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Early life adversaries have a profound impact on the developing brain structure and functions that persist long after the original
traumatic experience has vanished. One of the extensively studied brain structures in relation to early life stress has been the
hippocampus because of its unique association with cognitive processes of the brain. While the entire hippocampus shares the
same intrinsic organization, it assumes different functions in its dorsal and ventral sectors (DH and VH, resp.), based on different
connectivity with other brain structures. In the present review, we summarize the differences between DH and VH and discuss
functional and structural effects of prenatal stress in the two sectors, with the realization that much is yet to be explored in
understanding the opposite reactivity of the DH and VH to stressful stimulation.

1. Introduction

Evidence has accumulated in recent years to indicate that
early life adversaries have a profound impact on the develop-
ing brain structure and functions, long after the original trau-
matic experience has vanished. One of the extensively studied
structures in the brain in relation to early life stress has been
the hippocampus. It is a unique structure in that it forms
rather late in embryonic life and continues morphogenesis
early in postnatal life [1–3]. The hippocampus is a focus of
attention because of its unique association with cognitive
processes of the brain. However, most studies describe effects
of behavioral manipulations on structure/function of the
dorsal hippocampus, but there are strong indications that
while the entire hippocampus shares the same intrinsic
organization, it assumes different functions in its dorsal and
ventral sectors (DH and VH, resp.). The two sectors have
different connectivity with other brain structures, and they
differ in distribution of receptors, which leads to differences
in function, different sensitivity, and very often opposite
reactions to the same stimulus. In the following review, we
will summarize the differences between DH and VH and we

will carry on by describing some differential effects of stress
in the two sectors, with the realization that much is yet to
be explored towards understanding the opposite and long-
lasting reactivity of the two sectors to stressful stimulation.

2. Ventral Hippocampus: Is It Different from
the Dorsal Hippocampus?

The hippocampus has a curved shape that is conserved
across all mammals and is distributed from dorsal (= septal,
also called posterior in humans) to ventral (= temporal,
anterior in humans) poles. The dorsal and ventral sectors of
hippocampus (DH and VH, correspondingly) have different
connectivity with cortical and subcortical structures, with
the intermediate hippocampus sharing some properties with
the DH. VH has more dense connectivity with the amygdala
and hypothalamic endocrine and autonomic nuclei than DH
[4, 5]. The VH projects preferentially to the medial, interca-
lated, and basomedial nuclei of amygdala and the amygdala-
hippocampal transition area, while the DH distributes its
efferents in more lateral regions of the amygdala [6].
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Figure 1: A schematic diagram of the major connections of the dorsal (DH) and ventral (VH) sectors of hippocampus.

The projections from cingulate areas (infralimbic and prelim-
bic cortices) involved in emotional regulation primarily reach
the VH via input to the ventromedial parts of the entorhinal
cortex (EC), while the anterior cingulate and retrosplenial
cortices involved in spatial processing primarily project to
the DH via targeting dorsal and lateral parts of the EC.
Projections from the hippocampus to the EC originate in
CA1 region and the subiculum and show a topographical
organization similar to that of the EC-hippocampus inputs
[7, 8].The projection of the major hippocampal output to the
lateral andmedial septum (LS andMS, correspondingly) also
shows dorsoventral differentiation. Thus, the DH projects to
the small dorsal part of LS and dorsal andmedial parts ofMS,
while VH innervates the larger ventral part of LS and lateral
and ventral parts of MS [9, 10] (Figure 1).

The special character of the hippocampal connectivity
forms a difference in the neurotransmitter composition along
the axis of the hippocampus. Thus, cholinergic [11] and
dopaminergic [12] innervation is denser in VH. Likewise,
the concentrations of norepinephrine [13] and serotonin [14]

as well as the density of synaptic terminals containing these
transmitters are higher in the VH [15].This differential distri-
bution of several neuromodulators indicates that the VH is
more amenable to neuromodulation than the DH.

