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Bacterial communities of the cotton 
aphid Aphis gossypii associated 
with Bt cotton in northern China
Yao Zhao1,2, Shuai Zhang1, Jun-Yu Luo1, Chun-Yi Wang1, Li-Min Lv1 & Jin-Jie Cui1

Aphids are infected with a wide variety of endosymbionts that can confer ecologically relevant traits. 
However, the bacterial communities of most aphid species are still poorly characterized. This study 
investigated the bacterial diversity of the cotton aphid Aphis gossypii associated with Bt cotton in 
northern China by targeting the V4 region of the 16S rDNA using the Illumina MiSeq platform. Our 
sequencing data revealed that bacterial communities of A. gossypii were generally dominated by the 
primary symbiont Buchnera, together with the facultative symbionts Arsenophonus and Hamiltonella. 
To our knowledge, this is the first report documenting the facultative symbiont Hamiltonella in 
A. gossypii. Moreover, the bacterial community structure was similar within aphids from the same 
province, but distinct among those from different provinces. The taxonomic diversity of the bacterial 
community is greater in Hebei Province compared with in samples from Henan and Shandong 
Provinces. The selection pressure exerted by the different geographical locations could explain the 
differences found among the various provinces. These findings broaden our understanding of the 
interactions among aphids, endosymbionts and their environments, and provide clues to develop 
potential biocontrol techniques against this cotton aphid.

Aphids engage in symbiotic associations with a diverse assemblage of heritable bacteria. Aphid-associated 
bacterial community can vary with the sex and genotype of the insect host, and with environmental condi-
tions, including temperature and diet1–4. Bacteria that are restricted to specialized insect cells and obligately 
vertically transmitted are known as primary symbionts5. Almost all aphids require the primary symbiont, 
Buchnera aphidicola, which provides nutrients not obtained in sufficient quantities from plant phloem4,6. Many 
phloem-sap-feeding insects also contain one to several other bacteria, called secondary or facultative symbionts, 
which may be localized to the bacteriocytes, other insect cells or the body cavity, and are capable of both vertical 
and horizontal transmission7.

While some aphids carry only the obligate symbiont B. aphidicola, most pea aphids, Acyrthosiphon pisum, are 
additionally infected with one or more facultative symbionts8,9. These symbionts confer various phenotypes to A. 
pisum, including defence against parasitism, protection against fungal pathogens, tolerance to heat stress, plant 
usage and reproductive manipulation10–14. Documenting the presence of facultative symbionts and identifying 
their effects on hosts can have important implications for the management of pest species.

A. pisum has been used as a model insect to study several questions related to the diversity and interactions 
of symbiotic bacteria with aphids4, but little information is available on the bacteria associated with other aphid 
species. High-throughput DNA sequencing approaches provide a new way to characterize bacterial communities, 
and this approach permits the investigation of ecological questions that could not be addressed using traditional 
methods15,16.

The cotton aphid, Aphis gossypii, has a worldwide distribution and causes damage to numerous economically 
important crops17. However, the bacterial communities harboured by A. gossypii are still poorly characterised. In 
the present study, we used the Illumina MiSeq platform targeting the V4 region of the 16S rDNA to determine (1) 
whether the bacterial communities in A. gossypii associated with Bt cotton were dominated by the primary and 
facultative symbionts, and (2) whether the diversity of the bacterial communities differed among multiple field 
populations of A. gossypii in northern China.
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Results
Sequencing data. The Illumina MiSeq sequencing of the 16S rRNA gene amplicons from the field samples 
of the cotton aphid A. gossypii yielded 11,241–59,694 raw reads per sample (Table 1). After quality filtering and 
the removal of chimeric sequences, 10,710–57,034 reads per sample remained. The reads for the aphid samples 
could be assigned to 1358 OTUs, at 97% sequence identity. The rarefaction curve for every sample tended to 
saturation (Fig. S1), and the value of Good’s coverage of sequencing data in all samples was above 97% at the 0.03 
dissimilarity cut-off (Table 1). These results indicated that our sequencing results captured most of the bacterial 
diversity associated with A. gossypii.

Bacterial diversity in A. gossypii. Bacterial communities in the aphid samples were dominated by the phy-
lum Proteobacteria, with a relative abundance of 95.56% (average values across all samples) (Fig. S2). In addition, 
Proteobacteria had four sub-phyla that dominated the aphid-associated communities (average abundance values 
across all samples): Gammaproteobacteria (90.47%), Alphaproteobacteria (2.57%), Deltaproteobacteria (1.75%) 
and Betaproteobacteria (0.68%) (Fig. S3).

