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Abstract: Real-world evidence (RWE) increasingly informs public health and healthcare decisions
worldwide. A large database has been created (“Integrated Dataset”) that integrates primary care
electronic medical records with pharmacy and medical claims data on >123 million US patients since
2014. This article describes the components of the Integrated Dataset and evaluates its represen-
tativeness to the US population and its potential use in evaluating influenza vaccine effectiveness.
Representativeness to the US population (2014–2019) was evaluated by comparison with demographic
information from the 2019 US census and the National Ambulatory Medical Care Survey (NAMCS).
Variables included in the Integrated Dataset were evaluated against World Health Organization
(WHO) defined key and non-critical variables for evaluating influenza vaccine performance. The
Integrated Dataset contains a variety of information, including demographic data, patient medical
history, diagnoses, immunizations, and prescriptions. Distributions of most age categories and sex
were comparable with the US Census and NAMCS populations. The Integrated Dataset was less
diverse by race and ethnicity. Additionally, WHO key and non-critical variables for the estimation of
influenza vaccine effectiveness are available in the Integrated Dataset. In summary, the Integrated
Dataset is generally representative of the US population and contains key variables for the assessment
of influenza vaccine effectiveness.

Keywords: influenza vaccines; citizen science; medical records systems; computerized; insurance;
health; health information systems

1. Introduction

There are many advantages of randomized controlled trials (RCTs) [1], including
the distribution of known and unknown confounders between study groups through the
randomization process. Despite this key strength, RCTs have substantial limitations. One of
these is the trade-off between internal validity and external validity. Another is in balancing
the establishment of a causal relationship (between a medical intervention and a specific
outcome of interest) with the extent to which results are generalizable to other times, places,
and populations [2–4]. RCTs are also typically time- and resource-intensive, which limits
their feasibility in post-licensure evaluations of medical products [5].

The limitations of RCTs may, however, be addressed by real-world evidence (RWE)
studies [6], generated through the analysis of real-world data. Real-world data relates to a
patient’s health status and the healthcare received [7] and are collected from various sources,
including electronic medical records (EMRs), medical and pharmacy insurance claims and
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billing activities, product and disease registries, and patient-generated information, as well
as from other sources that can inform on health status, such as mobile devices [7].

RWE is particularly relevant in addressing questions relating to seasonal influenza
vaccine performance. In particular, antigenic drift in circulating influenza viruses neces-
sitate reformulation of influenza vaccines at least once a year, which makes it important
to evaluate vaccine effectiveness annually. As such, RWE can provide timely insights into
the safety and effectiveness of influenza vaccines under “real-world” conditions, and can
be an important tool to inform and assess influenza vaccine policy [8–11], clinical practice
guidelines [12], and product development [13,14].

Whilst vaccine efficacy is estimated by RCTs, vaccine effectiveness can be determined by a
variety of observational study designs [15,16]. Claims data may be incomplete if clinicians do not
bill all relevant diagnoses from a clinical encounter. Furthermore, billing is often time-intensive,
and, in a fee-for-service setting, the payment a clinician receives for an office visit may not be
directly related to the number or type of conditions for which they code. For these reasons,
claims data alone are often imperfect reflections of the actual health status of a patient. On the
other hand, EMR data contain clinical information for all patients receiving care by a clinician or
medical practice [17], and allow the study of real-world clinical outcomes in near real time [18].
Moreover, EMRs contain an abundance of additional information, including laboratory results,
vital signs, medical history, and demographics, as well as health problem lists [17,19]. While
not without their limitations [17], the use of EMR data may significantly improve identification
and understanding of health conditions without a coded diagnosis [19]. The linkage of EMR
data with claims data leverages and improves the strengths of each individual data source [20].
Indeed, the value of combining evidence from multiple sources to improve estimation of vaccine
effectiveness, including influenza vaccine effectiveness, has been highlighted by multiple global
stakeholders [13,21–24]. Such integrated datasets provide a more comprehensive view of the
patient experience within the healthcare system and clinical status [23].