Differences in the connectivity of DH and VH determine
their functional distinction. Cross-species data show differ-
ences in connectivity with cortical and subcortical structures
and functional differentiation along the longitudinal axis of
hippocampus.This suggests that functional differences along
the long axis may exhibit a gradient-like organization [16, 17]
but that there are other connections that are restricted to
the DH or VH. It has been suggested that the DH plays a
crucial role in spatial learning and memory processes and
VH is involved in anxiety, fear, defensive behavior, and stress
related responses [18–24]. Studies with an animal model
of hippocampal damage showed that lesions in DH impair
spatial learning on tasks such as the Morris water maze
or elevated T maze while lesions in VH disrupt emotional
responses without impairments of spatial learning [25–29].
Massive activation of the DH during tasks that require spatial
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working memory was demonstrated by cFos staining as
well [30]. Interestingly, NR1 N-methyl-D-aspartate (NMDA)
receptor subunit deletion from the granule cells of the
dentate gyrus (DG) not only impairs short-term spatial
memory but also reduces anxiety [18]. The importance of
VH in anxiety-related behavior such as anorexia nervosa
was also shown [31]. Neonatal excitotoxic lesions of VH
in rats result in postpubertal hyperresponsiveness to stress
and cognitive abnormalities characteristic to those described
in schizophrenia (for review, see [32, 33]). The anterior
hippocampus in humans also shows anatomical [34] and
functional [35] abnormalities in patients that had suffered
from schizophrenia.

Single neurons in the DH and VH vary in their electro-
physiological properties. While neurons recorded from CA1
area of DH and VH have similar spike discharge character-
istics and could be classified into “complex spike” and “theta”
cells, less than one-fourth of cell population in VH have
“place” properties, and these have low spatial resolution,
while in DH they represent at least half of the cell population
with much smaller and better tuned place field size [36].

With respect to evoked field potentials and their plastic
properties, in particular, their ability to undergo short- or
long-term potentiation or depression (STP, LTP, and LTD,
resp., major cellular mechanisms that underlie learning and
memory processes [37]), DH and VH exhibit different prop-
erties as well. Examination of different forms of synaptic
plasticity uncovered an impaired ability of VH to produce
STP and LTP [38–41] and weaker synaptic inhibition with
lower levels of gamma-aminobutyric acid (GABA) receptor
A subunits [42, 43], which makes the VHmore vulnerable to
epileptic activity [43, 44]. The low ability of VH to express
LTP might be due to its biochemical characteristics. Thus,
DH and VH are different in the distribution of different
subunits of NMDA receptors: the density of both NR2A
and NR2B subunits of NMDA receptors is higher in DH
than in VH [45, 46]. Moreover, the VH has lower levels of
mRNA expression for GluRA, GluRB, and GluRC subunits
of 𝛼-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors compared with DH [46].

There is evidence for selective activation of different
corticosteroid receptors in DH and VH in response to acute
stress exposure.The activation ofmineralocorticoid receptors
leads to facilitation of LTP by enhancement of voltage-gated
Ca2+ channels in VH, whereas the suppressed LTP in DH is
mediated by activation of a glucocorticoid receptor [38].
Moreover, the VH differs from the DH in its sensitivity to
agents that release Ca2+ from its internal stores (caffeine/
ryanodine).Thus,VHexhibits higher sensitivity to ryanodine
than DH which results in a strong response to subthreshold
stimulation and is based on a higher level of Ca2+-store-
related ryanodine receptors in VH [47, 48].

3. Changes of Synaptic Plasticity in
Dorsal versus Ventral Hippocampus

Early life adversaries have an impact on health status and
quality of life of individual and society at large; stress during

pregnancy also has a profound role in the determination of
the destiny of fetus. There are a number of protocols utilized
in different laboratories to model prenatal stress (PS) in
animals. Simulating PS in laboratory animals and especially
interpreting and comparing the results from different groups
demand a special care due to many factors related to the
nature of the stressor(s) (type, duration, and “severity”), the
“time window” during the pregnancy during which stress
is experienced, genotype (wild type or genetically mani-
pulated), and species (i.e., mouse, rat, guinea pig, or monkey)
of pregnant dams as well as the age and sex of assessed off-
spring. In the majority of publications, authors do not specify
the part of hippocampus that has been studied (DH or VH),
but we assume that it is mainly DH.

Severe stressful experience during the last week of preg-
nancy (immobilization or foot shocks) leads to long-lasting
changes of the properties of synaptic plasticity in different
brain areas, in particular, in hippocampus of offspring of
both genders. Thus, PS favors low-frequency stimulation-
induced LTD and inhibits the high-frequency stimulation-
induced LTP without affecting basal synaptic transmission
in the hippocampus of young (3- or 5-week-old) rats [49–
51] as well as in the frontal cortex of adult (3-month-old)
animals [52]. Fostering of PS offspring by nonstressed dams
to exclude the possible maltreatments of pups by the stressed
mother does not abolish the deleterious effects of PS on
synaptic plasticity [49, 51]. However, it has been shown that
the adoption or postnatal handling can reverse the negative
behavioral effects of PS in the adult offspring by altering
the activity of the HPA axis and subsequent stress-induced
corticosterone release [53, 54].

