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Background: Although screening programmes of smokers have detected resectable early lung cancers more fre-
quently than expected, their efficacy in reducingmortality remains debatable. To elucidate the biological features
of computed tomography (CT) screening detected lung cancer, we examined the mRNA signatures on tumours
according to the year of detection, stage and survival.
Methods: Gene expression profiles were analysed on 28 patients (INT–IEO training cohort) and 24 patients of
Multicentre Italian Lung Detection (MILD validation cohort). The gene signatures generated from the training
set were validated on the MILD set and a public deposited DNA microarray data set (GSE11969). Expression of
selected genes and proteins was validated by real-time RT-PCR and immunohistochemistry. Enriched core path-
way and pathway networks were explored by GeneSpring GX10.
Findings: A 239-gene signature was identified according to the year of tumour detection in the training INT–IEO
set and correlatedwith the patients' outcomes. These signatures divided theMILD patients into two distinct sur-
vival groups independently of tumour stage, size, histopathological type and screening year. The signatures can

also predict survival in the clinically detected cancers (GSE11969). Pathway analyses revealed tumours detected
in later years enrichment of the PI3K/PTEN/AKT pathway, with up-regulation of PDPK1, ITGB1 and down-
regulation of FOXO1A. Analysis of normal lung tissue from INT–IEO cohort produced signatures distinguishing
patients with early from late detected tumours.
Interpretation: The distinct pattern of “indolent” and “aggressive” tumour exists in CT-screening detected lung
cancer according to the gene expression profiles. The early development of an aggressive phenotypemay account
for the lack of mortality reduction by screening observed in some cohorts.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lung cancer screening detects early cancers in a higher number than
expected but nonetheless there is still no consensus on both efficacy in
reducing mortality and safety (Melamed et al., 1984; Anon, 2014;
Marcus et al., 2006; Bach et al., 2003).
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Three European randomized CT screening clinical trials have so far
failed to achieve a mortality reduction (Infante et al., 2009; Saghir
et al., 2012; Pastorino et al., 2012).This is apparently in contrast to the
results from two larger America based studies: the International
ELCAP group published a positive report on the efficacy of CT screening,
with an estimated 10-year survival of 80% overall and 92% in clinical
stage I cancers undergoing surgery (Henschke et al., 2006)and the Na-
tional Lung Screening Trial reported a 20% reduction in mortality in
the LDCT group compared to chest X-rays group(The National Lung
Screening Trial Research Team, 2011).

To explain these apparently contrasting findings, it has been raised a
hypothesis that early-stage tumours found at baseline screening are
mostly indolent tumours and removing them does little to reduce de-
velopment of fatal, fast growing cancers which develop and are picked
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up later on in the screening programme (Bach, 2008; Pastorino, 2006).
The evidences so far suggested that most advanced cancers do not re-
flect slow evolution of indolent carcinomas, but instead are fast-
growing carcinomas with a de novo aggressive phenotype.

Remarkably, the year of detection has been associated with the
clinical outcomes, as the tumours detected during the first two
years had a better prognosis than those identified in later years of
screening. Boeri et al. analysed microRNA expression of tissue and
plasma of early detected lung cancer and found that specific signatures
could distinguish tumours by the year of detection and predict their
clinical outcome (Boeri et al., 2011; Sozzi et al., 2014).

In order to gain further insights on the biological features of CT
screening detected tumours, in the present study we analysed the
gene expression profile on two sets of spiral CT screening detected tu-
mours: the training set from the pilot trial (INT–IEO) (Pastorino et al.,
2003) and the validation set from the prospective randomized
Multicentric Italian Lung Detection trial (MILD) (Bianchi et al., 2004).
We compared the differential gene expression according to the year of
the cancer detection on the training set then we validated the gene
signatures on the validation set and on an independent public deposit
data set (Takeuchi et al., 2006).

2. Methods

2.1. Sample

28 lung cancers and 23 non-adjacent normal lung tissues from INT–
IEO cohort plus 24 tumours identified in the MILD trial were selected
(Supplementary Table 1). Recruitment and diagnostic imaging workup
have been previously described (Pastorino et al., 2003; Bianchi et al.,
2004). Tumours detected during the first two years of screening
are defined as CT1–2 those detected between the 3rd and the 5th
year as CT3–5. For association analyses the following clinical pa-
rameters were considered: CT year, pathological stage and histopa-
thology type. The χ2 test was used to examine the associations
between predictor variables. Further details were in Supplementary
material and methods.

