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Abstract: One of the most common complications during pregnancy is gestational diabetes mellitus
(GDM), hyperglycemia that occurs for the first time during pregnancy. The condition is multifactorial,
caused by an interaction between genetic, epigenetic, and environmental factors. However, the
underlying mechanisms responsible for its pathogenesis remain elusive. Moreover, in contrast to
several common metabolic disorders, molecular research in GDM is lagging. It is important to
recognize that GDM is still commonly diagnosed during the second trimester of pregnancy using
the oral glucose tolerance test (OGGT), at a time when both a fetal and maternal pathophysiology
is already present, demonstrating the increased blood glucose levels associated with exacerbated
insulin resistance. Therefore, early detection of metabolic changes and associated epigenetic and
genetic factors that can lead to an improved prediction of adverse pregnancy outcomes and future
cardio-metabolic pathologies in GDM women and their children is imperative. Several genomic and
epigenetic approaches have been used to identify the genes, genetic variants, metabolic pathways, and
epigenetic modifications involved in GDM to determine its etiology. In this article, we explore these
factors as well as how their functional effects may contribute to immediate and future pathologies in
women with GDM and their offspring from birth to adulthood. We also discuss how these approaches
contribute to the changes in different molecular pathways that contribute to the GDM pathogenesis,
with a special focus on the development of insulin resistance.

Keywords: pregnancy; gestation diabetes mellitus; GDM; hyperglycemia; epigenetic; epigenetic
modifications
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1. Introduction

In a healthy pregnancy, a woman’s body adapts to the developing fetus through
physiological and anatomical changes [1]. This is manifested by weight gain, placental
development, and changes in the metabolic system as well as almost all organ systems [1,2].
An important metabolic change that occurs during pregnancy is the gradual reduction
in insulin sensitivity [1,3]. As a result, glucose is absorbed and stored at early stages of
pregnancy for the energy requirements required later in gestation [1]. Nevertheless, during
the second half of pregnancy (20–24 weeks onward), increased insulin resistance is observed.
This is suggested to be mediated via placental hormones including: human placental
growth (hPG), human placental lactogen (hPL), cortisol, estrogen, and progesterone, in
addition to chronic inflammation factors like tumor necrosis factor α (TNF-α) [1,2,4]. As
a result, the pancreatic beta-cells undergo hypertrophy and hyperfunction to produce
more insulin, and thus compensate for the maternal insulin resistance [1,5]. During some
pregnancies, this may lead either to dysfunction of the β-cells due to excessive secretion
of insulin or insufficient compensation of the blood glucose load, or both, which will
ultimately result in gestational diabetes mellitus (GDM) [1,5,6].

The prevalence of GDM, which is a form of hyperglycemia that first develops during
pregnancy [1], increases worldwide every year, with prevalence rates varying by ethnic-
ity [7]. According to the International Diabetes Federation (IDF) Diabetes Atlas for 2021, the
prevalence of GDM (20–49 years old) varies from 13% in Africa to 25.9% in Southeast Asia
(SEA) [8]. Additionally, hyperglycemia in pregnancy (HIP) affects approximately 16.7% of
all pregnancies worldwide, 80.3% of which is caused by gestational diabetes mellitus [8].
Obesity, type 2 diabetes mellitus (T2DM), previous history of GDM, advanced maternal
age (35 years old or older), and polycystic ovary syndrome (PCOS) have all been identified
as risk factors for GDM [1] (Figure 1).
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Several acute GDM complications may arise during pregnancy or delivery such as
pre-eclampsia (a high blood pressure disorder), macrosomia (a large fetus), and shoulder
dystocia [1,9,10]. In addition, although GDM resolves after delivery, it can still have
long-lasting effects on both the mother and fetus [1]. Several studies have indicated
that mothers are seven times more likely to develop T2DM a few years after their first
diagnosis of GDM, in addition to an increased risk of cancer, cardiovascular disease, and
kidney disease [11,12]. The offspring of mothers with GDM are at higher risk of being
obese when they reach adulthood, developing type 2 diabetes, and having impaired
neurocognitive development [12]. This leads to a vicious cycle of obesity and diabetes
between generations [1].
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Specific details regarding the mechanism by which this condition develops and pro-
gresses are still lacking. Reports suggest that GDM is a multifactorial disorder, and that
in addition to genetic factors, environmental factors such as tobacco smoke, physical inac-
tivity, and alcohol consumption, as well as medications and lifestyle factors, are likely to
contribute to its development [13]. Consequently, these factors may also have an impact on
the growing fetus by altering the epigenome, resulting in epigenetic programming that may
expose the fetus to chronic diseases such as obesity and type 2 diabetes in the future [14].
Research on clinical, genomic, and molecular biology is continuously focusing on defining
the pathophysiology and molecular architecture of GDM. There is currently a focus on
identifying genetic variants, the molecular pathways involved, and expression profiles of
the epigenetic modifications. To do this, technological advancements are necessary. In this
paper, we present a review of the genetics and epigenetics of GDM, as well as the genomic
strategies used to collect this information.

A genetic linkage map that demonstrates the relative locations of all GDM-related
genes reviewed in this paper is illustrated in Figure 2. The genes were investigated and
classified according to the technology used to identify them and based on whether they are
epigenetically modified. GDM-related genes were identified on all chromosomes except
for chromosomes 13 and 17 and the sex chromosomes X and Y (Figure 2).
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2. Genomic Approaches Used in Understanding Gestational Diabetes
2.1. Candidate-Gene Association Studies

To date, candidate-gene studies have been the most widely used method for identify-
ing genetic variants associated with GDM [15]. The reason is that these are inexpensive,
quick, and allow scientists to examine the implications of an educated guess regarding the
genetic basis of GDM [16]. The candidate-gene approach thereby allows for the validation
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of an association between a gene and phenotype by assessing the effect of its genetic vari-
ant [16,17]. There are a variety of methods for identifying candidate genes, including animal
model studies, positional cloning, genome-wide association studies, and next-generation
sequencing approaches, and these methods are prioritized according to their biological
feasibility and prior knowledge of gene function [15,17,18].

A foundation for selecting suitable candidate genes for GDM has been established
since 1964, when O’Sullivan and Mahan found a correlation between gestational diabetes
and the development of diabetes several years later [19]. Since then, molecular studies have
shed light on the relationship between T2DM and GDM, and have demonstrated impor-
tant similarities between the pathophysiology of both disorders such as increased insulin
resistance or a limited ability of the β-cell to overcome insulin insensitivity [20,21]. Several
epidemiological studies have also demonstrated a correlation between the prevalence of
GDM and T2DM [22–24]. Furthermore, there are indications of familial clustering and
heritability of T2DM and GDM [25,26]. Considering all of these observations, it is not sur-
prising that both disorders may have a similar genetic basis. Therefore, T2DM susceptibility
genes, as well as those that are involved in β-cell function, insulin response, and glucose
regulation, have been identified as potential candidates for GDM [27,28]. Yahaya et al.
suggested that 83 candidate genes exist for GDM in a recent comprehensive review. Among
them, TCF7L2, KCNQ1, CDKAL1, IRS1, and MTNR1B are the most frequently studied for
their correlation with GDM [27] (Table 1).

Table 1. Associations of the most investigated GDM genes and their variants across different populations.