This article describes a large dataset for influenza vaccine research that integrates
de-identified EMR data from primary care with pharmacy and medical claims (hereby
referred to as the Integrated Dataset) and reviews its applicability in generating RWE
related to influenza vaccines. This article is intended to be a descriptive overview of the
Integrated Dataset and not a formal fitness-for-use assessment of the dataset.

2. Materials and Methods

The Integrated Dataset is based on complete de-identified data from three ambulatory
care EMRs (Veradigm Health Insights Ambulatory database) linked with both open and
closed pharmacy and medical claims data (Komodo Healthcare Map) where available. The
Integrated Dataset includes data since 2014 for a total of 123,229,120 US individuals, with
information on 99,912,523 de-identified EMR patients with linked claims (open or closed)
where available for 1 or more years, in addition to roughly 23,316,597 de-identified EMR
patients with a partial year of linked claims data. Here, a “year of data” in the EMR is
defined as at least one provider visit in a year, while in the linked data, a “year of data”
is defined as at least one provider visit in the EMR data, as well as at least one claim or
enrollment period in the same year. The Integrated Dataset is routinely updated with recent
data; EMR data are available in almost real time, while claims data are available following
a lag of several months to allow for adjudication and processing.

Three national primary care and specialty care EMR systems form the basis of the
Integrated Dataset: Allscripts Professional, Allscripts Touchworks, and Practice Fusion.
Systems include medical practices of a range of sizes, including small practices (1–3 physi-
cians), medium-sized practices (4–40 physicians), and Integrated Delivery Networks (i.e.,
integrated networks of healthcare organizations). Separately, the Komodo Healthcare
Map consists of anonymized patient-level US pharmacy and medical claims [25]. Patient
encounter data for 150 million individuals in the Komodo Healthcare Map are derived
directly from payer sources, including 100% fully integrated fee-for-service Medicare data,
Medicare Advantage claims, commercial claims, and Medicaid claims.
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Software for linkage of each individual de-identified dataset was provided by a third
party (Datavant, San Francisco, CA, USA). Each individual dataset was required to meet
the minimum protected health information (PHI) data requirements to ensure that linkage
of the individual datasets was compliant with the HIPAA. The HIPAA of 1996 is a US
federal law that required the creation of national standards to protect sensitive patient
health information from being disclosed without the patient’s consent or knowledge.
Deterministic matching algorithms were used to create two de-identified patient tokens
from the identifiable information separately for each patient with records in the EMR
and claims data sources. For patients in both sources with matches on both tokens, one
unique patient identifier was created. The two data sources were then linked by the
common patient identifier (Appendix A). The linked dataset was checked to verify that it
contained no PHI and was evaluated and certified for HIPAA compliance by a third-party
statistician. The linkage algorithm, as well as original EMR and claims datasets containing
PHI, remain with the respective owners of the data and are not available for research
purposes. Informed consent by patients is not necessary for use of the Integrated Dataset
in research, as all records have been de-identified and integrated into real-world datasets.
The ability to use patient-specific tokens allows for the linkage of other data elements to
the Integrated Dataset.

Demographic information on geographic distribution, age, sex, race, and ethnic-
ity of the entire population captured within the Integrated Dataset from 2014 to 2019
(n = 123,229,120) was compared with 2019 US Census Bureau data to evaluate the repre-
sentativeness of the Integrated Dataset compared with the general US population [26]. As
individuals captured within the Integrated Dataset must have medical insurance (such
that their insurance claims are linked to their EMR data), the demographics within the
Integrated Dataset were also compared with the 2016 National Ambulatory Medical Care
Survey (NAMCS) data conducted by the US Centers for Disease Control and Prevention,
which provides information on medical visits to office-based physicians and community
health centers [27,28]. Summary statistics of key demographic variables (i.e., US geographic
region, age, sex, race, and ethnicity) from these surveys were used for the comparison
with the Integrated Dataset [28,29]. Furthermore, variables within the Integrated Dataset
were compared with the key and non-critical variables for the design and interpretation of
observational influenza vaccine studies proposed within the World Health Organization
(WHO) guidance [9], using influenza-related medical encounters (defined as International
Classification of Diseases, Tenth Revision (ICD-10) codes J09*–J11*) as the primary outcome
(Table 1) [30].