2.2. RNA Extraction, Sample Selection Criteria and mRNA Amplification

Total RNAwas extracted using TRIzol (Invitrogen) and residual DNA
removed by RNeasy (Qiagen). RNA quality was checked by Agilent
bioanalyzer (Agilent Inc). The concentration was determined using a
NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies). An
RNA sample was further processed only if: (1) the ratio of A260/A280 be-
tween 1.7–2.0; (2) concentration within the range of 0.5–10 μg/ml;
(3) displaying two distinct peaks corresponding to the 28S and 18S ri-
bosomal RNA bands at the ratio of 28S/18S N 0.5 with no degradation.
One μg of total RNA was amplified with Amino Allyl MessageAmp™
aRNA Kit (Ambion, Austin, Texas) and indirectly labelled with Cy3
monofunctional dye (Amersham Biosciences UK Ltd., Bucks, United
Kingdom) for the sample RNA and Cy5 monofunctional dye for the
reference RNA (Stratagene®, Amsterdam, The Netherlands) and then
co-hybridised onto the microarray.

2.3. cDNA Microarray Analysis

The Human Exonic Evidence-Based Oligonucleotide (HEEBO) array
containing 44,544 of 70-mer probes (Stanford Functional Genomics
Facility, Stanford University) was used. Microarray hybridization and
processing were performed according to Stanford protocols (www.
microarray.org/sfgf). After 20 h of incubation in a 42 °C hybridization
oven, the microarray slides were washed with series of SSC and SDS
and immediately scanned with a GenePix 4000B microarray scanner
(Axon Instruments Inc., Union City, CA). The image QC (flag) set up as:
SNR532 N 3, SNR635 N 3, mean of median background b 500, median
PC N B + 1SD N 90%, feature variation b1, background variation b1,
and feature with saturated pixels b1%. Data was then background
subtracted and normalised by the globe intensity correction factor nor-
malisation (LOWESS). The data were then imported into GeneSpring™
GX10 software (Agilent Inc, California) followed by log transformation
and LOWESS normalisation. Quality control was performed considering
values between 20th and 100th percentile. The data has been through
the completed MIAME guideline checklist and is being deposited with
Gene expression Omnibus (GEO accession no. GSE29827).

2.4. Statistical Analysis

28 INT–IEO and 24MILD samples were analysed as training and val-
idation set respectively. In the training set, the gene expression compar-
ison between CT1–2 (n = 17)vs. CT3–5 (n = 11) and stage I (n = 19)
vs. stages II–IV (n = 9) were carried out by parametric permutative
(permutation times N1000) t-test (detailed description in supplemen-
tary method) to generate the significance threshold necessary for
the recognition of genes differentially expressed in the two groups
(p b 0.01). We then combined the cases according to the CT year and
stage. 14 of them were CT1–2 at stage I, while six were CT3–5 at stages
II–IV. The 14 of CT1–2/stage I and the 6 of CT3–5/stages II–IV were each
compared to the respective normal samples, using the same statistical
method with a number of permutations set N1000 and p b 0.01. Unsu-
pervised hierarchical clustering by Pearson's distance measure on
average linkage was followed to assess the distribution of each patient
based on their similarities measured over the significantly expressed
genes by the supervised filtered method.

Overall survival time for lung cancer patients was calculated from
the diagnosis of the disease until death or by censoring at the last
follow-up date. Survival curves were estimated using the product-
limit method of Kaplan–Meier and were compared using the Log-rank
test. Statistical analyses were carried out using SAS® (SAS Institute
Inc., Cary, NC, USA) and R (URL: http://www.r-project.org/, last access
Feb 8th 2010) software. Two-sided p values below 0.05 were consid-
ered statistically significant.

2.5. Biological Interpretation of the Microarray Data

To elucidate the gene signature as a pathway and its possible biolog-
ical function, we employed an on-line method, DAVID bioinformatics
resources (National Institute of Allergy and Infectious Diseases, NIH), a
public Database for Annotation, Visualization and Integrated Discovery
(http://david.abcc.ncifcrf.gov/) (Huang Da et al., 2009).

For pathway analysis, gene list from each comparison was imputed
to GSGX10 which provides two approaches: enrichment analysis and
network analysis. The former uses BioPAX (Biology Pathway Exchange)
format that allows import pathway data from KEGG, Reactome. The lat-
ter uses the network database of biological associations extracted from
up-to-date scientific literature (NLP) to construct the overall network
and interaction such as activation, inhibition and binding to each
other, and to identify the most enriched significant pathways in a
given gene set.