Gene SNP Population/Ethnicity Reference

TCF7L2

rs7903146

Scandinavian [29]

Greek [30]

Australian and British [31]

Danish [32]

Korean [33]

Swedish [34]

Italian [35]

Finnish [36]

Mexican [37]

rs4506565
Mexican [37]

Danish [38]

rs7901695

American Caucasian [39]

Swedish [34]

Mexican [37]

rs12243326 Mexican [37]

rs12255372 Caucasian [40]

rs34872471 Danish [38]

rs290487 Chinese [40]
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Table 1. Cont.

Gene SNP Population/Ethnicity Reference

KCNQ1

rs2237892

Korean [41,42]

Chinese [43]

Asian [43]

rs2074196 Korean [42]

rs2237895
Pakistani [44,45]

Korean [41]

rs2283228 Indian [46]

CDKAL1

rs9295478 Chinese [47]

rs6935599 Chinese [47]

rs7747752 Chinese [47]

rs7754840 Asian and Caucasian [48]

rs7756992 Asian and Caucasian [48]

IRS1 rs1801278

Saudi Arabian [49]

Greek [30]

Scandinavian [50]

MTNR1B

rs10830962 Chinese [51]

rs10830963

Asian and Caucasian [52]

Danish [38]

Finnish [36]

Saudi Arabian [49]

rs1387153

Danish [38]

Saudi Arabian [49]

Mexican [37]

Finnish [36]

2.1.1. TCF7L2

Transcription factor 7 like 2 (TCF7L2) is located on chromosome 10q25 [28]. It is
highly expressed in adipose tissue, the pancreas, and several other tissues [53]. TCF7L2
is the strongest association with T2DM yet, and plays a role in glucose homeostasis [54].
TCF7L2 also regulates adipokines, signaling hormones secreted by adipocytes such as leptin
and adiponectin [28,55]. Those hormones are involved in appetite regulation and energy
expenditure [28]. Usually, leptin is elevated in GDM cases and is thought to contribute to
macrosomia, while adiponectin is lower and associated with insulin resistance [1]. It is
not yet known how TCF7L2 contributes to T2DM, but Chen et al. suggested that TCF7L2
regulates adipocyte development [56]. Another possibility is that TCF7L2 is involved
in the PI3K/AKT pathway, which facilitates insulin signaling transduction and glucose
homeostasis [57]. To the best of our knowledge, seven genetic variants in TCF7L2 have
been positively associated with GDM (Table 1) [29–40,52,54,58–64].

2.1.2. KCNQ1

Several genetic mutations and disorders can disrupt the insulin secretion process,
resulting in early termination of insulin production and the shortage of insulin seen in
patients with T2DM and GDM [44]. Potassium voltage-gated channel subfamily Q mem-
ber 1 (KCNQ1) is a gene on chromosome 11p15 that is expressed in the kidney, brain,
heart, and pancreatic islets [28,45]. It contributes to cell polarization and regulation of
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insulin secretion [44,65]. This candidate gene was also selected based on its known as-
sociation with T2DM [66]. Accordingly, numerous SNPs have been tested for their asso-
ciation with GDM using the candidate-gene approach, especially in Asian populations
(Table 1) [27,37,41–44,46,66–68].

2.1.3. CDKAL1

Cyclin-dependent kinase 5 regulatory subunits associated protein 1-like 1 (CDKAL1)
is located on chromosome 6q22.3 [28]. It is reported to be involved in insulin secretion and
β-cell function by negatively regulating CDK5 and inhibiting insulin secretion [28,47,69]. In
a case-control study involving 316 controls and 321 cases of GDM [47], rs9295478, rs6935599
and rs7747752 were shown to be linked with increased GDM risk. Moreover, rs7754840 and
rs7756992 were included in a meta-analysis that covered five studies in five different popu-
lations [48], and they were associated with elevated GDM risk in Asians and Caucasians.

2.1.4. IRS1

Insulin receptor substrate-1 (IRS1) is located on chromosome 2q36.3. It is an en-
dogenous component of the insulin receptor, found in tissues that are sensitive to insulin
and involved in the insulin signaling pathway [28,49,70]. Specifically, the genetic variant
rs1801278 (G972R) has been reported to increase insulin insensitivity and disrupt IRS1
function [71]. It has been examined in Saudi Arabians [49], Greeks [30], Scandinavians [50],
and Russians [72]. SNP rs7578326 was also investigated in Austrian-Hungarian and Finnish
populations [36,73].

2.1.5. MTNR1B

Melatonin receptor 1B is a member of the melatonin receptor family [28]. It is found
on chromosome 11q14.3, encoded by the MTNRB1 gene. It is expressed in the pancreatic
islets and plays a role in glucose homeostasis during pregnancy via the melatonin signaling
pathway [74]. Three SNPs have been reported to be associated with elevated GDM risk
(rs10830962, rs10830963, rs1387153) [37,38,49,51,52]. RS10830962 was associated with GDM
in the Chinese population [51]. MTNRB1 polymorphism rs10830963 was found to be
associated with GDM in Asians, Caucasians, and Arabs [36,38,49,52], while rs1387153 was
a risk factor for GDM in Mexicans, Finnish, Danish, and Arab populations [36–38,49].

2.2. Genome-Wide Association Studies (GWAS)

Genome-wide association studies (GWAS) enable the identification of genetic variants
that predict the susceptibility to diseases from an individual’s genome. Over 50,000 asso-
ciations have been reported between diseases and genetic variants since the first GWAS
was published in 2005 [75]. To our knowledge, two GWAS have been conducted for
GDM [76,77]. Kwak et al. conducted a two-stage study in Korean women that included
468 GDM cases and 1242 controls in the first stage and 931 GDM cases and 783 controls
in the replication study [76]. Consequently, two of the most significant GDM variants,
rs7754840 and rs10830962, were identified and located in the intron regions of CDKAL1
and upstream of MTNR1B, respectively [76]. The second study observed 115 controls and
103 cases of GDM in Chinese women [77]. The results identified 23 SNPs associated with
GDM [77]. These SNPs identified four genes (CTIF, CDH18, PTGIS, and SYNPR) that may
be involved in GDM [77]. GO enrichment and KEGG pathway analyses revealed that the
CDH18, PTGIS, and SYNPR genes were enriched for or located in glycometabolism path-
ways [77]. As part of a multi-ethnic GWAS in 2013, Hayes et al. examined glycemic traits,
such as fasting glucose, fasting C-peptide, and glucose levels 1 h and 2 h after OGTT [78].
The study found HKDC1 and BACE2 to be associated with glycemic characteristics in
pregnancy [78]. HKDC1 is associated with impaired glucose tolerance in old-age pregnant
mice whose gene is downregulated by 50%, and is embryonically lethal in HKDC1-KO
mice [79]. In addition, higher levels of expression of the gene were associated with higher
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levels of insulin sensitivity and glucose tolerance [80]. As for BACE2, it was reported to be
involved in β-cell function [81].

2.3. DNA Microarrays

DNA microarrays have revolutionized the genomic research field ever since they
were introduced in the mid-1990s [82]. In addition to being used for DNA methylation
profiling and genotyping, they can also be applied to determine the expression levels of
various genes simultaneously [83]. Research is now using this genomic tool to compare the
expression patterns of genes in tissues under different health conditions [84]. For example,
it is possible to compare the cells of a patient with those of a healthy control to identify
genes and biomarkers involved in the pathogenesis of disease [84].