Table 1. Availability of variables within the Integrated Dataset for the evaluation of influenza vaccine
effectiveness compared with WHO benchmarks [9].

Identified by the WHO [9] Integrated Dataset

Key Variables Rationale

Influenza vaccines Needed to identify vaccinated individuals Available

Age

An important stratification factor for VE
estimates, as VE may differ in different age

groups
Both vaccination coverage and risk of
influenza virus infection vary by age

Available
Limitation: maximum age in variable is 89

years and artificially constrained in patients
>89 years of age to remain compliant with

HIPAA (i.e., to decrease the risk of potential
re-identification of individuals)

Sex
May be a strong variable related to healthcare

utilization and vaccination in
non-high-resource settings

Available

Race, ethnicity Correlated with healthcare utilization in
many parts of the world Available
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Table 1. Cont.

Identified by the WHO [9] Integrated Dataset

Key Variables Rationale

Date of symptom onset

Important variable for characterizing the
influenza epidemic in the population:
needed in cohort studies to calculate
person-time at risk, and needed in

case–control studies to sample controls (if
using incidence-density sampling)

Available

Calendar time

Key variable in test-negative studies, because
non-cases that are enrolled outside of an
influenza season must be excluded from

analyses to avoid bias
Calendar time is also correlated with vaccine
uptake and incidence of influenza, creating

potential confounding by calendar time,
although this confounding may not be

meaningful in some settings

Available
The healthcare interactions captured within
the primary care EMRs, pharmacy claims,

and medical claims are tied to calendar time

Time from symptom onset to
specimen collection

May be associated with the sensitivity or
specificity of influenza testing

May be available within the EMR if testing
for influenza was conducted within primary

care

Use of antivirals

Patients who have used antiviral medicines,
either for treatment or for prophylaxis, are

more likely to have false-negative test results;
this can be used to exclude subjects from

study enrollment

Available
Prescription for influenza antiviral

medication available, although adherence is
not

Non-critical Variables

Receipt of other vaccines (such as
pneumococcal vaccines)

May be a marker for care-seeking behavior
and/or propensity to seek influenza

vaccination
Available

Prior history of influenza vaccination
Receipt of the prior year’s influenza vaccine

may affect the effectiveness of the current
season’s vaccine

Available

Presence and severity of cardiac or
pulmonary comorbidities

Persons with chronic cardiac or pulmonary
disease are at increased risk of

influenza-associated complications if they are
infected, and are therefore more likely to
become cases in a hospital-based study

In high-resource settings, underlying disease
is also correlated with receipt of influenza
vaccine, although in a non-linear fashion

Available
Information on hospitalization and reason for
hospitalization (indicator of disease severity)

Measure of outcome severity

Measures such as duration, subsequent
hospitalization (particularly for outpatient

outcomes), or death may be useful for
assessing whether influenza vaccine reduces

severity of outcomes in the vaccinated
population (although this is complicated to

estimate)

Available
Diagnosis information available for inpatients

(potential marker of disease severity)

Immunocompromising conditions

Generally, have been uncommon among
subjects included in VE studies in

high-resource settings and so have not been
important confounders. However, in settings

in which the prevalence of HIV/AIDS is
high, HIV/AIDS may be an important

confounder to measure

Available
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Table 1. Cont.

Identified by the WHO [9] Integrated Dataset

Non-critical Variables

Functional and cognitive limitations

Shown to be important confounders in VE
studies among elderly adults in

high-resource settings and particularly in
relation to serious outcomes (i.e.,

hospitalization)

Specific information on functional and
cognitive limitations is not available; however,

the construct of frailty may be generated
using summary scores that leverage available

information within the Integrated Dataset

Access to medical care

Access to medical care will be
population-dependent

In some settings, availability and use of
health insurance may affect patients’ ability

to seek care at certain facilities

Integrated Dataset represents individuals
with health insurance; therefore, all

individuals within the Integrated Dataset
theoretically have access to medical care

Socioeconomic status
Likely to be highly correlated with

vaccination and with healthcare-seeking
behavior

Specific information on patient socioeconomic
status not available within the Integrated

Dataset

Distance to study hospital/clinic May be correlated both with access to
vaccination and access to medical care

Specific information not available within the
Integrated Dataset as data evaluated

retrospectively (no study hospital/clinic) and
granular information on subject location of

residence not available as per HIPAA
requirements

AIDS: acquired immune deficiency syndrome. EMR: electronic medical record. HIPAA: Health Insurance
Portability and Accountability Act. HIV: human immunodeficiency virus. VE: vaccine effectiveness. WHO: World
Health Organization.