2.6. Validation of Microarray Data

The 24-patient MILD cohort was kept as blind when doing microar-
ray analysis. Validation of the signatures generated on the training set
was performed on this data set as well as on an independent public
dataset of clinically detected lung cancer (Takeuchi et al., 2006) (GEO
accession number: GSE11969). Common features between different
platforms (for the GSE11969 data set) were used for clustering analysis
with centred correlation and complete linkage. Distribution of patients
according to the signature were compared to clinical–pathological
characteristics: year of screening (MILD set only), status, stage and
histotype with a 2 × 2 contingency table and two-tailed Fisher's exact
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ncbi-geo:GSE29827
http://www.r-project.org/
http://david.abcc.ncifcrf.gov/
ncbi-geo:GSE11969
ncbi-geo:GSE11969


833J. Hu et al. / EBioMedicine 2 (2015) 831–840
test. Kaplan–Meier survival plots with Log-rank test (HR and 95% CI)
were used to compare survival. Results were considered significant at
p-value ≤ 0.05

2.7. TaqMan Real-Time Quantitative PCR

The microarray levels of expression of four selected genes
ITGB1 (Hs01127543_m1), FOXO1A (Hs01054576_m1), SERPINA3
(Hs01038298_m1) and SELP (Hs00927900_m1) were validated using
TaqMan qRT-PCR. From each samples, 0.5 μg of total RNAwas converted
to cDNA by the RetroScript kit (Applied Biosystems, Foster City, CA)
using a random decamer as the primer in a 20-μl reaction according to
the manufacturer's protocol. cDNA were then diluted 1:25 and five μl
were used for qRT-PCR in a total volume of 20 μl containing 1× TaqMan
gene expression master mix and one selected primer. Results of tripli-
cate assays were log-transformed andmean expression values calculat-
ed. Relative expression for each gene was assessed based on real-time
PCR data normalised to the control gene ACTB (Hs99999903_m1) by
the ΔCt method. Relative fold-change was calculated by 2− ΔΔCt and
compared with log-transformed microarray data.

2.8. Immunohistochemistry

Paraffin-embedded, formalin-fixed tissues were sectioned (5-mm)
onto glass slides. A monoclonal antibody against FOXO1A (Millipore
clone 2H8.2) was used and immunostains and scoring (percentage of
positive cells and intensity of staining) were performed as previously
described (Leek et al., 2000).

3. Results

3.1. Comparison Between Patients Detected in the First Two (CT1–2) and
the Last Three (CT3–5) Years of Screening

239 genes were differentially expressed between 17 CT1–2 and 11
CT3–5 tumours from the INT–IEO training set (Table 1 for selected
genes and Supplementary Table 2 for the full list), 110 genes were up-
regulated and 129 down-regulated in CT1–2 compared to CT3–5 by
Table 1
Selected genes of 239 differentially expressed by parametric permutative t-test between
aggressiveness.

Gene ID Fold p
Value

Direction Biological functions

PCDHGB3 4.78 0.001 Up years 1–2 Neural cadherin-like adhesion
CLDN16 3.89 0.003 Up years 1–2 Tight junction. Associated with
PLAC1 1.38 0.008 Up years 1–2 Associated with proliferation, m
FOXO1A 1.4 0.009 Up years 1–2 Forkhead box O1A (rhabdomyo
ITGB1 0.79 0.008 Down years 1–2 Controls invasion via regulation

the c-Jun or via direct recruitm
MFI2 0.77 0.008 Down years 1–2 Melanoma progression and me
PECAM1 0.76 0.002 Down years 1–2 Endothelium. Associated with m
PAPPA2 0.68 0.01 Down years 1–2 Metalloproteinase. Detected in
POSTN 0.63 0.008 Down years 1–2 Associated with aggressive met
PTP4A3 0.61 0.006 Down years 1–2 Associated with cell proliferatio
F8 0.59 0.004 Down years 1–2 Associated with cell proliferatio
SERPINA3 0.58 0.009 Down years 1–2 Associated with cell proliferatio
CCL25 0.57 0.002 Down years 1–2 Associated with metastatic mel
OPHN1 0.53 0.007 Down years 1–2 Rho-GTPase-activating protein
AAMP 0.47 0.009 Down years 1–2 Heparin binding. Expressed str
CLCA2 0.47 0.01 Down years 1–2 It may serve as adhesion molec
MIZF 0.43 0.004 Down years 1–2 Transcription repressor. Possib
CTSB 0.34 0.002 Down yrs 1–2 Associated with metastases.
RLN2 0.32 0.005 Down yrs 1–2 Increase Cyclic AMP. Gs-adenyl
SELP 0.32 0.002 Down years 1–2 Associated with metastases.
MYO7B 0.3 0.001 Down years 1–2 Cell motility
SFSCN2 0.21 0.001 Down years 1–2 Associated with metastases.
CTSL1 0.18 0.001 Down years 1–2 Associated with metastases. Ind
FZD5 0.18 0.002 Down years 1–2 Canonical WNT pathway. Lung
parametric permutative (permutation times N 1000) t-test (p b 0.01).
153 genes were differentially expressed in 19 stage I compared to 9
stages II–IV patients (selected genes in Table 2 and full list in
Supplementary Table 3). Combined comparison of 14 CT1–2/stage I vs.
6 CT3–5/stages II–IV patients identified 218 differentially expressed
genes (selected genes in Table 3 and full list in Supplementary
Table 4). Tumours of CT3–5 or stages II–IV or combined CT3–5/stages
II–IV had higher expression of genes associated with metastasis and
high cell mobility.