It was through the application of microarrays to the study of GDM that the first
molecular basis for the relationship between placental gene modifications and GDM was
established [85]. As illustrated in a study conducted in 2003, placental biopsies from GDM
cases were analyzed using microarrays and RT-PCR, which uncovered a modification of
435 genes, 18% of which were associated with inflammatory responses [85]. The results
of this study suggest that fetal genes are programmed in an inflammatory environment,
which contributes to the development of diseases in adulthood [85]. An investigation of
the placental genes in placental samples of patients with GDM was conducted in 2009 [86].
Microarray analysis confirmed by RT-PCR indicated that 66 genes regulating biological
functions such as cell activation, apoptosis, and the immune response are altered in GDM
patients [86]. Expression profiling of placental human chorionic membrane-derived stem
cells (CMSCs) from pregnant women with and without GDM revealed upregulation of
162 genes that were linked to migration ability, growth factor-associated signal transduc-
tion, and epithelial development [87]. On the other hand, 269 genes were downregulated,
and were related to angiogenesis and cellular metabolism [87]. GDM women had a reduc-
tion in the expression of ALDH enzymes (detoxification enzymes), which led to an increase
in oxidative stress [87]. The results of this study are in accordance with the findings of
elevated oxidative stress levels identified in maternal plasma and placental tissues [88].
Additionally, it explains the mother-fetus complications reported in previous studies [89,90].
Moreover, oxidative stress can alter the expression of glucose transporter type 4 (GLUT4)
by disrupting nuclear protein transfer to the insulin-responsive element in the GLUT4
promoter, which in turn, affects glucose transport efficiency [28]. Another study, based
on evidence of insulin resistance in omental visceral adipose tissues (OVATs) of patients
with GDM, utilized a microarray to compare the gene expression profile of GDM cases
and healthy controls in a Chinese population [91]. A total of 450 differentially expressed
genes (DEGs) were downregulated and 485 were upregulated [91]. Following the con-
struction of a functional interaction network, it was demonstrated that the following five
pathways are associated with GDM: cell adhesion molecules, type 1 diabetes, natural killer
cell-mediated cytotoxicity, antigen processing and presentation, and TGF-β signaling [91].
This has contributed to a greater understanding of the mechanisms underlying insulin
resistance in OVATs of GDM patients [91]. Another microarray study identified several
inflammatory genes that are closely associated with GDM, including CXCL10, HLA, CXCL9,
and PTPRC [92]. CXCL9 was discovered to be enriched in the cytokine signaling pathway,
and it is thought to contribute to the development of GDM through regulation of the inflam-
matory pathway [92]. Similarly, CXCL10 is thought to be involved in the pathogenesis of
GDM through its ability to inhibit pancreatic beta-cell proliferation. This was suggested to
happen via (a) binding to CXCR3, or (b) interacting with Toll-like receptor 4 for the constant
activation of Jun N-terminal kinases and protein kinase B (Akt), cleavage of p21-activated
protein kinase 2, and change of Akt signal from proliferation to apoptosis [92]. As for HLA,
it has been demonstrated that it contributes to type 1 diabetes mellitus (T1DM) and can in-
fluence the development of type 2 diabetes mellitus [92]. In addition, an increased humoral
immune response to HLA-class II antigens was detected in GDM cases, indicating that this
may mediate the pathogenesis of the disease [92,93]. It has been suggested that PTPRC
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(protein tyrosine phosphate receptor 5) negatively regulates insulin signal transduction in
diabetic cases and is one of the key genes in GDM [92]. In another two studies that applied
microarray techniques, cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1),
estrogen receptor 1 (ESR1), fibronectin 1 (FN1), and leptin (LEP) were also found to be
critical genes for GDM pathogenesis [92].

2.4. Next-Generation Sequencing Approaches (NGS)

Over the past few years, genomic research has made substantial progress. This is
largely due to the emergence of next-generation sequencing (NGS) technology [94]. NGS
provides a more in-depth analysis of an organism’s genome than conventional sequencing
(Sanger sequencing), allowing researchers to locate DNA variations and their function in a
shorter time [94,95]. Furthermore, several NGS approaches have been used in recent years
to understand the genomic mechanisms of disease.

2.4.1. Whole-Exome Sequencing (WES)

Whole-exome sequencing (WES) is one of the technologies used in next-generation
sequencing. Approximately 1% of the genome is comprised of protein-coding regions [96].
To our knowledge, WES has been widely used in clinical and genomic research; however,
only one study has used this method to identify genetic variants in GDM cases. A recent
study by Nikolai Paul et al. screened 50 non-obese GDM Maltese women, and identified
three pathogenic variants, rs201815564, rs37046485, and rs766191969, in the ABCC8, GCK,
and HNF1A genes, respectively [97]. Additionally, subjects with these variants reported
interrupted fasting glucose levels several times [97]. Nevertheless, replication of these
studies is needed considering the limited number of subjects, the ethnic heterogeneity of
the Maltese population, and the possibility of variants in intronic regions not covered by
WES [97].

2.4.2. Whole-Genome Sequencing (WGS)

Whole-genome sequencing (WGS) allows the sequencing of an entire genome. Unlike
WES, it identifies variants in both protein-coding (exons) and non-coding genes (introns),
as well as in mitochondrial DNA [98].

2.4.3. Targeted NGS

The targeted NGS technique allows investigators to sequence a specific region of
a genome for a thorough analysis at a lower cost and less time than other NGS meth-
ods [99]. Due to its high coverage, sequencing data are more easily interpreted [99]. Target
enrichment is an essential step in this technique, which can be achieved either through
hybridization with a probe to capture the region of interest, or by amplifying the region by
PCR [99]. A study that investigated “Diabetes Panel” genes in 120 GDM patients revealed
45 different pathogenic variants, mostly found in the GCK gene, in 38% of patients [100],
whereas oligogenic variants were found in four patients [100]. In another study of a Rus-
sian population sample, a custom NGS panel targeting 28 diabetes genes was used to
sequence 188 patients, 57 of whom were pre-GDM and 131 of whom had GDM. There were
23 pathogenic variants in 59 out of 188 patients, 18 likely pathogenic variants, and 16 of
unknown significance. Both pre-diabetic and diabetic groups carried these variants [101],
again mainly in the GCK gene.

2.4.4. RNA Sequencing

RNA sequencing has revolutionized our understanding of the transcriptome [102].
NGS sequences’ cDNA and RNA analysis provides a better and more detailed view of
alternative splicing and gene expression [102]. RNA sequencing includes the analysis of
messenger RNA (mRNA), microRNA (miRNA), non-coding RNA (ncRNA), long ncRNA
(lncRNA), and pre-mRNA [102]. In addition, gene expression quantification is highly
dependent on sample purity. Due to the heterogeneity of our body cells, RNA sequencing
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invokes two techniques to overcome this obstacle: laser capture microdissection and cell
purification [102]. RNA sequencing has also overcome cell-to-cell variability with a new
method known as single-cell RNA sequencing (scRNA-seq), which allows for the analysis
of individual cells [102].

