 W-11-H1 C1 PHBV-H2 W-13-H1 B-H3 W-31-H4 B-H1 W-31-H2 PHBV-H4

Soil, Promix, and sand columns indicate the three growing media. B, balsa wood; W, wax blend, the number following
“W” represents the ratio of beeswax and soy wax in the blend; PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate);
C, control pots; H, harvest, the numbers following “H” represent the harvest time (H1: 30 days after planting (DAP),
H2: 60 DAP, H3: 90 DAP, and H4: 120 DAP). The location of pots is adjusted here for the ease of visualization.
Empty cells had a pot and plants same as control pots.

Plastic pots (15.24 cm diameter and 15.24 cm height) were filled with growing media (silica sand,
Promix soil mix, and field soil). Three replicate sensor materials (experimental unit for objective 1)
were placed at 10 cm soil depth and four maize seeds (DKC 46-20 hybrid) were planted in a square
pattern at 2.5 cm depth in each pot.

2.2. Crop Management

At the time of planting, 2 g of granular 15:9:12 NPK (Osmocote Plus, Scotts Miracle-Gro, Marysville,
OH, USA) fertilizer was applied in each plot. After plants emerged, 100 mL of 200 ppm nitrogen
solution was supplied twice a week. The concentration of N solution was increased to 400 ppm at
30 days after planting (DAP) to accommodate higher nitrogen demand of plants. At 30 DAP, 0.02 g
(equivalent to 11.2 kg ha−1) of iron (Fe) and 0.02 g (equivalent to 11.2 kg ha−1) of zinc (Zn) were supplied
to the plants to avoid micronutrient deficiency. An automated drip irrigation setup was created to
supply 50 mL water twice a day (at 08:00 and 15:00). After two weeks of emergence, plants were
thinned to establish two healthy plants (experimental unit for objective 2) in each pot. The experiment
was managed as a typical greenhouse-based study [34–37].
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2.3. Plant and Material Data Collection

Plants and materials from pots were retrieved according to the harvest schedule by growth
stages as shown in the experimental layout Table 3, where H1 corresponds to harvest 1 at 30 DAP, H2
corresponds to harvest 2 at 60 DAP, H3 corresponds to harvest 3 at 90 DAP, and H4 corresponds to
harvest 4 at 120 DAP. C1, C2, and C3, correspond to control plots (without materials) in each growing
medium. Control pots, C1, C2, and C3 were harvested with H2, H3, and H4 harvests, respectively.
At H1, no control pots were harvested because plants were very young or still germinating in soil pots.
Each plant from the harvested pots was weighed immediately to record green biomass. In addition,
height of each plant was measured using a measuring tape at every harvest. Plants were air-dried for
14 days and were weighed again to obtain dry biomass. When the plant biomass was constant for
two days in a row, it was considered as dry biomass. For the sake of consistency, all samples were
air-dried for 14 days. Materials were measured in terms of length, width, thickness, and weight before
being placed in the pots. Materials were retrieved from harvested pots, washed with deionized water
to remove any visible debris, and air-dried for seven days before making measurements. Length, width,
and thickness of each material were measured using a 4-point precision vernier caliper (Stahlwille
Co., Wuppertal, Germany), and weight was measured using a 4-point precision digital balance
(Metler Toledo LLC, Columbus, OH, USA). Each material had 36 replicates, and every replicate was
measured three times and an average value was obtained for each material attribute. The mean
and standard deviation (SD) presented in Table 2 represent all (36) replicate materials of same kind.
Percentage change in weight and dimension of materials at each growth stage was obtained by using
the following formula.

% change in attribute =
Initial Value−Harvest Value

Initial Value
× 100

2.4. Statistical Analysis

At each growth stage (30, 60, 90, and 120 DAP), for each growing media, plant attributes (plant
height, green biomass, and dry biomass) were analyzed using ANOVA to detect significant differences
between control plants and plants from material treatments (α = 0.05). One-factor ANOVA model with
materials as the independent factor was used to model every plant attribute as shown in Equation (1).

Yi j = µ+ τi + εi j (1)

where Yi j is the value of jth subject in treatment group i, µ is the grand mean, τi is the treatment effect,
and εi j is the error term associated with Yi j.

Tukey’s HSD (Honestly Significant Difference) [38] test was used to obtain and compare the
pairwise difference between treatments. Material degradation between growth stages (30, 60, 90,
and 120 DAP) was also compared for each material and growing media using ANOVA. The one-way
ANOVA model, as shown in Equation (1), with growth stage as the independent factor was utilized to
model % change in each material dimension. Line plots were created to visualize rates of degradation of
material with time. All statistical analyses were conducted using the R statistical software package [39].