3. Results

The Integrated Dataset is EMR-based and integrates information from pharmacy and
medical claims data, where available, for a total capture of 123,229,120 individuals as of
2014. Of this total population, 63,830,391 (52%) have data on closed medical claims (i.e.,
patients for whom there are both claims and enrollment information), while the remaining
individuals (n = 59,398,729) have claims but no enrollment information (i.e., open claims).
Furthermore, the Integrated Dataset provides a longitudinal view of de-identified patients:
one year of data (defined as at least one provider visit in the EMR data and at least one claim
or enrollment period in the same year (either an open or closed claim)) is available for 56.5
million individuals, two consecutive years for 19.9 million individuals, three consecutive
years for 9.4 million individuals, four consecutive years for 5.5 million individuals, five
consecutive years for 3.4 million individuals, and five or more consecutive years for 5.2
million individuals.

Compared with 2019 US Census Bureau data, the population in the Integrated Dataset
(2014–2019) provides a broad demographic representation of the US population (Figure 1A).
Distributions of most age categories (Figure 1B) and sex (Figure 1C) are comparable,
although the Integrated Dataset has a lower representation of individuals < 18 years of age
(10.0 vs. 22.4%) and a higher representation of individuals > 65 years of age (30.0 vs. 16.0%)
compared with the 2019 US census population. Over-representation of this older age group
is likely driven by data sources that are built on the utilization of healthcare (i.e., EMR and
open claims). The data sources should represent individuals who utilize healthcare that
may differ from US Census information.

Compared with the general US population, the Integrated Dataset is less diverse by race
(Asian: 0.9 vs. 5.6%; Black: 6.1 vs. 12.7%; White: 39.2 vs. 72.2%; other/unknown/missing: 53.4
vs. 9.5%; Figure 1D) and ethnicity (Hispanic/Latino: 7.1 vs. 15.9%; non-Hispanic/non-Latino:
74.1 vs. 84.1%; unknown/missing: 18.8 vs. 0.0%; Figure 1E). Of note, race/ethnicity data are
derived solely from EMRs, where “unknown” or “not reported” are considered valid fields;
patients and providers do not need to report patient race or ethnicity in EMRs.
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Figure 1. Geographic distribution of all subjects (n = 123,229,120, representing the full integrated
dataset of EMR and both open and closed medical claims from 2014 to 2019) (A) and distribution
by age (B), sex (C), race (D), and ethnicity (E) within the Integrated Dataset versus 2018 US Census
and 2016 NAMCS data. EMR: electronic medical record. NAMCS: National Ambulatory Medical
Care Survey.