At the family level, Enterobacteriaceae was the most dominant, with a relative abundance above 75% (Fig. S4). 
The relative abundances at the genus level are presented in Table 2. All aphid samples bore the primary symbi-
ont Buchnera and two facultative symbionts, Arsenophonus and Hamiltonella. Buchnera dominated the bacterial 
communities in the cotton aphid A. gossypii. The least relative abundance of Buchnera was from the sample Cz, 
at 71.55%, and the highest was from the sample Jn, at 95.21%. The genera Arsenophonus was well-represented 
with relative abundances of 0.31%–4.74%. The relative abundance of Hamiltonella in all of the samples was less 
than 1%, except sample Dz. Furthermore, only samples from Cz, Sq, Bz and Dz bore the facultative symbiont 
Wolbachia, with relative abundances of less than 0.2%. Other facultative symbionts, such as Regiella, Rickettsia, 
Serratia and Spiroplasma, were not found in any of the collected samples (Table 2).

Comparisons of bacterial communities from different provinces. The samples from Hebei Province 
were richer, having a higher number of operational taxonomic units (OTUs) than the samples from Henan and 
Shandong Provinces (Table 1). At the family level, the samples from Hebei generally also had more OTUs than 
those from Henan and Shandong, when the relative abundances of the top 35 OTUs were compared (Fig. 1). 
Additionally, the samples from Hebei had generally higher Ace and Chao1 richness estimates compared with 
the samples from Henan and Shandong (Table 1). Shannon and Simpson diversity indices also suggested that 

Province Sample
No. 

reads
No. 

OTU* Ace Chao1 Shannon Simpson Coverage

Henan Zhoukou(Zk) 14,741 215 208.26 203.18 1.58 0.33 1.00

Henan Xuchang(Xc) 58,353 223 243.41 195.81 1.13 0.26 1.00

Henan Shangqiu(Sq) 11,241 107 124.70 119.33 0.88 0.19 1.00

Hebei Cangzhou(Cz) 59,694 1034 1045.13 964.19 3.24 0.55 0.97

Hebei Hengshui(Hs) 38,368 874 818.90 765.79 2.27 0.39 0.98

Hebei Handan(Hd) 45,373 993 1093.36 975.18 3.02 0.49 0.97

Shandong Jining(Jn) 44,998 248 240.37 211.67 0.68 0.13 0.99

Shandong Bingzhou(Bz) 12,737 140 143.92 145.05 1.87 0.47 1.00

Shandong Heze(Hz) 28,603 163 171.84 164.56 0.65 0.14 1.00

Shandong Dezhou(Dz) 24,088 490 576.51 505.66 1.93 0.39 0.98

Table 1. Sequencing analysis of 16S rRNA gene amplicons of A. gossypii with diversity indices. *Operational 
taxonomic units (OTUs) were defined with pairwise 97% sequence identity.

Province Site Latitude/Longitude

Relative abundances (%)