RNA sequencing has been applied to GDM patients in several studies. Tao et al. iden-
tified 647 differentially expressed lncRNA and mRNA in placental tissues from four GDM
cases and three controls [103]. A number of enriched signaling pathways of co-expressed
mRNAs, such as the Toll-like receptor, which involves CASP8 and TLR5, and endocytosis
have also been identified [103]. A similar study by Wang et al. examined the expression
of circular RNA (circRNA) in the placenta of 30 GDM cases and 15 healthy controls [104].
Consequently, 8321 circRNA were identified in the placenta, of which 46 were differentially
expressed in GDM cases [104]. GO and KEGG enrichment revealed that these circRNAs
contribute to advanced glycation end products-receptor for advanced glycation end prod-
ucts (AGE-RAGE) signaling-mediated diabetic complications [104]. Additionally, a novel
circRNA, hsa_circ_0005243, has been identified and found downregulated [104]. In a subse-
quent study, RT-PCR was used to study hsa_circ_0005243 expression in 20 women with
GDM and 20 controls [105]. In vitro experiments investigated its role in cell proliferation
and migration, as well as in the production of inflammatory factors. Researchers found an
increase in inflammatory factors such as interleukin-6 (IL6) and TNF- α in the placenta and
plasma of women with GDM [105]. The knockdown of hsa_circ_0005243 suppressed cell
migration and downregulated β -catenin, as well as increased nuclear NF-κB p65 nuclear
translocation [105]. Based on these observations, downregulation of hsa_circ_0005243
may be associated with GDM pathogenesis via regulation of β-catenin and NF-κB signal
pathways [105]. As part of a very recent study, Yang et al. used scRNA-seq for the first
time to create a transcriptomic profile of the placenta of GDM patients [106]. A total of
nine cell types were identified, with trophoblasts being the most prevalent, along with
five associated markers for each type of cell. Furthermore, the functions of DEGs in the
placenta were determined, as well as the characteristics of immune cells in the placenta.
This profoundly influenced our understanding of the microenvironment of the mother-fetal
interface [106].

3. Epigenetic Modifications in GDM

Despite having the same genomic information, gene expression patterns vary between
different types of cells [107]. This is due to epigenetic modifications, which change the activ-
ity and expression of genes without changing their DNA sequence [4]. These modifications
are: DNA methylation, histone modifications, and ncRNAs including miRNA [4]. The en-
vironment and lifestyle can induce epigenetic changes, such as pollution, tobacco smoking,
obesity, lack of physical activity, and alcohol consumption [108]. Furthermore, exposure
to such environmental factors can have a butterfly effect: epigenetic modifications may
affect biological mechanisms, contributing to the pathogenesis of complex diseases [109].
Their exposure can also impact the epigenetic patterns of subsequent generations [109]. Ac-
cording to Slupecka-Ziemilska et al., the first 1000 days of life, including the preconception
and neonatal stages, can determine a person’s future chronic disease susceptibility [14].
This has been observed in the Dutch Hunger Winter study in the Netherlands, which
followed up offspring born to mothers that experienced famine and starvation during their
gestation in 1944–1945 [110,111]. The study revealed that adult offspring had higher levels
of triglycerides, LDL cholesterol, and weight. A higher death rate was found compared to
others born at the same time but not exposed to famine in utero [112,113].

It is hypothesized that epigenetic modifications play a role in GDM pathogenesis
and exhibit the same effect on exposed offspring [4,114]. Researchers found that GDM-
exposed offspring have an increased risk of birth defects [115–117]. Pavlinkova et al.
demonstrated a disrupted transcriptional profile in mice embryos exposed to GDM [116].
Kappen et al. made a similar observation that transcriptomic profiles vary between GDM-
exposed offspring and non-exposed offspring [118]. The evidence indicates impairment
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in gene regulation; however, more research is needed to fully understand these findings.
Furthermore, Elliott et al. believe that epigenetic mechanisms should be implicated in adult
offspring of GDM mothers to mediate the manifestation of chronic diseases such as T2DM,
including the effect of GDM on adult offspring with T2DM, the effect of GDM on epigenetic
mechanisms in different tissues and organs, and the effect of epigenetic mechanisms on
future T2DM [119].

Here, we have reviewed different studies that investigated the epigenetic modifications
caused by exposure to GDM. A schematic graph that summarizes the reviewed epigenetic
alterations of GDM-linked genes and their molecular effect is presented in (Figure 3).
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3.1. DNA Methylation

DNA methylation is the addition of a methyl group from S-adenyl methionine (SAM)
to the fifth carbon (C5) position of the cytosine nucleotide to form 5-methylcytosine, which
is catalyzed by methyltransferase enzymes (DNMTs) with different activities. DNMT3a and
DNMT3b carry out new patterns of DNA methylation during embryogenesis (de novo),
and DNMT1 maintains methylation status in cells during DNA synthesis [114,120,121].
Generally, methylation is observed at cytosine sites that are followed by guanine (CpG),
but rarely at non-CpG sites (CpA, CpG, or CpT) [120]. Gene expression is regulated by
DNA methylation either by preventing transcription factors from binding to DNA or by
using proteins that inhibit gene expression [120]. Usually, gene activation is linked to
hypomethylation of promoters of genes, whereas gene silencing is associated with hyper-
methylation [114]. Several studies have been performed to study the DNA methylation
profile in GDM [122–131].

In a study by Cardenas et al., bisulfite conversion was used to measure DNA methy-
lation in the fetal placenta among 448 women at 24–30 weeks of gestation after a 2-h oral
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glucose tolerance test (OGTT), and then the Infinium Methylation EPIC BeadChip was used
to determine its levels [122]. As a result, 2-h post-load glycemia in mothers was correlated
with hypomethylation of four CpG sites in PDE4B. Additionally, PDE4B mediates the
release of TNF-α, which was found to be elevated in placental and adipose tissues of obese
pregnant women compared to non-obese pregnant women [122,132]. TNF-α is also linked
to insulin resistance in GDM [122]. In light of this, PDE4B inhibitors have been suggested
as therapeutic agents [122]. The authors also reported differential methylation of three
CpG sites in three genes: BLM, TNFRSF1B, and LDLR [122]. Concerning the BLM functions
in DNA homeostasis, TNFRSF1B has an apoptotic function and LDLR encodes for LDL
receptors that function in endocytosis [133].

In another study, an Illumina Infinium Human Methylation 450 BeadChip was used
to measure DNA methylation in the cord blood of newborns of GDM mothers as well as
non-GDM mothers [123]. Accordingly, 4485 differentially methylated sites were found,
of which 2150 were highly methylated and 2335 were less methylated [123]. In the
research, 37 CpG sites were detected, which belong to 20 genes and may serve as clin-
ical biomarkers for GDM [123]. Gene pathway enrichment analysis further revealed that
the T1DM pathway was the most significant KEGG pathway. Gene ontology (GO) pathway
analysis then revealed neuron development and immune major histocompatibility complex
(MHC) pathway enrichment [123].

Another study compared maternal blood samples to umbilical cord blood samples
taken from infants in a small sample size of 16 pregnant women (eight with GDM). A
total of 381,869 and 540,036 methylation positions were identified in maternal blood and
umbilical cord blood, respectively [124]. Among these, the top 200 loci with significant
differences were identified, which belong to 167 genes in cord blood and 151 genes in
maternal blood; these were found to be differently methylated in GDM groups compared
to non-exposed groups, leading to the suggestion that GDM could have epigenetic effects
on both mothers and fetuses [124].