Unsupervised hierarchical clustering of the 239-gene showed the
separation of CT1–2 and CT3–5 (Fig. 1). Similarly the method applied
to 153 genes distinguished stage I from stages II–IV and 218 genes
of CT1–2/stage I vs. CT years3–5/stage II–IV tumours respectively
(Supplementary Figs. 1 and 2).

We then analysed gene expression profiles in the normal lung from
the same cohort using the same permutative t-test: 203 genes were dif-
ferentially expressed between these histologically normal tissues of
CT1–2 (n = 15) and CT3–5 (n = 8) patients (p b 0.01, Supplementary
Table 5). Unsupervised hierarchical clustering separated the normal tis-
sues according to the year of tumour detection (Supplementary Fig. 3).

We also compared 17 tumours with 15 normal tissues of CT1–2 and
11 tumours with 8 normal lung tissues of CT3–5 using the similar para-
metric permutative t-test (p b 0.01);a larger amount of differentially
expressed genes were identified respectively (Supplementary Tables 6
&7).

GO pathway analysis was performed by importing the differentially
expressed genes lists to the DAVID online database. Table 4 shows the
top annotation clusters in the three lists of 239, 153 and 218 genes of
tumour comparison according to the different criteria plus the 203
genes from normal tissue comparison (full lists of annotation in
Supplementary Tables 8–11).

We also listed functional annotation clustering from the genes in the
tumours vs. same period normal in Supplementary Tables 12 and 13. By
focusing on a significant enrichment score ≥1, analysing the genes dif-
ferentially expressed between tumour and normal of CT1–2, differences
in cell adhesion, cell growth, ribosome activity, cell motility and regula-
tion of kinase activitywere identified. On the other hand, the same anal-
ysis on tumour vs. normal CT3–5, it is shown that different biological
tumours detected in years 1–2 and in years 3–5 involved in metastases and tumour

proteins likely to play a role in the establishment of cell–cell connections in the brain
less aggressive, reduced tumour volume and lack of metastases in breast.
otility, migration and invasion.
sarcoma)
of MMP-2 collagenase expression through PI-3K, Akt, and Erk protein kinases and

ent of MMP-2 to the cell surface
tastases.
etastases.

some invasive extravillous trophoblasts in the first trimester
astatic tumours.
n and metastases
n and metastases
n and metastases
anoma.
that promotes GTP hydrolysis of Rho subfamily members. Promotes cell migration.
ongly in metastatic colon adenocarcinoma cells in lymphatics.
ule for lung metastatic cancer cells, mediating vascular arrest and colonization.
ly associated with invasiveness.

ate cyclase and b-catenin pathway. Increases cell invasion and proliferation.

uced by hypoxia.
oncogenesis, increases cell migration. Involves b-catenin.



Table 2
Selected genes of 153 genes differentially expressed by parametric permutative t-test between tumours stage 1 and stages 2–4 involving in metastases and tumour aggressiveness.

Gene ID Fold p Value Direction Biological functions

SUSD5 3.2 0.001 Up stage 1 Cell adhesion
LAMC3 1.94 0.003 Up stage 1 Stability of basement membranes and of cellular attachments to basement membranes,
VASP 1.39 0.002 Up stage 1 Associated with cell invasiveness
NPEPPS 1.32 0.003 Up stage 1 Associated with proliferation, migration, and invasion
PCLKC 0.74 0.006 Down stage 1 Cell adhesion. Tumour contact inhibition
DDC 0.5 0.009 Down stage 1 Associated with metastatic neuroblastoma.
GNE 0.47 0.01 Down stage 1 Induces sLex. Sialic acid — dependent processes in adhesion, signalling, differentiation, and metastasis.
NEXN 0.45 0.005 Down stage 1 F-actin associated. Induces cell migration and adhesion.
AAMP 0.38 0.001 Down stage 1 Heparin binding. Expressed strongly in metastatic colon adenocarcinoma cells in lymphatics.
CSPG3 0.35 0.003 Down stage 1 Thought to be involved in the modulation of cell adhesion and migration
EBAG9 0.34 0.005 Down stage 1 Associated with metastatic disease
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activities are altered, for instance, in regulation of protein modification
& metabolic process, protein folding/chaperone and oxidoreductase
activity.