Yeh and colleagues [51] observed the effects of restraint
PS (for 45 minutes three times/day applied at the last week of
pregnancy) on synaptic plasticity at young age but the effect
disappeared in adult rats (at 8 weeks of age). In contrast,
the impairments of hippocampal synaptic plasticity caused
by foot shock PS (10 foot shocks/day during the last week
of gestation) persist to adulthood (8 weeks of age) in rats
as shown by Yang and colleagues [50] but can be cured by
an enriched environment treatment at young age. Similar
changes of synaptic plasticity after restraint PS during the
second week of gestation were seen also in 7-8-week-oldmale
mice [55].

Another approach to PS inductionwas used by Kinnunen
and colleagues [56] as well as by Murmu and colleagues [57].
As shown in [57], the unpredictable stress paradigm consist-
ing of two sessions of three different stressors (restraining in
the tube, crowded housing, and forced swim, one on each
day during the last week of gestation) is raising blood plasma
corticosterone level in pregnant dams and is preventing them
from adapting to the stressor. This PS protocol was used in
other studies from the same group [58] and was adapted by
us [59, 60]. Using this relatively mild stress protocol, Yaka
and colleagues [58] were able to show that PS applied during
critical period of embryonal development causes deleterious
effect on synaptic plasticity of young (4-5-week-old)male off-
spring expressed as an impaired ability of CA3-CA1 synapses
in hippocampus to undergo LTP.
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In vivo examination of synapses formed by layer 2 of
the entorhinal cortex on the granule cells of the DG (the
perforant path) of hippocampus showed that short-lasting
mild PS (30min of restraint, from day 15 to day 17 of
gestation) leads to facilitation of potentiation of the perforant
path in the adult (at 10 weeks of age) offspring [61].

A recent in vivo study employed an amplified broad
band traffic noise to induce PS and show that either short-
(1 h) or long-term (2 or 4 h) exposure to traffic noise affects
basal synaptic transmission and impairs posttetanic and long-
term potentiation in hippocampus [62]. Rats that were noise
stressed for 1 or 2 hours showed deficit in posttetanic phase
of potentiation; however, they expressed similarmagnitude of
LTP at the end of recording session (∼2 hours after tetanus).
Rats that were prenatally exposed to 4 hours of noise showed
constant decline of EPSP slope, which went under baseline
values after 2 hours of recording. This could be interpreted
as a PS-induced complete loss of ability to express LTP and
an appearance of LTD instead. This observation is actually in
line with the findings of Gi and colleagues [55] and Yang and
colleagues [49] on facilitation of LTD in prenatally stressed
animals. Unfortunately, no information on PS impact on
synaptic plasticity in VH was provided in these studies.

PS enhances the responsiveness of organisms to acute
stress exposure [49, 50, 63–66] via chronic activation of HPA
axis that is confirmed by hypertrophy of the adrenal glands
[67], which could also underlie the increased vulnerability
to develop affective disorders later in life. It has been shown
that PS experienced at the third, but not at the second,
week of gestation of Sprague-Dawley rats leads to prolonged
elevation of the glucocorticoids level in response to acute
stress [68]. The alterations in the reactivity of HPA axis in
PS rats are correlated with the functional changes of differ-
ent types of corticosteroid receptors. Thus, PS results in
the downregulation of both high-affinity mineralocorticoid
receptors (MRs) and low-affinity glucocorticoid receptors
(GRs) in rats’ offspring [34, 53, 69–71], affecting the binding
capacity of MR only [53].

The mechanisms underlying PS impact on hippocampal
synaptic plasticity involve tissue plasminogen activator as
well as an imbalance in levels of pro- and mature-BDNF (m-
BDNF), most likely due to reduced BDNF gene expression
and inhibition of conversion of pro-BDNF to m-BDNF [51,
72, 73]. Interestingly, in mouse model for Alzheimer’s disease
(APPswe/PS1dE9), PS could cause changes in pro- versus
m-BDNF levels in hippocampus of 8-month-old female
offspring only [74, 75]. Sierksma and colleagues [74, 75] also
used chronic restraint stress comparable with [51] but they
applied it during the first week of gestation.