Furthermore, there was general alignment between the population of the Integrated
Dataset and the NAMCS survey with regard to geographic region (Figure 1A). Distributions
across age categories (45–65 years and >65 years; Figure 1B) and sex (Figure 1C) are similar.
Compared with the NAMCS survey populations of medical visits, the population within
the Integrated Dataset is less diverse by race (Asian: 0.9 vs. 0.0–6.0%; Black: 6.1 vs.
10.6%; White: 39.2 vs. 83.8%; other/unknown/missing: 53.4 vs. 5.6%; Figure 1D) and
ethnicity (Hispanic/Latino: 7.1 vs. 16.6%; non-Hispanic/non-Latino: 74.1 vs. 83.4%;
unknown/missing: 18.8 vs. 0.0%; Figure 1E).
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Influenza-related outcomes that may be evaluated include influenza-related medical
encounters, defined as a medical visit with a recorded diagnosis of influenza disease
defined by ICD diagnostic codes specific for influenza disease (ICD-10 J09*–J11*) [31,32].
The Integrated Dataset also provides information on influenza vaccination coverage by
vaccine type, which is essential for brand-specific influenza vaccine effectiveness analyses.
For example, during the 2018–2019 influenza season, 3.8 million individuals ≥ 65 years of
age had a record of receiving the high-dose trivalent influenza vaccine, while 1.0 million
and 0.9 million individuals received adjuvanted trivalent influenza vaccine and egg-based
quadrivalent influenza vaccine, respectively. Furthermore, a larger number of individuals≥
4 years of age received egg-based quadrivalent influenza vaccine compared with cell-based
quadrivalent influenza vaccine (8.0 vs. 2.0 million, respectively) during the 2018–2019
influenza season, predominantly in the 50–64-year age subgroup (2.7 vs. 0.8 million,
respectively) (Table 2).

Table 2. Number of individuals with a record of receiving an influenza vaccine, by vaccine type in
the 2018–2019 US influenza season.

Subjects ≥ 65 Years
of Age † [33]

Subjects 4–17
Years of Age [34]

Subjects 18–49
Years of Age [34]

Subjects 50–64
Years of Age [34]

Subjects ≥ 65
Years of Age †

[34]

Total Subjects ≥ 4
Years of Age [34]

aTIV QIVe HD-TIV QIVc QIVe QIVc QIVe QIVc QIVe QIVc QIVe QIVc QIVe

2018–2019
influenza

season
1,031,145 915,380 3,809,601 78,602 1,628,038 700,729 2,641,268 828,460 2,743,654 517,639 987,943 2,125,430 8,000,903

† The number of individuals receiving QIVe in the ≥65 years of age subgroup during this season represents two
separate analysis cohorts. aTIV: adjuvanted trivalent influenza vaccine. HD-TIV: high-dose trivalent influenza
vaccine. QIVc: cell culture-based quadrivalent influenza vaccine. QIVe: egg-based quadrivalent influenza vaccine.

With respect to the generation of RWE for influenza vaccine effectiveness studies,
the principal WHO’s key variables, as well as many of the non-critical variables, for the
estimation of influenza vaccine effectiveness are available in the Integrated Dataset, in-
cluding the commonly evaluated variables used by the US Centers for Disease Control
in influenza vaccine effectiveness studies [35] (Table 1). Specifically, information on the
following variables, identified as key by the WHO, can be ascertained from the Integrated
Dataset: influenza vaccines (by brand/type), calendar time, prescription of medications
(such as influenza antivirals), and key demographic variables (age, sex, race, ethnicity, and
geographic region). Other non-critical variables identified by the WHO can also be ascer-
tained from the Integrated Dataset, including information on the receipt of non-influenza
vaccines (such as pneumococcal vaccines), prior history of influenza vaccination, presence
and severity of cardiac or pulmonary comorbidities (information on hospitalization and
reason for hospitalization as an indicator for disease severity), measure of outcome severity
(diagnosis information as a potential marker for disease severity), and immunocompromis-
ing conditions. Some variables identified by the WHO are not readily available within the
Integrated Dataset. For example, a key variable identified by the WHO is the time from
influenza symptom onset to laboratory specimen collection. In addition, information on
prescription of medications (key variable), including influenza antivirals, is also available
within the Integrated Dataset. However, as with many study designs (often including
RCTs), confirmation of patient adherence to treatment is not possible from data in the Inte-
grated Dataset. Moreover, direct measures of functional limitations (non-critical variable),
such as frailty in older adults, are neither specifically nor systematically available within
the Integrated Dataset. However, these can be estimated using proxy measures derived
from diagnostic codes for conditions that impact activities of daily living, which would be
captured in the Integrated Dataset [36]. Information on other non-critical variables, such
as a patient’s physical proximity to the hospital or clinic, as well as specific measures of
socioeconomic status (SES), is not directly available from the Integrated Dataset; detailed
information on patient location of residence is not available in order to achieve compliance
with HIPAA. Nonetheless, in a similar way to the construct of frailty, it is possible to
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generate proxy measures of SES using diagnostic codes for proxy measures of SES available
within the Integrated Dataset [31].