We tested the 239-gene signature differentially expressed between
CT1–2 and CT3–5 on an independent cohort of 24 spiral-CT detected
lung cancer from the MILD trial. Using complete linkage and centred
correlation, the signature was able to divide the patients into two dis-
tinct groups independent from the tumour status, stage, histotype and
the year of screening as shown in Table 5, with the overall reproducibil-
ity of R-index=0.612 andD-index=6.835 (Supplementary Tables 14).
Survival analysis showed that despite a Hazard Ratio (HR) of 4.6 (95%CI
0.9–23.4), there was no significant association (Log-rank test p= 0.06)
with the overall survival (Fig. 2a), but it became significant (p = 0.03),
with 5.2 HR (95%CI 1.2–23.1), when considering disease free survival
(Fig. 2b).

On the other hand, the signatures of stage generated comparing
tumour stage I vs. II–IV in the training set,were ineffective in this valida-
tion sets (Supplementary Table 15).

We then tested the same signature on a deposited independent
NSCLC data set with annotated clinical information (GSE11969) con-
taining the expression profiles of 79 clinically detected lung adenocarci-
nomas and squamous cell carcinomas (Takeuchi et al., 2006). There
were 118 features comparable with the dataset and able to divide the
patients into two distinct survival groups independently from tumour
stage and histotype (p = 0.013, Table 5). Moreover, the Kaplan–Meier
curves showed clear differences in overall survival (Log-rank test
p = 0.02) with 2.1 of HR (95%CI 1.1–3.9) as shown in Fig. 3a. When
Table 3
Selected genes of 218 genes differentially expressed by parametric permutative t-test betwe
aggressiveness.

Gene ID Fold p
Value

Direction Biological functions

S100A2 3.3 0.009 Up yr 1–2/s 1 Down regulated in metas
CD151 2.23 0.001 Up yr 1–2/s 1 Enhances cell motility, in
MITF 1.89 0.009 Up yr 1–2/s 1 Associated with suppress
CDK5 1.62 0.006 Up yr 1–2/s 1 Induces cell migration an
TACSTD2 1.52 0.009 Up yr 1–2/s 1 Associated with metastas
PLAC1 1.51 0.01 Up yr 1–2/s 1 Associated with prolifera
VASP 1.43 0.006 Up yr 1–2/s 1 Associated with cell inva
ITGB1 0.70 0.003 Down yr 1–2/s 1 Controls invasion via reg

kinases and the c-Jun or v
PCLKC 0.69 0.003 Down yr 1–2/s 1 Cell adhesion. Tumour co
LAMA3 0.63 0.005 Down yr 1–2/s 1 Loss of expression associa
GPR68 0.62 0.009 Down yr 1–2/s 1 Metastases suppressor ge
CCL25 0.52 0.002 Down yr 1–2/s 1 Associated with metastat
ANXA9 0.39 0.006 Down yr 1–2/s 1 Cell–cell adhesion
NEXN 0.38 0.006 Down yr 1–2/s 1 F-actin associated. Induce
CLCA2 0.35 0.01 Down yr 1–2/s 1 It may serve as adhesion
RLN2 0.32 0.007 Down yr 1–2/s 1 Increase Cyclic AMP. Gs-a
SELP 0.31 0.001 Down yr 1–2/s 1 Associated with metastas
EBAG9 0.28 0.005 Down yr 1–2/s 1 Associated with metastat
PDPK1 0.25 0.007 Down yr 1–2/s 1 Cell–matrix adhesion and
AAMP 0.24 0.001 Down yr 1–2/s 1 Heparin binding. Express
the analysis was restricted to 40 stage I tumours, the features also dis-
criminated this early stage tumour with distinct clinical outcomes
(p = 0.03 and HR = 2.9, 95%CI 1.1–7.8), suggesting that also clinically
detected stage I tumours are a heterogeneous category comprising in-
dolent and aggressive tumours (Fig. 3b). However, the stage generated
signatures from the training setwere ineffective in GSE11969 validation
sets (Supplementary Table 15).

3.2. Building up Pathway-Based Gene Signatures

3.2.1. Pathway Network Model 1: Tumour of CT1–2 vs. CT3–5 and stage 1
vs. stages 2–4

We performed network modelling using GeneSpring GX10 on the
239-gene signature of differentially expressed by CT1–2 vs CT3–5. The
results showed that the tumours detected in later years have an in-
creased expression of the genes ITGB1, SELP, PECAM1, F8, SERPINA3
with loss of FOXO1A as hub nodes in the transcriptome regulatory net-
work (Fig. 4). Further pathway enrichment analysis (Table 6) revealed
in functional terms that these data would predict the aggressive
tumours form later years more angiogenesis (ITGB1) and metastases
(ITGB1, PECAM1, SELP), increased proliferation and diminished apopto-
sis following loss of FOXP1 transcription but the activation of the of
PI3K/PTEN/AKT pathway(Fig. 5).