Another mechanism that could be involved in processes
of regulating synaptic plasticity includes the changes in the
functionality of NMDA receptors and their subunits that are
important in the induction of both LTP and LTD [76, 77].
The changes in expression of different subunits of the NMDA
receptors in different hippocampal fields after PS exposure
were shown in [55, 56, 58, 78, 79]. Unlike Yeh and colleagues
[51], these studies found that PS not only reduces the levels of
NR1 andNR2B subunits but also impairs synaptic localization
of theNMDA receptors (low number of complexes associated

with PSD95, a NMDA receptor-anchoring molecule). This
suggests that PS induces changes in functional activity and
distribution of NMDA receptor subunits between DH and
VH resulting in different responsivity to stress of the two
sectors of hippocampus [38, 39, 45–47, 80].

PS-induced alterations in neurotransmission could
underlie the impaired ability to express LTP. In our own
studies, we were able to show that PS affects network prop-
erties of hippocampal neurons, by reducing GABA-ergic
inhibition [59]. PS-induced epigenetic modification of
GABA-ergic interneurons not only in hippocampus but also
in frontal cortex of young and adult mice mediated by over-
expression of DNA methyltransferase associated with a
decrease in reelin and GAD67 expression was shown byMat-
risciano and colleagues [81].The alterations in the main exci-
tatory glutamate neurotransmission that are believed to play
a role in the pathophysiology of several neuropsychiatric dis-
orders, including schizophrenia, epilepsy, and anxiety, were
shown in a study by Marrocco and colleagues [82]. One of
the important aspects of that study is the discrimination
between the DH and VH. Interestingly, most of their find-
ings were restricted to the VH. Thus, the restraint of dams
during the second half of pregnancy (from day 11 until
delivery) caused selectivity to VH long-lasting (tested at 3
months of age) reduction of both glutamate release and
synaptic vesicle-associated proteins (such as Rab 3A,
Munc-18, synaptobrevin, syntaxin-1, synaptophysin, and
synapsin) in PS male offspring. The reduction in the activity
of mGlu1/mGlu5 receptors in VH of male but not of female
offspring was reported earlier by the same group [73].
Interestingly, the deleterious effects of restraint PS on gluta-
mate release in VH as well as some abnormalities in behavior
including increased anxiety-like behavior were successfully
ameliorated by antidepressants (fluoxetine and agomelatine)
[83].

We also showed that gestational stress in rats selectively
modulates noradrenergic (NA) effects in hippocampus of the
offspring causing suppression of the ability to convert STP
into LTP in the DH and its facilitation in the VH (Figure 2)
[60]. An increased plasma noradrenaline level in adult (at 5
months of age) offspring in response to foot shockPS [66] and
an impairment in the development of NA neurons in pups
from dams exposed to cold stress during the second half of
pregnancy were also shown recently [84].

4. Ventral Hippocampus and
Anxiety-Like Behavior

PS has a lasting effect on the behavior of animals but the
data reported by different research groups is conflicting. For
review of human studies, see [85, 86]. In the framework of
the current review, we will focus on changes in hippocampus-
dependent/related behaviors in rodents. VH is believed to be
involved in anxiety and fear related behavior [19–21, 24, 25,
87]. One of the widely used behavioral tests to assess anxiety
in rodents is the elevated plus maze (EPM) test. It is based
on a conflict between the rodent’s preference for protected
area and its motivation to explore novel environments. The
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Figure 2: Effect of Isoproterenol, a 𝛽-adrenergic agonist, on EPSPs recorded in stratum radiatum of DH (a) and VH (b) hippocampal slices
from control and prenatally stressed (PS) rats (at 2-3 weeks of gestation). The arrows denote the points at which short tetanic stimulation
(35 stimuli at 100Hz) was delivered, twice to one pathway. Short tetanic stimulation, which normally produces only short-term potentiation,
applied in the presence of Isoproterenol, produced a full-blown LTP in DH slices of control group (full circles, (a)) and in VH slices of PS rats
(open circles, (b)), but not in the other conditions tested (adapted from Grigoryan and Segal [60]).