Awamleh et al. profiled 42 cord blood samples and 36 placenta samples for DNA
methylation using an Illumina Infinium 450 k array [125]. Consequently, 662 CpG sites
were identified in placenta samples and 99 CpG sites in cord blood samples at a difference
of more than 5% and an aoas1 p-value of <0.01 with regard to confounders [125]. Sites
that were common for both sample types were found in PTPRN2 and AHRR. The study
suggested that this difference in methylation profiles between the two groups was an
adaptive response to gestational insulin insensitivity [125].

The DNA methylation patterns of GDM cases differed from healthy controls in other
studies, as well. Using an Illumina Human Methylation 450 k DNA Analysis BeadChip
and whole human gene expression array, Deng et al. analyzed gene expression and
DNA methylation in visceral omental adipose tissues (VOATs) in patients with GDM
and compared them to those in controls [126]. A total of 485 highly expressed genes and
450 downregulated genes were identified. Seven genes were found to overlap between
DEGs and differentially methylated genes (DMGs), of which five were found to be highly
methylated and expressed: C10orf10, HLA-DPB1, GSTT1, FSTL1, and HLA-DRB5. One
gene, HSPA6, however, was found less methylated and expressed [126]. Gene MSLN was
the only one hypermethylated with downregulated transcription [126]. Further pathway
analysis revealed that antigen processing and presentation pathways are associated with
GDM in Chinese pregnant women’s OVATs [126].

In a similar study by Zhang et al., DNA methylation and gene expression profiles
of placenta samples from 32 GDM subjects were screened and compared with 31 healthy
controls, using the Illumina Infinium Human Methylation 450 BeadChip for obtaining
methylation data and the GeneChip® Human Transcriptome Array 2.0 for determining
genes expression profiles [127]. There were 24,572 differential CpG sites within 9339 genes,
and 931 DEGs between GDM and control samples [127]. In a KEGG and GO pathway
analysis of the 326 genes shared by DEGs and DMGs, metabolism and immune-related
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terms appeared to be enriched [127]. Subsequent protein-protein interaction analysis
identified Oas1, Ppie, and Polr2g as target genes for GDM [127].

In addition, several studies have suggested that GDM may also affect offspring via
DNA methylation. A genome-wide methylation analysis of peripheral blood samples
from children aged 8 to 12 years old, using the Illumina Infinium Human Methylation
27 BeadChip, identified differentially methylated regions (DMRs), from which genes related
to cardiometabolic traits were identified: PANK1, NPR1, SCAND1, and GJA4. After gene
enrichment analysis of the top 84 genes, the ubiquitin-proteasome system (UPS) emerged as
the most enriched biological pathway, involved in apoptosis of beta cells, insulin resistance,
lipid metabolism, and inflammation [128]. VCAM-1 levels were also elevated in offspring
exposed to GDM in utero compared to non-exposed offspring, which may be associated
with elevated methylation of PYGO1 and CLN8 genes [128]. Moreover, these results point
to an early pathogenesis of cardiometabolic diseases [128].

In a very recent study, Wang et al. assessed DNA methylation levels at 337 GDM-
related CpG sites using MethylTarget sequencing [129]. Peripheral blood samples were
collected at an early pregnancy stage from 80 GDM cases and 80 healthy controls. Results of
quantitative analysis revealed that DNA methylation levels differed at 13 CpG sites between
the two groups. On the other hand, qualitative analysis identified eight CpG sites that
differed between the groups, located in the intron region of C5orf34 and promoter regions
of RDH 12, HAPLN3, YAP1, DNAJB6, and NFATC4. The hypermethylation of the following
two CpG sites was correlated with increased GDM risk: CpG site 68,167,324 located in
RDH 12, and CpG site 24,837,915 located in the promoter region of NFATC4 [129].

Researchers also revealed that GDM affects the leptin levels of the newborn [130].
DNA methylation near the leptin promoter was examined along with leptin levels in cord
blood samples and the results indicated that hypomethylation is associated with high mean
cord blood leptin levels [130].

The effect of GDM on obesity and T2DM susceptibility was also examined [131].
DNA methylation in the peripheral blood of children with a mean age of 13 was mea-
sured, and 48 CpGs associated with in utero diabetes exposure were detected, as well
as decreased insulin secretion, a higher body mass index (BMI), and a higher risk of de-
veloping T2DM [131]. Most studies confirming the effect of GDM on future T2DM and
obesity in adult offspring are either observational, as in the Pima Indian population, where
offspring exposed to GDM in utero developed obesity [134], or in animal models such
as that by Zhu et al., who found that changes in DNA methylation in the pancreas of
mice increased the risk of T2DM [135]. When authors isolate samples from humans, they
often concentrate on maternal peripheral blood, cord blood, and the placenta [14]. Accord-
ing to Slupecka-Ziemilska et al., this may not accurately reflect the methylation levels in
other metabolism-related organs, such as the pancreas, kidneys, and liver, where DNA
methylation levels vary, which needs to be further investigated [14].

3.2. Histone Modification

Histones are positively charged proteins that are enriched with lysine and arginine
residues, found in eukaryotes [136–138]. Their charge allows DNA to easily bind and wrap
itself around them, which gives it structural support and facilitates its packaging into the
cell nucleus [139]. Histones usually exist as octamers consisting of two each of H2A, H2B,
H3, and H4 [137,140]. Each octamer contains a central tetramer composed of two H3 and
two H4, linked to dimers of H2A and H2B on either side [137]. Furthermore, histones, just
like any other protein, undergo post-translational modifications (PTM), including acetyla-
tion, methylation, sumoylation, phosphorylation, and ubiquitylation [140,141]. This gives
histones control over gene expression and regulation of chromatin accessibility [141,142].
Of these modifications, acetylation and methylation on lysine residues have been the most
investigated [4]. The following studies have investigated histone changes associated with
GDM [143,144]: A case-control study by Hepp et al. assessed the expression of histone
3 lysine 9 acetylation (H3K9ac) and histone 3 lysine 4 trimethylation (H3K4me3) in placen-
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tal tissues of 40 GDM cases and 40 controls, of which 50% were of male fetuses [143]. The
H3K9ac levels were found to be downregulated in GDM placentas, whereas the H3K4me3
levels did not differ significantly between controls and GDM subjects [143]. Another study,
conducted in 2016, included 39 subjects divided into four groups (non-diabetic women,
women with T2DM diagnosed before gestation, women with GDM and postpartum-T2DM,
women with GDM and without postpartum-T2DM) [144]. Three blood samples were col-
lected and tested for histone 3 (H3) dimethylation levels at 30 weeks of gestation, 8–10 weeks
after birth, and 20 weeks after birth [144]. A comparison of postpartum-T2DM women with
non-diabetic women at 8–10 and 20 weeks postpartum showed H3K27 dimethylation was
lower in GDM cases by 50–60%. Additionally, GDM women with postpartum-T2DM had a
75% reduction in H3K4 dimethylation levels compared to those without T2DM 8–10 weeks
after giving birth [144].