When analysing 153 genes of stage I vs. stages II–IV tumours, it is
shown that SAPK/JNK andAlzheimer pathways as themost significantly
related networks, both regulating AKT phosphorylation, which is
known to be involved in the regulation of apoptosis and cell cycle
en tumours of CT1–2/stage 1 and CT3–5/stages 2–4 involved in metastases and tumour

tatic Head Neck carcinoma
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Fig. 1. Unsupervised hierarchical clustering of 17 tumours detected in years 1 and 2 (T) and 11 cases detected in years 3, 4 and 5 (T*) using 239 differentially expressed genes.
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activity, mostly through ITGB1. Enrichment pathways on the genes dif-
ferentially expressed between CT1–2/stage I and CT3–5/stages II–IV
showed similar patterns (Table 6).
3.2.2. Pathway Network Model 2: Pathway Alteration Events in
Normal Tissues

Similar pathway analysis approaches were applied to the gene list
of 203 genes of normal tissues comparison according to the tumour
detection time. The direct interaction of 203 genes revealed the direct
connection of PSG1, PIK3R4, GRP, PSEN1, CEBPB and HIST1H2BK
(supplementary Fig. 5). Further biological process analysis revealed
that this network mainly functions in activation of MAPK activity, regu-
lation of angiogenesis, keratinocyte proliferation, chromatin remodel-
ling and assembly (supplementary Fig. 6).
3.3. Validation of Selected Genes

TaqMan QRT-PCR analysis of ITGB1, SERPINA3, FOXO1A and SELP
expression in 28 cases showed similar expression patterns to those
found in microarray analysis (supplementary Fig. 7).
3.4. Frequency and Expression Pattern of FOXO1A

Immunohistochemistry demonstrated nuclear expression of
FOXO1A in 81% (14/17) of the INT–IEO CT1–2 and in 60% (6/10) of the
CT3–5 cases and cytoplasmic staining in 76% (13/17) and 50% (5/10) tu-
mours respectively (supplementary Fig. 8).
4. Discussion

Fifteen years ago, we launched a prospective early-detection trial
with spiral CT, positron emission tomography and molecular markers
in a cohort of 1035 heavy smokers (INT–IEO set). A second prospective
randomized trial, MILD, including 4099 participants was launched in
2005. A study to compare the efficacy and cost-effectiveness of low-
dose spiral CT screening in four published randomized trials concluded
that there was no overall mortality difference in the CT arms compared
with the control arms (Pastorino et al., 2012). Themolecularfindings in-
cluding gene expression in the INT–IEO set and micoRNA signatures in
both INT–IEO and MILD sets were previously reported (Boeri et al.,
2011; Bianchi et al., 2004). Based on those findings, we proposed that
the lung cancer natural history in early detection by CT screening can



Table 4
The top alteration in 4 genes lists of tumour & normal comparisons.

From tumour of CT1–2 vs. CT3–5

Top
annotation
group

Annotation cluster terms Enrichment
score

Count
%

FDR

1 Cysteine-type endopeptidase
activity

1.82 6 0.0089

2 Endopeptidase activity 1.78 7 0.001
3 Glycosylation 1.51 42 0.0089
4 G-protein coupled receptor 0.89 11 0.009
5 Cell adhesion 0.87 10 0.0089

From tumour of stage I vs. stages II–IV

Top
annotation
group

Annotation cluster terms Enrichment
score

Count
%

FDR

1 Extracellular space 1.52 9 0.001
2 Jak-STAT signalling pathway 1.51 4 0.0064
3 Cell
adhesion

0.92 7 0.001

From tumour of CT1–2/stage I vs. CT3–5/stages II–IV

Top
annotation
group

Annotation cluster terms Enrichment
score

Count
%

FDR

1 Cell motion 2.45 12 0.0077
2 Regulation of cell motion 1.55 12 0.0083
3 Cell adhesion 1.54 13 0.0092
4 Cell-substrate adherens junction 1.37 6 0.0066
5 Sodium ion binding 1.05 6 0.001

From normal of CT1–2 vs. CT3–5

Top
annotation
group

Annotation cluster terms Enrichment
score

Count
%

FDR

1 Chromatin assembly 1.36 5 0.098
2 DNA binding, high mobility group 1.30 3 0.0023
3 Regulation of cell morphogenesis

involved in differentiation
1.29 4 0.0096

4 Endoplasmic reticulum 1.17 12 0.0067
5 RAS GTPase mediated signal

transduction
0.97 12 0.0044

Group 1 12 9 8 4 0
Group 2 12 12 10 4 0

Group 1 12 9 8 4 0

Group 2 12 12 10 4 0

P=0.06

P=0.03

a) The overall survival according to the 239-gene signature of CT-year of 
     screening

b) The disease free survival according to the 239-gene signature of CT-year
     of screening

Fig. 2. Survival analysis of 24MILD patients grouped according to the signature of CT-year
of screening. These survival curves are based on (a) overall survival analysis and
(b) disease free survival analysis. The (two-sided) p value is from by Log-rank (Mantel–
Cox) test.
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be stratified by their molecular signatures. Indeed, we find here that
there are two clinically distinct types of early-detected lung cancer:
“indolent” and “aggressive”.