avoidance of the open arm by an animal is considered as an
anxiety-like behavior [88, 89]. Several studies showed that
the exposure to stress during gestation causes changes in
emotional status of offspring of both genders. The striking
gender-dependent difference in offspring response to PS was
exemplified by Zuena and colleagues [73] who showed that
males are more prone to developing anxiety-like behavior
in the EPM than females that showed reduced anxiety. The
increase in anxiety in PS adult offspring (3 months of age)
males reported by Zuena and colleagues [73] is consistent
with the observations published by the same group [54, 82]
as well as with the other studies that utilized traffic noise or
varied stressors protocol for prenatal treatments [62, 90, 91].
As to the reduction in anxiety in PS females, it is in disa-
greement with higher anxiogenic effect of PS in young (5
weeks of age) and young adult (60 days of age) females than in
males reported by Salomon and colleagues [90]. In our
hands, varying PS during the last week of gestation shifts
the emotional balance of young (1 month of age) male
offspring into the “less anxious” direction (i.e., PS rats spent
more time in the open arm than control rats), and it was
correlated with higher motility in the open field and the
EPM [59]. Similar effects in young (35 days of age) male
offspring as a result of a single but intense PS (120 minutes
of maternal immobilization at 16th day of pregnancy) were
seen by Cannizzaro and colleagues [92]. Two hours of
restraint PS during the second half of pregnancy also leads
to more active exploratory behavior in male offspring of
the same age [93]. In another study, prenatal restraint stress
induced schizophrenic behavior expressed as an increase in
locomotion, decreased social interaction, deficit in prepulse
inhibition, and contextual fear conditioning was found in

adult male rats and male mice [81, 94]. Behavioral profiles
indicative of greater emotionality [95] and submissive social
rankings [96] were found in the PS offspring of nonhuman
primates. In conclusion, the difference in type of maternal
stress used as well as the age of the tested animals may lead to
the different and sometimes opposite behavioral outcome of
PS in the offspring.

5. Prenatal Stress and Spatial Learning

The hippocampus, mainly its dorsal part, is believed to be
involved in spatial learning and memory processes in both
rats and primates [22]. However, both DH and VH support
Morris water maze (MWM) spatial learning task, where
animals have to learn to navigate to a hidden platform using
distal cues [97, 98]. The impaired performance in spatial
learning of PS young and adult rats independently of type
of stressor used during the last week of pregnancy was
shown in a number of studies [50, 55, 62, 94, 99–101]. Using
mild stress protocol, Yaka and colleagues [58] and Yang and
colleagues [49] were able to show deleterious effect of PS
on performance of 4-5-week-old male offspring in MWM.
In contrast, in our studies, PS did not impair the behavior
of young male rats in MWM learning task and they were
actually improving faster than controls during the acquisition
phase [59]. The reasons for this discrepancy could be the
difference in experimental setup such as a size of the water
pool used for the task as well as the training protocol [97].
The facilitation of learning performance in radial maze of
mildly prenatally stressed adult (14-15 weeks of age) offspring
was shown in [61]. In another study, spatial learning in
MWMwas not altered by PS in adult (3 months of age) male
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offspring but leads to an improvement of female offspring
performance [73]. In contrast, Wu and colleagues [100]
showed impaired performance in MWM of female but not of
male offspring. The gender-specific effect of PS on learning
in rats as shown by longer escape latencies in MWM in
adult (4 months old) and old (12 months old) male but not
in female offspring, which was correlated with higher basal
corticosterone levels and a lower density of hippocampal
corticosteroid receptors in females, was reported in [34, 91].
These observations are supported by the findings of long-
term maladaptive behavioral stress responsivity found in
mice subjected to PS during the first week of gestation [102].
The anxiogenic behavior and the learning deficit in prenatally
stressed offspring are completely abolished by adrenalectomy
[91], which confirms the importance of elevated maternal
corticosterone in developmental origin of brain vulnerability
to PS. Interestingly, repetitive restraint stress during the
first week of pregnancy as shown in [75] affects long-term
memory acquired in object location task in 7-month-oldmale
mice only, while female offspring shows improved spatial
memory performance.

The importance of the timing of PS exposure on learning
outcome in adult offspring was shown by Kapoor and
colleagues [103]. Thus, the male offspring of guinea pigs that
were exposed to PS on gestational days 50, 51, and 52 exhibit
impaired spatial learning, while the offspring that was
stressed during later phase of in utero development (days 60,
61, and 62) appears to exhibit enhanced spatial learning [103].

A somewhat unique study demonstrated effects of PS on
cognitive functions in lambs. Prenatally stressed lambs were
impaired in amaze performance; theywere also characterized
by increased fear reactions and pessimistic-like judgment in
a cognitive bias test [104].

6. Impact of Prenatal Stress on Dorsal and
Ventral Hippocampal Morphology

PS influences behavior and memory processes of offspring
and it is likely associated with morphological changes in the
brain. All studies that have investigated PS-induced changes
of brain morphology were focused mainly on DH. To our
knowledge, no specific differences of PS effects in DH versus
VH have been reported, which leaves an open question of
whether PS impacts specifically the morphology of VH.