3. Results

3.1. Degradability of Materials

All materials under consideration showed consistency in terms of weight, length, width, and
thickness across all growing media and growth stages, except PHBV, which decomposed completely
within 30 DAP in all growing media (Figure S2, in the supplementary material). In terms of material
weight, balsa wood showed a general increase across all growing media and growth stages (Figure 1).
All three wax blends showed considerable stability in terms of weight, with a range of −5% to 14%.
The percentage change in weight in W-11, W-13, and W-31 wax blends did not show any significant
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difference (p = 0.05) across growth stages in any growth media, except W-11 in sand. Even in that
particular instance, weight reduction was not observed. There was some variability when the weight
change was compared between materials at each growth stage. Balsa wood exhibited the most variation
at each growth stage due to unexpected weight gain (Figure 1).Sensors 2020, 20, x FOR PEER REVIEW 2 of 14 
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Figure 1. Comparison of the percentage change in material weight in three growing media (Promix,
sand, and soil) at four growth stages (30, 60, 90, and 120 days after transplanting (DAP)). Different
lowercase letters indicate significant differences in % weight change between different growth stages,
at α = 0.05, within each growing media and material, whereas the same letters indicate no significant
difference across compared treatments. W-11, 1:1 blend of beeswax and soy wax; W-13, 1:3 blend of
beeswax and soy wax; and W-31, 3:1 blend of beeswax and soy wax.

In contrast to weight change, balsa wood was highly consistent in terms of length change (average
−0.12%) across growth media and growth stages with no statistical difference at α = 0.05 (Figure 2).
Three wax blends were also consistent in terms of percentage length change (average 0%), except W-11
at 30 DAP, W-13 at 30 DAP, and W-31 at 60 DAP. As expected, change in material width (Figure 3)
exhibited a similar response as the changes in length. The W-13 blend in Promix at 60 and 90 DAP
showed an increase in width, which could be attributed to mold buildup as observed in the study
(Figure S3, in the supplementary material) and measurement errors.

As was observed for the changes in the weight, balsa wood showed a general increase in thickness
(Figure 4) across all growth media and growth stages. Material thickness is an important attribute
for an encapsulant, and consistency in the thickness of all wax blends was observed in most cases
(Figure 4). The W-11 blend was the most consistent wax blend with no significant differences between
any growth stages in all growth media. W-13 was consistent in most of the cases except at 60 DAP in
the sand, whereas the W-31 blend showed a significant reduction in thickness at 120 DAP in Promix.
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Figure 3. Comparison of percentage change in material width in three growing media (Promix, sand,
and soil) at four growth stages (30, 60, 90, and 120 days after transplanting (DAP)). Different lowercase
letters indicate significant differences in % width change between different growth stages, at α = 0.05,
within each growing media and material, whereas same letters indicate no significant difference across
compared treatments. W-11, 1:1 blend of beeswax and soy wax; W-13, 1:3 blend of beeswax and soy
wax; and W-31, 3:1 blend of beeswax and soy wax.
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Figure 4. Comparison of percentage change in material thickness in three growing media (Promix,
sand, and soil) at four growth stages (30, 60, 90, and 120 days after transplanting (DAP)). Different
lowercase letters indicate significant differences in % thickness change between different growth stages,
at α = 0.05, within each growing media and material, whereas same letters indicate no significant
difference across compared treatments. W-11, 1:1 blend of beeswax and soy wax; W-13, 1:3 blend of
beeswax and soy wax; and W-31, 3:1 blend of beeswax and soy wax.

3.2. Effect of Materials on Growth and Development of Plants

Dry plant biomass was affected by growing media as expected, and dry weight was greater in
soil and Promix growing media as compared with sand at all growth stages. The materials did not
exhibit a significant effect on the growth and development of maize plants across three growing media
and four growth stages (Figures 5–7). Green biomass was not affected by any of the materials in any
of the growing media except soil at 30 DAP, where green biomass was significantly different among
treatments (Figure 5). Some soil pots had to be reseeded because of delayed/no germination caused
by soil compaction and waterlogging, following irrigation, which might be attributed to significant
differences in green biomass in soil pots at 30 DAP. Similarly, there was no significant effect of any
materials on dry biomass as compared to the control pots, in any growing medium at any growth stage
(Figure 6). Likewise, the materials and their degradation did not have any significant effect on plant
height at any growth stage or growth medium (Figure 7).
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4. Discussion

Screening and pre-assessment of suitable biodegradable materials are crucial steps for developing
biodegradable soil moisture sensors. Not only should the sensor last an entire crop growing season,
but the materials used should not have any detrimental impact on crop growth and development,
or soil and environmental health. The candidate materials in this study were selected based on a
rigorous literature review and a preliminary lab study. The structural substrate (balsa wood) is a base,
on top of which a printing substrate (PHBV) will be attached. A metal electrode will be printed on top
of the printing substrate, and the structural setup will be covered with an encapsulant (wax blends).
The sensor will fail as soon as the encapsulant degrades, and water flows in.