It iswidely accepted that lung cancer progresses frompre-neoplastic
to clinically detected diseases by accrual of genetic and epigenetic alter-
ations, becoming metastatic in a later phase (Goldstraw et al., 2007).
Table 5
Patients' distribution of the MILD trial and the public GEO dataset GSE11969 by 239-gene
signature.

MILD⁎ GSE11969#

24 patients 79 patients

Group 1 Group 2 p-Value# Group 1 Group 2 p-Value#

Alive 7 11 0.15 16 21 0.01
Dead 5 1 30 12
Stage I 7 10 0.37 24 16 1.00
Stages II–IV 5 2 22 17
ADK 6 7 1.00 29 16 0.25##

Other 6 5 17 17
CT1–2 8 6 1.00
CT3–5 4 6

Clustering experiment using centred correlation, complete linkage and cutting dendro-
grams at 2 clusters.
⁎ 231/239 features in common.
# 118/239 features in common.
## Two-tailed Fisher's exact test.
Strategies to reduce mortality have focused on early diagnosis to eradi-
cate lesions before metastases occur. While the ability of these strate-
gies to reduce overall mortality remains debatable, there is agreement
that a higher number of tumours than predicted were found during
screening programmes, with some tumours having a poor outcome
while others behave in an indolent manner (Bach, 2008). A similar sce-
nario is known to occur in other types of tumours e.g., non-Hodgkin's
lymphomaswhich can develop as either indolent or de novo aggressive,
with some indolent cases transforming into high-grade malignancies
after several years (Horning and Rosenberg, 1984).

Boeri and colleagues analysed the role of microRNAs as biomarkers
identifying a signature able to distinguish the indolent from the aggres-
sive tumours (Boeri et al., 2011). In this study we have further demon-
strated by mRNA profiling, that considerable differences between
indolent and aggressive early detected tumours suggested that the
latter accumulate unexpectedly fatal genetic/epigenetic aberrations
over a rather short period of time.

Both gene functional annotation and topological pathway network
analyses indicated a significant overrepresentation of genes associated

ncbi-geo:GSE11969


a) The overall survival in all clinically detected NSCLC of validation set 
     GSE11969 (N=79)

Group 1 46 35 24 20 3
Group 2 33 28 23 22 8

b) The overall survival in only stage I NSCLC of validation set GSE11969
     (N=40)

Group 1 19 14 12 10 1

Group 2 21 21 17 17 4

P=0.02

P=0.03

Fig. 3. Overall survival analysis of in silico data (GSE11969) considering (a) all the 79
patients or (b) the 40 stage I alone, grouped according to the signature of CT-year of
screening. The (two-sided) p value is from by Log-rank (Mantel–Cox) test.
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with peptidase activity, response towoundhealing, cell adhesion, signal
transducer activity and, ultimately, metastases in the aggressive early
detected tumours. Further pathway enrichment analysis, whatever the
classification criteria applied (year of detection, stage or both), reflected
the activation of the PI3K/PDPK1/ITGB1/AKT pathway involving ITGB1
and FOXO1A in the most aggressive tumours (Testa and Bellacosa,
2001). The increase in ITGB1 levels is consistent with its known associ-
ation with metastatic ability (Akiyama et al., 1995; Basson, 2008;
Ritzenthaler et al., 2008). The findings overall are also consistent with
the overexpression of mir-128a, which is predicted to target the 3′-
untranslated region of FOXO1A eventually regulating AKT signalling
(Sozzi et al., 2014), in the later year aggressive tumours of the same
cohort (Boeri et al., 2011). Interestingly, mir-128 was also found
overexpressed in endometrial cancer with concomitant repression of
FOXO1A expression (Myatt et al., 2010). Thus, profiling studies on the
INT/IEO training cohort by two approaches (miRNA and mRNA expres-
sion) in two different laboratories (Milan and Oxford) revealed
FOXO1A/AKT pathway differential expression. Balsara et al. (2004)
reported that phosphorylation of FOXO1A and AKT correlates in
“in situ” lung lesions, possibly leading to invasiveness, while
Maekawa et al. (2009) showed that the loss of expression of total
FOXO1A is associated with advanced stage tumours. The association
between phosphorylation or loss of FOXO1A and more aggressive dis-
ease has been also reported in prostate (Li et al., 2007), colorectal
(Bravou et al., 2006) breast adenocarcinoma (Li et al., 2009) and acute
myeloid leukaemia (Cheong et al., 2003). Note that PDPK1/AKT1 and
the ITGB1 pathway plus FOXO1A has recently been identified as targets
for treatment in light of their association with increased proliferation,
metastasis and decreased apoptosis (Cen et al., 2007; Bloom and
Calabro, 2009; Fang et al., 2008).