A B H Re Ri Se Sp W Other

Henan Zhoukou(Zk) 33°45′ N, 114°27′ E 2.70 83.06 0.14 0 0 0 0 0 14.10

Henan Xuchang(Xc) 33°50′ N, 114°14′ E 4.74 87.93 0.11 0 0 0 0 0 7.22

Henan Shangqiu(Sq) 34°31′ N, 115°42′ E 2.80 91.68 0.78 0 0 0 0 0.01 4.73

Hebei Cangzhou(Cz) 37°58′ N, 116°49′ E 3.23 71.51 0.17 0 0 0 0 0.01 25.08

Hebei Hengshui(Hs) 37°31′ N, 115°39′ E 0.31 84.73 0.20 0 0 0 0 0 14.76

Hebei Handan(Hd) 36°47′ N, 115°00′ E 2.30 76.40 0.18 0 0 0 0 0 21.12

Shandong Jining(Jn) 35°01′ N, 116°18′ E 1.40 95.18 0.10 0 0 0 0 0 3.32

Shandong Bingzhou(Bz) 37°44′ N, 117°39′ E 2.24 73.57 0.68 0 0 0 0 0.01 23.50

Shandong Heze(Hz) 34°47′ N, 115°59′ E 2.51 94.89 0.10 0 0 0 0 0 2.50

Shandong Dezhou(Dz) 37°00′ N, 116°00′ E 0.99 84.09 7.07 0 0 0 0 0.19 7.66

Table 2.  Distribution and relative abundance of bacterial symbionts in A. gossypii. aFacultative symbiont 
abbreviations: A, Arsenophonus; B, Buchnera; H, Hamiltonella; Re, Regiella; Ri, Rickettsia; Se, Serratia; Sp, 
Spiroplasma; W, Wolbachia.
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the taxonomic diversity of the bacterial community is higher in Hebei than in Henan and Shandong (Table 1). 
Principal coordinate analysis (PCoA) showed a distinct clustering among the individual samples, and the samples 
from same province tended to cluster together (Fig. 2).

Discussion
Our sequencing data revealed that the bacterial communities in A. gossypii were generally dominated by the uni-
versally present primary symbiont Buchnera. Two facultative symbionts, Arsenophonus and Hamiltonella, were 
also found in all of the aphid samples. To our knowledge, this is the first report finding the facultative symbiont 
Hamiltonella in A. gossypii. Moreover, the bacterial community structure was similar within the same province, 
but distinct among different provinces (Fig. 2). Our results suggest that the bacterial diversity of A. gossypii is 
related to the geographical location.

To utilize phloem sap as their sole dietary component, most aphids are critically dependent on symbiosis with 
the bacteria B. aphidicola6. Buchnera was also the predominant genus found in the bacterial communities of our 
aphid samples. Previous studies have shown that facultative symbionts from five genera can infect A. gossypii: 
Arsenophonus, Regiella, Rickettsia, Serratia and Wolbachia18–24. Among these, Arsenophonus was found in all of 
our samples, Wolbachia was only detected in some of our samples, and they both had low relative abundances. 
The other three symbionts were not detected in our sequencing data. Brady et al. summarized the infection rates 

Figure 1. Heat maps showing the relative abundance and distribution of A. gossypii bacterial family in 
three provinces of northern China. The color code indicates relative abundance, ranging from blue (low 
abundance) to yellow to red (high abundance).
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of Regiella, Rickettsia and Serratia in A. gossypii, and each of them was only 1%25. This may explain why these 
three facultative symbionts were not found in our results.

Arsenophonus is widespread in numerous insect species26. It can manipulate the reproduction of various par-
asitoid wasps by distorting the progeny sex ratio towards the production of females through male killing26,27. 
Arsenophonus may also behave as an obligate mutualist in hematophagous insects28, or as a facultative mutualist, 
protecting against parasitoid attacks in psyllids29. Jousselin et al. identified aphids as harbouring an important 
diversity of Arsenophonus strains, and the incidence was especially high in the Aphis genus24. Jousselin et al. also 
speculate that plant mediation and parasitism might be involved in the dispersal of Arsenophonus24. Moreover, 
Arsenophonus was reported to be involved in host plant specialization in the polyphagous aphid, Aphis crac-
civora30. In recent studies, Arsenophonus did not defend its aphid host Aphis glycines against major parasitoids and 
fungal natural enemies31, but provided a general benefit to A. glycines32.

Wolbachia is typically associated with manipulating the reproduction of several arthropod hosts, and it can 
rapidly reach a high frequency in host species as a consequence14,33. Additionally, Wolbachia has been implicated 
in providing a defence against viruses in other insects34, and it also can provide vitamin B to the host insect35. In 
our study, Wolbachia was only found in some of the aphid samples and their relative abundance was extremely 
low. Similarly, Liu et al. found a low titre of Wolbachia in A. glycines36. The detection of Wolbachia in aphids has 
some difficulties, which likely has resulted in it being under reported. One major difficulty is the current PCR pro-
tocols for the detection of Wolbachia were far from optimal18. In addition, the development of efficient Wolbachia 
detection was hindered by the presence of low titre infections and multiple infections37,38. Wolbachia density may 
be affected by co-infection with other Wolbachia strains or other vertically transmitted symbionts, as well as by 
host genotype39,40. Another difficulty in detection of Wolbachia is horizontal transfer of Wolbachia genes to host 
genomes41,42, which further complicates Wolbachia detection.