4. Discussion

The Integrated Dataset is a distinct, US population-based repository of real-world
data that integrates medical information from primary care EMRs with pharmacy and
medical claims information, where available, for a total capture of 123,229,120 individuals
as of 2014. Patient demographic information, medical history, outpatient and inpatient
medical diagnoses, hospitalizations, immunizations, medication prescriptions, and most
key and non-critical variables identified by the WHO as key for influenza vaccine research
are all available within the Integrated Dataset [9]. An advantage of the Integrated Dataset
will be its ability to link demographic information, vaccine exposure, clinical diagnosis of
influenza disease (defined using ICD-10 codes J09*–J11*, which are specific for influenza
disease [37]), and confounding variables necessary for influenza vaccine effectiveness
analyses. Furthermore, the Integrated Dataset can be used to conduct retrospective analyses
(i.e., cohort, case–control, and other case-based retrospective designs, such as the self-
controlled case series design) [38]. Evaluations of relative vaccine effectiveness are relatively
unaffected by exposure misclassification, as the exposure groups are ascertained based on
the presence of specific codes indicating the receipt of a vaccine. Appropriate analytical
methods that may be implemented include standard commonly used approaches, such as
univariate, multivariate, and stratified regression analyses [32,39]. The large volume and
variety of information (i.e., variables) in the Integrated Dataset also allow for the use of
more sophisticated adjustment methodologies, including propensity score approaches (e.g.,
high-dimensional propensity scores and inverse probability of treatment weighting) [40,41].

Data within the Integrated Dataset are updated periodically to ensure capture of
recent EMRs and claims. Protection of healthcare information from human subjects in the
Integrated Dataset is maintained by meeting HIPAA guidelines, ensuring that the confi-
dentiality and security of PHI remain as the patient records and claims are de-identified,
aggregated across practices or payers, and linked to the Integrated Dataset. Although the
US Food and Drug Administration has issued guidance on the use of EMRs in clinical
investigations, requirements for further guidance are being considered around using EMRs
to generate RWE [13]. Moreover, the Integrated Dataset may be expanded by the addition
of data components through further linkage and de-identification. Whilst the Integrated
Dataset is not the only large dataset available for RWE research [24,42,43]; it is one of the
first, and largest, datasets integrating EMR and claims data for influenza vaccine research.

The representativeness of the Integrated Dataset to the US population is suggested by
the alignment of key demographic variables to the 2019 US Census Bureau data [26], as well
as NAMCS and National Hospital Ambulatory Medical Care Survey data [28,29]. In prac-
tice, the ability of the Integrated Dataset to be used in the evaluation of influenza vaccine
effectiveness has already been demonstrated in several published analyses [33,34,44–46]. In
addition, estimates of relative vaccine effectiveness generated using cohorts from the Integrated
Dataset were included in a systematic review [47]. This review evaluated RWE for the MF59-
adjuvanted trivalent/quadrivalent influenza vaccines (aTIV/aQIV) from non-interventional
studies, published from 1997 through to 15 July 2020. Vaccine effectiveness estimated from
cohort studies conducted in the same influenza seasons was generally comparable in magnitude
or had overlapping confidence intervals compared with estimates from retrospective cohort
studies conducted using the Integrated Dataset. Between-study variability in the effect estimates
is likely attributable to differences in the underlying study populations and the study outcome
definitions used [47].