PHBV is widely used in other fields, and its degradability is well understood. Highly malleable
mechanical property and no known biotoxicity of PHBV make it an excellent candidate as a printing
substrate. Consistent with a previous study [22], PHBV was degraded within 30 days in soil and
Promix medium and within 60 days in sand medium (Figure S2, in the supplementary material). Swift
degradation of PHBV is desirable to allow rapid detection of failed sensors.

Balsa is a natural, biodegradable, fast-growing, lightweight wood with excellent mechanical
properties [31], which makes it a suitable candidate for a short-term biodegradable sensor.
In theory, balsa wood would come in contact with soil water only when the encapsulant degrades;
thus, the mechanical property is the most important parameter for balsa wood as compared to
degradability. In terms of degradation, balsa wood did not have a notable reduction in weight, length,
width, and thickness up to 120 days in any growth medium. In most instances (8 out of 12), balsa wood
recorded an increase in weight (Figure 1), which might be attributed to mold and soil particles attached
to the wood at the time of removal and residual moisture after drying. In the soil growth medium at
90 DAP, two balsa woods were broken due to soil compaction and the force of extracting the materials
(Figure S4, in the supplementary material); however, in 34 instances out of 36, balsa wood was intact
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without notable degradation. The durability of balsa wood strengthens the possibility of using balsa
wood as the structural substrate in soil moisture sensors.

In terms of degradation, the encapsulant is the most important component of the sensor because
as soon as the water goes through the encapsulant, the sensor will fail rapidly. Beeswax and soy wax
were selected as encapsulants due to their hydrophobic nature and slow degradation rate. Based on the
results of a preliminary study (data not shown), a blend of these two waxes rather than one of them was
superior in terms of maneuverability and erodibility. All wax blends were consistent in terms of weight,
length, width, and thickness throughout the study period (Figures 1–4). However, surface cracks were
visible at 120 DAP in W-11 and W-13 blends (Figure S4, in the supplementary material). Surface cracks
could sip water in, causing sensor failure; thus, W-31 blend is the recommended encapsulant for the
sensors. The degradation rate of wax in this study was slower as compared with the rates reported in
the literature [25–27], which could be attributed to the ratio of surface area and mass. The wax blends
in this study were cube-shaped with a low surface-area-to-mass ratio; however, dimensions of waxes
were not reported in the abovementioned studies.

The materials under consideration do not have any reported environmental issues upon
degradation; however, their impact on crop growth and health have not been studied before.
The materials under study did not have any detrimental effect on maize growth and development
(Figures 5–7 and Figure S5). Results from this study are of tremendous significance because the pots
used in this study were 15 cm in diameter and 15 cm in height, supporting two maize plants. The rate
of sensor deployment in an actual maize field is approximately 8–10 sensors per hectare; thus, we can
be confident that sensor materials and their degradation do not pose any significant threat to crop
growth, health, and yield.

5. Conclusions

Biodegradable soil moisture sensors could be the next big thing in perfecting precision agriculture.
Results from this study showed that all candidate sensor components (structural substrate (balsa
wood), printing substrate (PHBV), and encapsulants (wax blends)) had the desirable degradability
attributes for creating biodegradable soil sensors, and their degradation did not have any detrimental
impacts on maize crop growth and development. Further studies are required to fully understand the
degradability and functionality of biodegradable sensors using a finished sensor setup.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/21/6154/s1,
Figure S1: Pictures showing (a) balsa wood, and three beeswax:soy wax blends; (b) 1:1, (c) 1:3, and (d) 3:1 before
placing them in the pots, Figure S2: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) decomposition in
sand at 30 DAP, Figure S3: Pictures showing material degradation at 30 days after planting (DAP), denoted by H1
and 60 DAP, denoted by H2, Figure S4: Pictures showing material degradation at 90 days after planting (DAP),
denoted by H3 and 120 DAP, denoted by H4, Figure S5: Growth of maize plants in three growing media at four
growth stages. DAP, days after planting.
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