Surprisingly, Hamiltonella, which has not been reported in A. gossypii, was found in our data. Hamiltonella 
is known to protect aphids against parasitism. Oliver et al. found that Hamiltonella defensa reduced the rate of 
successful parasitism by Aphidius ervi by killing developing wasp larvae43. Multiple strains of H. defensa were 
examined in A. pisum and all of them conferred a partial protection against attack by A. ervi, indicating that H. 
defensa generally provides protection against this wasp10. In addition, parasitized A. pisum containing H. defensa 
produced significantly more offspring than parasitized uninfected aphids, indicating that A. pisum benefited from 
the H. defensa infection when under attack by parasitoids44. H. defensa being present in all of our samples may 
also suggest the importance of its role in protecting A. gossypii against parasitism in the field, and both vertical 
and horizontal transmission may act as drivers of Hamiltonella dispersal.

Many other bacterial taxa were also detected in some of the aphid samples, and their relative abundances were 
extremely low. For example, Stenotrophomonas, Brevundimonas and Burkholderia, which are commonly detected 
in environmental samples, were also found in our aphid samples22,23. Burkholderia is present in the environment, 
associated with insects and, in some instances, clearly acts as a mutualist45. Many of these bacteria could be 
contaminants. Additionally, our aphid samples from 10 different field locations could encounter different envi-
ronmental factors. Although heritability cannot be ruled out, it is more likely that these bacteria engage in oppor-
tunistic associations with aphids (perhaps as gut associates or pathogens) or that they represent contaminants 
from soil, plants or human handling.

Geographical location and environmental factors may account for the different bacterial community struc-
tures found in aphids from different provinces. Natural populations of aphids may experience selection pressures 
from various management practices, natural enemies (pathogens, predators and parasitoids) and environmental 
conditions that could alter the composition, as well as the frequency, of associated bacteria46. In the PCoA, sam-
ples from the same province tended to cluster together (Fig. 2), suggesting that the samples might have experi-
enced similar selection pressures.

In our results, the samples from Hebei Province had a higher number of OTUs, higher Ace and Chao1 rich-
ness estimates, and higher Shannon and Simpson diversity indices, compared with the samples from Henan 
and Shandong Provinces (Table 1). This may be because Hebei Province has a relatively higher latitude and may 

Figure 2. Comparison of bacterial community structures in A. gossypii samples in three provinces of 
northern China. Unweighted and weighted UniFrac metrics were used to determine pairwise distances 
between all samples.
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encounter different climactic variables, including temperature and precipitation. A geographical-based vari-
ation in infection frequencies has been reported for some facultative symbionts. In the pea aphid, A. pisum, 
symbiont prevalence was found to correlate with climactic variables47. Bacteria from the whitefly Bemisia tabaci 
differ in frequency based on the host plants and geographical locations48. Moreover, geographical variation in 
Arsenophonus symbiont prevalence was reported in the psyllid Glycaspis brimblecombei29. These studies suggest 
that environmental factors may act as important drivers of natural symbiont dynamics.

Here, we used the deep Illumina MiSeq sequencing of 16S rDNA genes, to analyse the bacterial communities 
of the cotton aphid A. gossypii associated with Bt cotton in northern China. Our sequencing data revealed that the 
bacterial communities of A. gossypii were dominated by the primary symbiont Buchnera, together with facultative 
symbionts that varied in incidence among the aphid samples. To our knowledge, this is the first report document-
ing the facultative symbiont Hamiltonella in A. gossypii. Selective pressures exerted by the geographical location 
could explain why the bacterial community structure was similar within the same province, but distinct among 
different provinces. These findings increase our understanding of the intricate symbiotic relationships between 
bacteria and A. gossypii. Further studies will be focused on identifying the functions of the representative bacte-
rial species and determining whether these species could play important roles in the future as biocontrol agents.

Methods
Insect sampling and DNA extraction. Apterous adults of Aphis gossypii were collected from 10 field 
populations in northern China during August 2014 (Table 2 and Fig. 3). All of the sampling sites were planted 
with Cry1Ac cotton. The aphids were immediately immersed in 90% ethanol and frozen at −80 °C upon return 
to the laboratory.