3.3. MicroRNA (miRNA)

MicroRNA (miRNA) is a small, non-coding RNA containing 18–25 nucleotides [145–147].
miRNA can bind to the untranslated regions (UTRs) of mRNA transcript and prevent
its translation into protein, which gives it a critical role in gene regulation [147]. To date,
miRNA has been recognized to modulate several diseases, including GDM [148–151].
Moreover, it regulates GDM by influencing the production of insulin [148].

Using the rat insulinoma cell line (INS-1 cells), Feng et al. investigated the role and
function of miR-33a-5p in GDM [148]. The authors recruited 12 GDM subjects and 12 healthy
controls and evaluated their blood glucose levels and miR-33a-5p expression. In GDM cases,
hyperglycemia in addition to miR-33a-5p upregulation was observed [148]. To characterize
the functional role of miR-33a-5p upregulation, the proliferation rate of INS-1 cells, as well as
insulin production, were studied, and the results revealed a reduction in the cellular growth
rate and insulin levels [148]. In addition, miR-33a-5p inhibition was also studied in miR-
33a-5p knockdown INS-1 cells, and interestingly, insulin production and its concentration
increased in the presence of high and low glucose, supporting the involvement of miR-
33a-5p in GDM [148]. The study also suggested that miR-33a-5p targets ATP-binding
cassette transporter 1 (ABCA1) to regulate the function of INS-1 cells [148]. ABCA1 was
involved in HDL biosynthesis and reverse cholesterol transport [148]. It was also shown
that lnc-DANCR (differentiation antagonizing non-protein coding RNA) downregulates
miR-33a-5p, and that its overexpression disrupts the repression effect miR-33a-5p exhibits
on INS-1 cells [148].

In light of previous studies showing the role of miR-195-5p in insulin insensitivity reg-
ulation, with its overexpression in GDM women as compared to healthy controls [152,153],
Wang et al. explored miR-195-5p for its clinical performance and diagnostic value [153].
Serum samples were collected from GDM cases and healthy controls at week 25 of ges-
tation and screened for miR-195-5p expression by RT-PCR. GDM cases showed elevated
expression of miR-195-5p compared with healthy controls. In the analysis of clinical factors
between the two groups, BMI, fasting glucose, and the 1-h and 2-h plasma glucose were
all positively correlated with miR-195-5p expression. The receiver operating characteristic
curve (ROC) was used to determine the diagnostic value of miR-195-5p for GDM, and it
was found to serve as an exceptional biomarker for GDM diagnosis [153].

In a study of 21 GDM pregnant women and 10 healthy pregnant controls, miR-330-3p
was examined [154]. Plasma samples were analyzed for the expression of miRNAs miR330-
3p, miR483-5p, miR548-3p, and miR532-3p. The GDM group showed upregulation of the first
two miRNAs and downregulation of the last two miRNAs compared to controls [154]. An
interesting observation was that a subgroup of patients with GDM had different levels of
miR-330-3p, namely high GDM-miR-330 and low GDM-miR-330. In contrast to low-GDM-
miR-330, high-GDM-miR-330 had more destructive diabetic phenotypes. Furthermore,
miR-330-3p underwent a deep analysis to reveal its functional role in GDM and evaluate
some of its previously reported target genes [155,156]. This study confirmed that miR-
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330-3p targets CDC42 and E2F1, which are involved in the beta-cell function and insulin
production [154].

Tryggestad et al. showed how miRNA expression in human umbilical vein endothe-
lial cells (HUVECs) mediates the GDM effect on metabolic processes in offspring [157].
Researchers compared miRNA expression in HUVECs and the levels of target protein in
placentas of GDM infants with normal controls [157]. To identify miRNAs, microarray
profiling was performed in HUVECs, followed by in vitro transfection experiments and
in vivo experiments to detect their effects on target protein levels. As a result, seven miRNA
(miR-452-5p, miR-30c-5p, miR-126-3p, miR-let-7g-5p, miR-130b-3p, miR-148a-3p, and miR-let-
7a-5p) were identified, and their expression was increased in HUVECs exposed to GDM
compared to controls. The levels of the catalytic subunit of AMP-activated protein kinase
α1 (AMPKα1) were reduced in HUVECs transfected with miR-130b-3p and miR-148a-3p.
In placental tissues of infants of mothers with GDM, AMPKα1 was also reduced [157].
Tryggestad et al. suggest the decrease in AMPKα1 abundance due to miRNA overexpres-
sion may be responsible for the reduced fat oxidation in one-month-old babies, which can
lead to future metabolic disorders in the offspring [157,158]. Reduced AMPKα1 expression
also favors the appearance of T2DM and insulin resistance [157].

According to Joshi et al., GDM confers an effect on offspring mediated by gender-
specific alterations in miRNA and target-gene expression in the fetus [159]. miRNA was
analyzed in the amniotic fluid (AF) of 20 women with and 20 without GDM in the second
trimester [159]. The AF of women with GDM was found to be upregulated by miR-199a-3p,
miR-1268a, and miR-503-5p. Furthermore, female offspring were found to have higher
levels of miR-885-5p, miR-378a-3p, and miR-7-1-3p compared to male offspring, whose levels
of miR199a-3p were higher. Based on the mRNA targets of miRNAs, integrated pathway
analysis (IPA) uncovered 166 pathways, 32 in females and 88 in males. Cell growth,
inflammation, stem cell development, and cell cycle regulation appear to be affected by
these pathways. Additionally, liver-related toxicological pathways were identified using
IPA [159]. Since there are not enough GDM-exposed AF cohorts to validate the result,
human fetal hepatocytes (PHFHs) exposed to maternal obesity were investigated with the
hypothesis that enriched miRNAs found in AF of GDM women originate from the fetal
liver. [159]. De novo lipogenesis genes were upregulated in PHFHs, specifically in males,
based on miRNA and target gene analysis. In PHFHs of obesity-exposed female fetuses,
miR-885-5p, miR-199-3p, and miR-503-5p were upregulated, which correlated with decreased
expression of target genes ABCA1, INSR, and PAK4. Similarly, miR-1268s and miR-7-1-3p
were upregulated. In contrast, there were no significant differences in the expression of
miRNA in males, but there was an increased expression of their gene targets, ABCA1, PAK4,
and INSR. The study suggested the possible contribution of the identified miRNA to the
metabolic diseases in GDM- and obesity-exposed offspring in a sex-specific manner [159].

Houshmand-Oeregaard et al. studied the effect of maternal diabetes (including GDM)
on miR-15 expression in the skeletal muscles of exposed offspring, and hypothesized
that this could account for cardiometabolic disease in offspring exposed to maternal di-
abetes [160]. Previously, miR-15 was linked with insulin signaling pathways, impacting
insulin secretion and sensitivity [160–162]. Using biopsies of adult offspring (26–35 years
of age) of women with GDM (O-GDM), or T1DM during pregnancy (O-T1DM), miRNA
expression was measured and compared with that of offspring of healthy mothers during
pregnancy. Results showed upregulation of miR-15a and miR-15b in the skeletal muscles of
the O-GDM and O-T1DM groups compared to controls. In addition, the maternal 2-h OGTT
glucose level was found to be positively correlated with miR-15a expression in O-GDM,
with regard to confounders [160]. The researchers concluded that maternal diabetes during
pregnancy causes increased miR-15a and miR-15b expression in the skeletal muscles of
offspring, which may contribute to the pathogenesis of metabolic disorders [160].