The age dependence of prenatal restraint stress-induced
changes in dendritic morphology of hippocampal pyramidal
neurons of areas CA1 and CA3 was shown by Mart́ınez-
Téllez and colleagues [93]. They found that CA3 area of
the hippocampus is more prone to PS exposure resulting in
a decrease in dendritic spine density in prepubertal (at 35
days of age) and adult (at 65 days of age) male offspring,
while in the area CA1 the decrease of spine density is
characteristic of adult rats only. Interestingly, CA1 pyramidal
neurons of hippocampus from prepubertal PS animals were
characterized by an increased spine density [93, 105]. In
a recent study by Petit and colleagues [106], higher spine
density on apical dendrites in the CA1 area of hippocampus
of PS lambs immediately after birth was shown [106].

PS during the last week of pregnancy leads to dendritic
atrophy expressed as a shortened total length and reduced
number of branching points of the apical dendrites of
pyramidal neurons of area CA3 of DH also in prepubertal
female offspring [78, 105]. In another study that utilized the
same stress induction protocol, it was shown that PS does not
have an effect either on the total number of neurons or on
amount and distribution of both apical and basal dendritic
arbors as well as on total spine density of pyramidal neurons
of CA1 region of hippocampus in 5-week-old offspring of
both genders [51]. Dendritic morphology of CA1 pyramidal
cells was not affected in adult (2months of age)male offspring
as well [99].

The decreased synaptic density, length and number of
dendritic segments, branching of granule, and CA3 pyrami-
dal hippocampal neurons of young (35-day-old) and adult
(2-month-old) male offspring after varied (crowding and
daily saline injections during the last week of pregnancy)
or restraint PS were demonstrated in other studies as well
[99, 107].

PS alters neural and hormonal status also in nonhuman
primates as shown in [95]. Thus, 3-year-old male and female
offspring of rhesus monkeys that were stressed during early
and late periods of their in utero development (for 25% of
their 24-week gestation, an acoustical startle protocol) were
characterized by a 10% reduction in hippocampal volume
and inhibition of neurogenesis in the DG associated with
increased HPA-axis activity [95]. Prenatal restraint stress as
well as varied PS not only induces lifelong reduction of neu-
rogenesis in DG of rat’s hippocampus, especially in VH, but
also inhibits the facilitation of neurogenesis by learning [67,
108, 109]. However, it was suggested that PS exerts a gender-
specific effect on neurogenesis by increasing cell proliferation
in the DG of female offspring only [110]. Electronmicroscopy
examination revealed abnormal ultrastructural appearance
of hippocampal neurons and myelin sheath in offspring,
which was exposed to PS during middle or late stages of
embryonal development. In addition, male rats expressed
greater impairment than females in these parameters [101].
Moreover, short-lasting mild PS (30min of restraint, from
day 15 to day 17 of gestation) enhances neonatal neurogenesis
in hippocampus of 10-week-old male rats, while long-lasting
severe PS (240min of restraint, from day 15 to day 17 of
gestation) impairs morphology of hippocampal neurons.
Mineralocorticoid and glucocorticoid receptors contribute to
PS-induced changes [111].

Morphological analysis of cultured hippocampal cells
revealed a reduction in the density of GABA-ergic neurons
and the more elaborate dendritic tree of cultured neurons
taken from the offspring of PS mothers. However, no dif-
ference in dendritic spine density and in the proportion of
different spine subtypes was reported [59].

PS causes alterations of neuronal morphology in other
young and adult rat brain areas such as nucleus accumbens
[93, 112], prefrontal cortex [65, 112], and dorsal anterior
cingulate and orbitofrontal cortex [57] as well as corpus
callosum of youngmonkey’s brain [113] and prefrontal cortex
of brain of newborn lamb [106].
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7. Conclusions

There are apparent long-term changes in the brain and spe-
cifically in the hippocampus following maternal exposure to
stress or to stress hormones.These changes are long lasting, as
they are caused by epigenetic regulation of gene expression in
the brain, as well as by causing stable morphological change
in the young, plastic brain. The outcome of these alterations
can lead to neurological and psychiatric disorders at a later
age.Thepossible amelioration of the detrimental effects of the
adverse stimulation by activation of brain circuits underlying
reward and pleasure is now emerging as a promising avenue
of repair.
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