Prior to DNA extractions, aphid samples, each comprising 20 adult aphids, were washed for 5 min in 
70% ethanol and rinsed three times with sterile water to remove surface contaminants. Then, samples were 
hand-homogenized in extraction buffer (20 mM Tris-HCl pH 8.0, 2 mM sodium EDTA, 1.2% Triton®  X-100 
containing 20 mg lysozyme ml−1). The homogenates were incubated at 37 °C for 40 min to achieve DNA extrac-
tion from both Gram-positive and Gram-negative bacteria. The DNA in the samples was then extracted using the 
TIANamp Genomic DNA Kit (TIANGEN Biotech (Beijing) LTD., China) following the manufacturer’s instruc-
tions. The quantity and quality of the DNA were measured with a NanoDrop 2000c spectrophotometer (Thermo 
Scientific, USA).

PCR amplification, library preparation and sequencing. DNA was amplified using the 515f/806r 
primer set (515f: 5′ -GTG CCA GCM GCC GCG GTA A-3′ , 806r: 5′ -XXX XXX GGA CTA CHV GGG TWT 
CTA AT-3′ ), which targets the V4 region of the bacterial 16S rDNA, with the reverse primer containing a 6-bp 
error-correcting barcode unique to each sample. PCR amplifications were carried out in a 30 μl mixture that 
included 15 μl of Phusion High-Fidelity PCR Master Mix (New England Biolabs, UK), 0.2 μM of forward and 
reverse primers, 10 ng of template DNA and nuclease-free water up to 30 μl. The PCR conditions were 98 °C 
for 1 min (1 cycle), 98 °C for 10 s, 50 °C for 30 s and 72 °C for 60 s (30 cycles), followed by 72 °C for 5 min. PCR 

Figure 3. Sampling locations of A. gossypii in three provinces of northern China. Henan Province: 
Zhoukou(Zk), Xuchang(Xc), Shangqiu(Sq). Hebei Province: Cangzhou(Cz), Hengshui(Hs), Handan(Hd). 
Shandong Province: Jining(Jn), Bingzhou(Bz), Heze(Hz), Dezhou(Dz). The map is created with ArcGIS 10.2 
(http://www.arcgis.com/features/).

http://www.arcgis.com/features/
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products were mixed in equidensity ratios and mixture of PCR products was purified using the GeneJET Gel 
Extraction Kit (Thermo Scientific, USA).

Sequencing libraries were generated using a NEB Next Ultra DNA Library Prep Kit for Illumina (New 
England Biolabs, UK). The final quality and concentration of each library were checked using Agilent 2100 
Bioanalyzer Instruments (Agilent Technologies, USA) and determined using KAPA Library Quantification 
Kits (Kapa Biosystems, USA). Sequencing was conducted on an Illumina MiSeq 2 ×  250 platform at Novogene 
Bioinformatics Technology (Beijing, China) according to protocols described by Caporaso et al.49 and Kozich et al.50.

Bioinformatics and statistical analysis. Paired-end reads were assigned to samples based on their unique 
barcodes and truncated by cutting off the barcode and primer sequence. Then, the paired-end reads were merged 
into single, longer sequences using FLASH (Version 1.2.7)51. Quality filtering on the raw tags was performed 
under specific filtering conditions to obtain high-quality clean tags52 according to the QIIME (Version 1.7.0)15 
quality controlled process. Chimeric sequences were detected and removed using the UCHIME algorithm53.

Sequence analyses were performed using Uparse (Version 7.0.1001)54. Sequences with ≥ 97% similarity were 
assigned to the same OTU. Representative sequences from each OTU were screened for further annotation. For 
each representative sequence, the GreenGene Database55 was used with the RDP classifier (Version 2.2)56 to anno-
tate taxonomic information. To study the phylogenetic relationships of different OTUs, and the differences in the dom-
inant species of different samples, multiple sequence alignments were conducted using MUSCLE (Version 3.8.31)57.

To account for inequalities in sequence read depths among the samples, a randomly selected subset of 10,435 
sequences per sample was chosen for a further bacterial community analysis. The microbial diversity was ana-
lysed using QIIME V1.7.0 and displayed with R software (Version 2.15.3)15. Alpha diversity analysis included 
observed species, Ace and Chao1 estimators, Simpson and Shannon diversity indices and Good’s estimate of 
coverage. A PCoA16 was performed to explore the differences in the bacterial community structures and was 
displayed with the WGCNA, stat and ggplot2 packages in the R software (Version 2.15.3). The sequencing data 
has been submitted to the NCBI database as a file under accession number SRP066541.
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