Across 36 women with GDM and 80 controls, two hypotheses were explored: circu-
lating miRNA during early-mid-pregnancy is associated with GDM development, and
miRNA-GDM associations may differ depending on the pre-pregnancy BMI or the gender
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of the offspring [163]. Levels of 10 plasma miRNAs (miR-126-3p, -155-5p, -21-3p, -146b-5p,
-210-3p, -222-3p, -223-3p, -517-5p, -518a-3p, and 29a-3p) were measured for their expression
in subjects [163]. MiR-155-5p and miR-21-3p showed an association with GDM when the ges-
tational age was adjusted for. Furthermore, miR-21-3p and miR-210-3p correlated positively
with GDM only in obese women [163]. There were six miRNAs linked to GDM in women
carrying male fetuses: miR-155-5p, -21-3p, -146b-5p, -223-3p, -517-5p, and -29a-3p [163]. This
study suggests that circulating miRNA in early-mid-pregnancy is associated with GDM in
obese women and women expecting boys, which can help to detect at-risk mothers earlier
on [163].

Zhao et al. studied serum samples of pregnant women at 16–19 weeks and found that
women who developed GDM after the 24th–28th week had reduced miR29a, miR132, and
miR222 expression compared to women who did not develop GDM [164]. To understand
the functional role of miR-29a, they tested its inhibition, and found that knocking it down
can increase insulin-induced gene 1 (INSIG1), and thus, increase phosphoenolpyruvate
carboxy kinase2 (PCK2) in hepatic cell lines, which enable gluconeogenesis [164]. Other
studies found that miR222 regulates the cell cycle and miR-132 modifies hepatic metabolism
via P450, while miR-132 deregulation impairs trophoblast development [133].

Guan et al. investigated miR-21 in GDM patients and normal pregnancies, and revealed
that in GDM cases, miR-21 is downregulated while its target protein, PPAR-α, is upregulated,
which prevents cell proliferation and infiltration [165]. It was found in another study
that PPARα expression could also be regulated by miR-518d [166]. Qiu and colleagues
demonstrated the upregulation of miR-518d in plasma and placentas with GDM in vitro
and in vivo, along with the decreased expression of its target protein, PPARα [166]. This led
to glucose-level imbalance, triggering the nuclear transport process of the NF-κB signaling
pathway and phosphorylation of pathway-associated proteins, resulting in an inflammatory
response (TNF-α, IL-β, IL-6, and COX2) and progression of GDM [166].

Another study investigated the effect of GDM on HUVECs in GDM and healthy
pregnancies [167]. The attention was toward miR-101 and one of its many targets, enhancer
of zester homolog-2 (EZH2). EZH2 exists as isoforms (α and β), and it trimethylates lysine
27 of histone 3, leading to the inhibition of gene transcription. Assays were conducted
on HUVECs from GDM and healthy controls to determine the migration, apoptosis, and
Matrigel function. GDM-HUVECs had a (1) reduced functional capacity, (2) elevated miR-
101 expression, and (3) decreased EZH2-β levels and trimethylation of histone H3 on lysine
27. The healthy HUVECs were exposed to normal and high glucose concentrations for two
days (48 h) and their expression of miR-101 and EZH2 was evaluated. Cells exposed to
high glucose concentrations had the same results as GDM-exposed cells. Additionally, to
identify the mechanism by which EZH2 regulates miR-101, chromatin immunoprecipitation
followed by PCR was performed to identify how EZH2 governs miR-101 [167]. The results
revealed that both GDM and a high glucose concentration decreased EZH2 binding to the
miR-101 promoter regions in HUVECs [167]. This led to the conclusion that GDM results in
fetal endotheliopathy, which contributes to the appearance of cardiovascular diseases in
adulthood [167].

miRNA expression profiling was performed in tissues of placenta with GDM, which
revealed that miR-96 was the most downregulated in GDM samples [168]. Further analysis
showed that p21-activated kinase 1 (PAK1) was highly expressed in GDM samples [168].
Functional assays showed that overexpression of miR-96 in high or low glucose concentra-
tions enhances insulin secretion and pancreatic beta-cells’ viability, whereas overexpression
of PAK1 leads to cell apoptosis and impaired function of beta-cells, suggesting that miR-96
targets PAK1 and that miR-96 plays a role in the development of GDM through regulation
of PAK1 and beta-cell functions and viability [168].
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4. Molecular Pathways and Pathophysiology of GDM
4.1. Insulin Resistance

Insulin resistance is considered the initiating factor of GDM [169,170]. Studies have
confirmed that a low-grade systematic inflammation precedes insulin resistance and could
contribute to failure of β–cells; nevertheless, defective insulin signaling pathways in mater-
nal adipose and skeletal muscle tissues amplify insulin resistance [169].

Under normal conditions, the glucose regulation process commences when insulin
binds to its corresponding insulin receptor (IR), which results in auto-phosphorylation
of its tyrosine residues [171]. This allows IR to phosphorylate insulin receptor substrate
1 (IRS-1) on tyrosine residues, which further triggers the phosphorylation of downstream
molecules and induces the phosphatidylinositol 3-kinase (PI3K) signaling transduction
cascade [171,172]. PI3K, when activated, results in the conversion of phosphatidylinositol
4,5-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-triphosphate (PIP3). Consequently,
downstream 3-phosphoinositide dependent protein kinase1 (PDK1) is activated, which
subsequently activates, among other kinases, Akt, resulting in phosphorylation of its
substrate (AS160), which regulates translocation of glucose transporter 4 (GLUT4) to
the transmembrane and allows for glucose uptake and regulation of protein and lipid
metabolism [171,172] (Figure 4).
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Figure 4. PI3K/Akt signaling pathway. Insulin binds to the insulin receptor, causing autophos-
phorylation of its tyrosine residues. This causes phosphorylation of insulin receptor substrate-1
(IRS-1) on its tyrosine residues, which leads to the phosphorylation of the phosphatidylinositol
3-kinase (PI3K) signaling transduction cascade. PI3K catalyzes the phosphorylation of phosphatidyli-
nositol 4,5-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-triphosphate (PIP3). PIP3 activates
3-phosphoinositide-dependent protein kinase-1 (PDK-1) as a result, which in turn, phosphorylates
the downstream protein “AKT”, which phosphorylates its substrate AS160. AS160 regulates glucose
translocator 4 (GLUT4) and aids in its translocation to the plasma membrane, where it allows glucose
to flow.

In GDM pregnancies, decreased expression levels of the following insulin signaling
components: IRS1, PIP3, PIK3, and GLUT4, have been reported [173–175]. Furthermore,
alternative phosphorylation of IRS1 at serine residues was exhibited in GDM patients,
which prevents the PI3K signaling cascade from taking place, and thus, inhibits insulin
action [176]. The exact underlying mechanism through which disrupted insulin signaling
manifests is yet to be clear; however, emerging evidence is shedding light on inflammatory
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factors and oxidative stress, suggesting they mediate insulin resistance, leading to GDM
manifestation (Figure 5).
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diacylglycerols; PKC: protein kinase C; IRS1: insulin receptor substrate 1.