We found that not only the tumours, but also the normal lung tissue
from patients identified in the first two years differ from the normal tis-
sue of patients identified in the last three years, consistentwith findings
in microRNA expression analysis (Sozzi et al., 2014) and supporting the
notion that the tumour aggressiveness is likely conditioned by the un-
derlying “field cancerization” (Lochhead et al., 2015). These findings
suggest the possibility of grouping patients as low or high risk by gene
profiling the normal tissue.

We validated our signature on two independent validation sets:
early detected tumours from the MILD trial and a cohort of patients
with clinically detected lung cancer for which microarray data was
available. In the MILD trial, the 239-gene signature from the training
set was able to distinguish the patients by their outcome independent
of tumour stage, histotype and year of screening, indicating that this sig-
nature is specific for discriminating between indolent and aggressive tu-
mours. This findingwas confirmed in a second validation set of a cohort
of clinically detected lung cancers. The signature was not only effective
in predicting the outcome when applied to all patients but was able to
identify those patients who will survive more than 5 years and those
who survived less than 2 years within stage I. This suggests that, as in
the screening trial, stage 1 clinically detected tumours are also amixture
of already highly aggressive and indolent diseases.

This study conveys the translational significance in two aspects:
firstly, CT screening detected early lung cancer is a pool of heteroge-
neous early tumours, not only from the histological type point of view,
but a mixture of aggressive and indolent tumours. The gene signatures
provided the molecular clue of disease outcomes independent from
the cancer histopathology type. Our next step is to identify smaller,
manageable signatures for personalised diagnostic purpose. It would
be of value to be able to distinguish stage I tumours with aggressive
characters which need targeted treatment to prevent metastatic re-
lapse; secondly, the confirmed findings of “field cancerization”
suggests the possibility to divide patients at low or high risk
categories by gene profiling the normal mucosa, therefore to revise
the protocol for recruiting the normal participants entering the screen-
ing trial.

In conclusion, we provide molecular evidence that both screening
and early stage clinically detected non-small cell lung cancers can be di-
vided into “indolent” and “aggressive” tumours suggesting that the
metastatic phenotype appears much earlier than previously thought.
The 239-gene signature may serve as risk stratification biomarkers to
distinguish these clinically different tumours for personalised manage-
ment, although it cannot be excluded that some indolent cancers will
eventually become aggressive. Due to the limitation of this study, larger
studies are needed to confirm that this categorization based on mRNA
and miRNA expression signatures from screening detected tumour
also fits with clinically detected cases, particularly in stage I lung cancer.
Since these two groups of patients could be identified by non-invasive
tools, such as PET/SUV (Pastorino et al., 2009) or circulating biomarkers,
new prospective trials to improve the treatment of lung cancer may be
conceived on this basis.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2015.07.001.
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Fig. 4.The 239-gene of differentially expressed genes according to theCT screening yearwere imported into theGeneSpringGX10 for searching the common regulators of these genes. The
connection between these genes was built up and unlinked nodes (genes) were removed. Blue lines and squares signify that a defined regulatory relationship exits between genes. Grey
lines and squares signify that a putative regulatory relationship between genes has been identified but not biochemically defined. +, positive regulation;−, negative regulation.
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Table 6
Pathway enrichment analysis.

239 genes tumours detected in years 1–2 vs years 3–5

Object
identifier

Common
object

Size Name

0 1625598 1 73 Long-term potentiation
1 1625611 2 82 ERK-PI3K (collagen)

signalling
2 1625626 2 86 Integrin signalling
3 1625629 2 44 PTEN signalling
4 1625630 2 63 AKT signalling
5 1625632 2 32 ACH-R apoptosis signalling
6 1625637 1 144 Apoptosis
7 1625640 1 24 Interferon-alpha signalling

153 genes stage 1 vs stages 2–4
Object
identifier

Common
object

Size Name

0 1625597 1 130 SAPK–JNK signalling
1 1625605 1 72 Alzheimer's disease

218 genes combined ct/stage t1 vs t2
Object
identifier

Common
object

Size Name

0 1625598 1 73 Long-term potentiation
1 1625605 1 72 Alzheimer's disease
2 1625611 1 82 ERK–PI3K (collagen)

signalling
3 1625626 1 86 Integrin signalling
4 1625629 2 44 PTEN signalling
5 1625630 1 63 AKT signalling
6 1625632 1 32 ACH-R apoptosis signalling
7 1625633 1 94 Wnt signalling (Calcium)
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