A limitation of the Integrated Dataset is the lack of specific information on length of
hospitalization, which is contingent on discharge date and not systematically reported in
patient records. Furthermore, a larger proportion of data on race and ethnicity is missing
(unreported/unavailable) in the Integrated Dataset versus the US Census Bureau and
NAMCS data. This is a result of information on patient race or ethnicity not being included
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in the claims data and patient de-identification into the four race categories to protect
patient privacy. This may be due, in part, to either the removal of information in order
for the Integrated Dataset to comply with HIPAA requirements, or patients not providing
this information. Regarding the variables identified by the WHO for the generation of
RWE for influenza vaccine effectiveness studies, time from influenza symptom onset to
laboratory specimen collection, a key variable, may not be systematically available within
the Integrated Dataset, as this information is dependent on healthcare providers recording
the date of symptom onset. This patient information and data were also omitted from
key RWE studies [13,14]. Moreover, some non-critical variables, such as information on
functional and cognitive limitations, are not systematically available within the Integrated
Dataset, but can be estimated using proxy measures derived from other conditions captured.
Other non-critical variables, including access to medical care, distance to a hospital or clinic,
and SES, are not available within the Integrated Dataset in order to achieve compliance
with HIPAA. Nevertheless, most key and non-critical variables identified by the WHO are
available in the Integrated Dataset, demonstrating its value for the generation of RWE for
influenza vaccines.

The WHO guidance on the evaluation of influenza vaccine effectiveness includes
influenza-like illness as an outcome of interest, noting that although vaccine effectiveness
against influenza-like illness will be lower than vaccine effectiveness against laboratory-
confirmed influenza outcomes, the extent of this underestimation will vary depending on
non-influenza causes of influenza-like illness within the study [9]. As the influenza-related
outcomes in the current Integrated Dataset relate to diagnosis of disease using ICD codes
rather than on a specific constellation of symptoms (as with influenza-like illness), it is
possible that the vaccine effectiveness estimates generated may be an underestimation.
Although information on laboratory diagnosis of influenza may be present in patient EMRs,
important data regarding the diagnostic accuracy of the laboratory test used is unlikely to be
available. It should be noted, however, that the use of restricted time periods for assessment
of influenza, as recommended by the WHO, allows maximization of the proportion of non-
specific outcomes that are caused by influenza [9]. Positive influenza tests reported to the
CDC by public health laboratories have previously been shown to overlap with incidence
of influenza-related medical encounters, supporting the use of ICD-10 codes (J09*–J11*) in
evaluations of influenza [44,45]; ICD-10 codes have demonstrated a high positive predictive
value (96%) with laboratory-confirmed influenza [31]. In addition, data contained in the
Integrated Database are derived from patients who attend medical practices that provide
data to the Veradigm Health Insights Ambulatory databases, and who also have claims
captured in Komodo’s Healthcare Map. Additionally, the availability of information in
EMR data may be confounded by underlying diagnoses potentially adding bias to our
results [17,19]. Nonetheless, as reported above, the population of the Integrated Dataset
is similar to the general population in the US, and its ability to be used for influenza
vaccine research has been demonstrated [33,34,45]. As the Integrated Dataset only includes
patients with fully private insurance coverage, the findings are most applicable to insured
individuals in the US who are eligible to receive an influenza vaccine.

5. Conclusions

The Integrated Dataset combines data from EMRs with pharmacy and medical claims
for a population of more than 123 million individuals. A larger proportion of data on race
and ethnicity are missing (unreported/unavailable) in the Integrated Dataset compared
to the US Census Bureau and NAMCS data. However, the Integrated Dataset is generally
representative of the US insured population and, in previous studies, has demonstrated
its use in generating RWE; this could help inform public health, clinical, and regulatory
stakeholders on influenza vaccine performance.
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Appendix A. Linkage Methods

Linkage variables used to generate tokens

• Token 1
• Patient last name
• Patient first initial of first name
• Patient gender
• Patient DOB
• Token 2
• Patient last name (Soundex)
• Patient first name (Soundex)
• Patient gender
• Patient DOB

Cleaning and pre-processing of linkage variables

De-identification software applies a series of validators and cleaners before a
token is generated
Validators

1. First name and last name should be more than 1 character
2. Gender: Requires that the field is MF, mf, or female or male (case

insensitive)
3. If any field fails a validation test, the token is not created

Cleaners

1. Removes all non-alphabetic characters. Alphabetic characters include A–Z
and a–z

2. Removes all non-numeric characters. Numeric characters include 0–9
3. Removes all characters that are not a number (0–9) or letter (A–Z + a–z)
4. Capitalizes all alphabetic characters (a–z→ A–Z)

DOB: date of birth.
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