4.2. Inflammation

The placenta, skeletal muscle, and adipose tissues all contribute to GMD-accompanied
inflammation [170,176]. It was suggested that adipose tissues could be interacting with
the placenta and causing inflammation and insulin resistance [170]. Both types of tissues
exhibited high expression levels of IL-6, IL-8, TNF-α, resistin, and leptin [170,176]. Evi-
dence showed that IL-6 and TNF-α upregulate leptin, which amplifies inflammation as
leptin itself elevates IL-6 and TNF-α levels [170,177]. Furthermore, IL-6, TNF-α, and other
pro-inflammatory cytokines such as IL-1β, along with receptor proteins such as receptor
advanced glycation end-products (RAGE) and Toll-like receptor (TLR) work together and
activate the c-Jun-N-terminal kinase (JNK) and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB) pathways, which mediate insulin resistance [170,176]. TNF-
α was also reported to be elevated in skeletal muscle tissues, inducing the secretion of
IL-6, IL-8, and monocyte chemotactic protein 1 (MCP-1), which may induce insulin resis-
tance [176]. Adding to this, GDM cases were also found to exhibit high levels of chorionic
gonadotrophin (CG), a pro-inflammatory hormone produced by the placenta. Evidence
demonstrates that CG reduces GLUT4 functionality and disrupts glucose uptake [178].
This was suggested to be mediated by the activation of NF-kB and increased expression of
pro-inflammatory cytokines [178].
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4.2.1. NF-kB Pathways in Insulin Resistance

Generally, the nuclear factor of the kappa light-chain enhancer of activated B-cells
(NF-kB) is bound in the cytoplasm by (IκB-α), which is an inhibitory protein, rendering it
inactivated [176,179]. However, when pro-inflammatory cytokines such as resistin, TNF-α,
IL-6, and IL-1β are produced by the placenta, and/or adipocytes due to increased lipid
deposition, the degradation of IκBα is stimulated [170,176,179]. Consequently, NF-kB is
activated and translocated to the nucleus, where it is involved in transcription of genes
coding for inflammation and insulin resistance [176].

4.2.2. JNK Pathway in Insulin Resistance

Pro-inflammatory factors induce the activation of the JNK pathway, which phosphory-
lates the serine residues of IRS1. This will inhibit the phosphorylation of tyrosine residues
of the insulin receptor, and hence, prevent the PI3K signaling pathway [170,175].

4.3. Oxidative Stress

Oxidative stress manifests due to the failure of cellular antioxidants to sustain a
balance with the increased levels of reactive oxygen species (ROS) in the body [180]. In
normal pregnancies, a state of oxidative stress exists due to the high energy demand
and the presence of placenta, which is rich in mitochondria and generates high levels
of ROS [181]. In GDM, the stress is enhanced due to hyperglycemia, which disturbs the
electron transport chain in the mitochondria, leading to enhanced production of superoxide
anion radicals [182]. Oxidative stress in GDM could also be amplified by the activation of
the following pathways: protein kinase C (PKC), polyol, hexosamine, and nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase [182,183]. Moreover, oxidative stress
contributes to insulin resistance by activating JNK and NF-κB [175].

4.3.1. PKC

In response to hyperglycemia, the glycolysis pathway that is responsible for the
breakdown of glucose is upregulated. As a result, when fructose 1:6-bisphosphate (a
component of glycolysis pathway) breaks down into glyceraldehyde-3-phosphate (G3P),
accumulated levels of G3P elevate the production of diacylglycerol (DAG), which in turn,
activates PKC that stimulates NADPH oxidase and results in increased ROS [182,183].

4.3.2. Polyol Pathway

This metabolic pathway consists of two steps that mediate glucose conversion into
fructose. At first, glucose is reduced to sorbitol and NADPH is oxidized to NADP+, then
second, sorbitol, in turn, is oxidized to fructose, and NADH is made from NAD+. NADPH
is known to produce glutathione (GSH), which defends against ROS. In GDM, this pathway
is upregulated. NADPH thus becomes deficient, and consequently, so does glutathione
(GHS). Reduction of GHS production indicates the promotion of ROS [182,183].

4.3.3. Hexosamine

The hexosamine pathway is a subdivision of glycolysis that converts fructose-6-
phosphate to glucosamine-6-phosphate. The latter suppresses the glucose-6-phosphate
dehydrogenase (G6PD) enzyme, which is a key enzyme in the pentose phosphate pathway
(PPP). The PPP is parallel to glycolysis and generates NADPH [184]. In other words, in a
hyperglycemic environment, the hexosamine pathway is activated, resulting in suppression
of G6PD, which consequently reduces NADPH, and hence, GHS, which increases ROS and
oxidative stress [182,183].

4.3.4. NADPH Oxidase

NADPH oxidase is a group of enzymes that work toward generating hydrogen perox-
ide (H2O2) and superoxide (O−

2) via the transfer of electrons from NADPH to molecular
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oxygen. In the hyperglycemic state, NADPH oxidase is activated and oxidative stress
occurs as a result [182,183].

5. Predictive Biomarkers of GDM

Soluble factors secreted by impaired adipose tissues and placenta in GDM cases can
be easily detected and quantified, which means they can serve as GDM predictive markers
and enable prospective diagnosis [185]. Five types of first-trimester GDM predictors have
been reported: (a) blood glucose markers such as fasting glucose, post-load glucose, and
hemoglobin A1C; (b) insulin-resistance markers like fasting insulin and sex hormone-
binding globulin (SHBG); (c) inflammatory markers such as C-reactive protein and TNF-α;
(d) fat cell-derived markers including adiponectin and leptin; and (e) markers in placenta
such as placental exosome, placental growth factor (PLGF), and follistatin-like-3 [186]. Also,
according to Ma et al., plasma-glycated CD59 (pGCD59) exhibits great potential to serve
as an accurate biomarker for the recognition of GDM in early pregnancy and as a risk
assessment for delivering large for gestational age (LGA) infants [187]. Adding to this,
1,5-anhydroglucitol (1,5 AG) is also among the emerging GDM biomarkers [188].

In a recent review, it was suggested that visfatin, omentin, leptin, ficolin-3, and fetuin-
A could predict GDM during mid-stage pregnancy, whereas fetuin-B, fibroblast growth
factor 21 (FGF-21), and plasminogen activator inhibitor 1 (PAI1) could be predictive of
GDM in the third trimester of gestation [185].

6. Conclusions

GDM is a serious health problem that affects pregnant women around the world. This
can also affect the fetus and determine its health profile in adulthood, so early intervention
is crucial. The SNPs, genetic variants, and miRNAs studied here could serve as potential
biomarkers for GDM, but are highly influenced by the ethnicity and environment. We
suggest assessing the combination of molecular biomarkers with serum protein biomark-
ers to predict GDM in large-scale studies. Furthermore, as GDM exhibits heterogeneity,
personalized medicine and targeted treatment approaches should be considered once a
better understanding of GDM pathophysiology is acquired. Furthermore, most studies
are focusing on the western and eastern regions though MENA is expected to have the
second-highest increase in diabetes (GDM risk factor) by 2045 [8]. Therefore, we encourage
more research in this region. Beyond this, in agreement with Slupecka-Ziemilska et al.,
more studies on metabolic tissues are needed to understand the epigenetic changes in
metabolic organs [14].
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