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A machine learning framework 
for multi‑hazards modeling 
and mapping in a mountainous 
area
Saleh Yousefi1, Hamid Reza Pourghasemi2*, Sayed Naeim Emami1, Soheila Pouyan2, 
Saeedeh Eskandari3 & John P. Tiefenbacher4

This study sought to produce an accurate multi-hazard risk map for a mountainous region of Iran. The 
study area is in southwestern Iran. The region has experienced numerous extreme natural events in 
recent decades. This study models the probabilities of snow avalanches, landslides, wildfires, land 
subsidence, and floods using machine learning models that include support vector machine (SVM), 
boosted regression tree (BRT), and generalized linear model (GLM). Climatic, topographic, geological, 
social, and morphological factors were the main input variables used. The data were obtained from 
several sources. The accuracies of GLM, SVM, and functional discriminant analysis (FDA) models 
indicate that SVM is the most accurate for predicting landslides, land subsidence, and flood hazards 
in the study area. GLM is the best algorithm for wildfire mapping, and FDA is the most accurate model 
for predicting snow avalanche risk. The values of AUC (area under curve) for all five hazards using the 
best models are greater than 0.8, demonstrating that the model’s predictive abilities are acceptable. 
A machine learning approach can prove to be very useful tool for hazard management and disaster 
mitigation, particularly for multi-hazard modeling. The predictive maps produce valuable baselines 
for risk management in the study area, providing evidence to manage future human interaction with 
hazards.

Human interactions with natural extreme events, or hazards, are increasing globally1. Natural disasters have 
affected people and natural environments generating vast economic losses around the world. However, in some 
developed counties disasters have been decreasing since 19002,3.

Hazard is the probability of occurrence in a specified period and within a given area of a potentially damag-
ing of a given magnitude4,5. The definition incorporates the concepts of location (where?), time (when, or how 
frequently?) and magnitude (how large?). Total risk (R) means the expected number of lives lost, person injured, 
damage to property, or disruption of economic activity due to a particular natural phenomenon, and is therefore 
the product of specific risk (RS) and elements at risk (E)6. In addition, RS is the expected degree of loss due to 
a natural phenomenon.

Landscapes around the world are reflections of diverse natural processes. The probabilities of extreme natu-
ral events are typically greater in more natural areas and are, in fact, extensions of natural systems. Exposure 
of people to these extreme natural processes could be reduced and limited if predictive models based on new 
approaches and deeper knowledge of effective factors were employed7. Mountainous areas are commonly sites 
of snow avalanches8,9, landslides4,10, floods11,12, mudflows13, ice avalanches14, soil erosion15–17, rock falls18, and 
wildfires19–24.

Most studies focus on a single hazard, even when there are multiple hazardous processes affecting the same 
landscapes8,25–30. However, hazards sometimes interact with each other. Sometimes, the mitigation of one 
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hazardous process may intensify another’s frequency, duration, distribution, or intensity31. Studying natural 
hazards separately, especially in mountainous regions, may produce miscalculations of risk (or the probability 
of occurrence of the specific extreme natural event) in those areas. Multi-hazard risk assessment (the collective 
likelihood of experiencing an extreme natural event among a set of hazards) could be useful for controlling the 
interactions of hazards32.

Snow avalanches, landslides, wildfires, land subsidence, and floods are the most important risks in many 
mountainous regions of the world8,18,33,34. These five hazards can impact and interrupt systems (transportation, 
electrical power, water provisioning systems, and others), processes (trade, travel, extraction, shipping), places 
(residential areas, commercial districts, industrial areas, recreational sites), and people in risk-prone areas33,34. 
Multi-hazard risk mapping is an important need for land use management at provincial and national scales4,33–37. 
Multi-hazard mapping is receiving increasing attention1,7,38–45. Multi-hazard analysis has been conducted in 
mountainous regions of Iceland, New Zealand, Iran, and Tajikistan. In Iceland, a general method was developed 
for analysis of snow avalanche, rock-fall, and debris-flow hazards7. Schmidt et al.46 developed an approach for 
multi-risk modeling in New Zealand, creating an adaptable software prototype that allows researchers to ‘plug in” 
natural processes of interest. Pourghasemi et al.45 undertook a multi-hazard risk assessment based on machine 
learning methods in Fars Province, Iran. They considered floods, forest fires, and landslides in their study area. 
In another study, multiple hazards (rockslides, ice avalanches, periglacial debris flows, and lake-outburst floods) 
were assessed in a mountainous region of Tajikistan to develop a comprehensive regional-scale map of hazards 
for the study area47.

Though these studies exemplify multi-hazard mapping, a comprehensive study on multi-hazard assessment 
by machine learning models is lacking for mountainous areas. The development of multi-hazard risk mapping 
approaches using new methods is critical for effective management of hazards in some regions. Iran, in fact, 
is a country that has an extensive array of hazards (flood, landslide, earthquake, drought, dust storm, soil ero-
sion, snow avalanche, etc.) due to the diverse geomorphological and climatic zones28,12,48–50. Snow avalanches, 
landslides, subsidence, wildfires, and floods occur annually in the Zagros and Alborz mountain chains in Iran; 
people are more numerous in these regions than in other parts of the country51–54. In this study, five major natu-
ral events (flood, landslides, land subsidence, snow avalanches, and wildfires) in Chaharmahal and Bakhtiari 
Province provide the basis for a multi-hazard risk assessment map. The main objective is to evaluate machine 
learning models as useful, universal, and accurate multi-hazard mapping products that can be applied by land 
use managers and planners. Based on a review of the literature, we have selected a set of machine learning models 
including; generalized linear model (GLM)55–57, random forest (RF)17,58,59, a support vector machine (SVM)60–62, 
boosted regression trees (BRT)63–65, mixture discriminate analysis (MDA)66,56, multivariate adaptive regression 
splines (MARS)67,56,68, and functional discriminant analysis (FDA)17,66 for multi-hazard mapping. Finally, based 
on the accuracies of the models, available data, and the sources of models, the SVM, GLM and FDA algorithms 
were used to map hazards in the study area.

Study area.  Chaharmahal and Bakhtiari Province is in southwestern Iran (Fig. 1). It is defined by a rectangle 
with sides at 31° 9′ and 32° 38′ N and 49°30′ and 51° 26′ E. The province contains ten counties (Ardal, Borojen, 
Shahrekurd, Farsan, Lordegan, Kiar, Khanmirza, Kohhrang, Ben and Saman) and covers an area of 16,553 km2 
(1% of Iran). Elevation ranges from 778 m to 4,203 m above sea level and the mean elevation in the province is 
2,153 m, making it the highest province in Iran. The population of the province is 947,000. Floods, mass move-
ments, land subsidence, wildfires, and snow avalanches occur here regularly69.

Methodology.  This study involved three main activities (Fig.  2): (1) Collection of extreme event data 
through extensive field work and assessments of government reports over a 42-year period (1977–2019); (2) 
Identification of the most important effective factors for each hazard through a literature review; (3) Hazard 
modeling using a generalized linear model (GLM), a support vector machine (SVM) model, and a functional 
discriminant analysis (FDA) model and construction of multi-hazard risk maps (MHRM) using the models that 
were most accurate for each hazard.

Hazards data inventory.  This study identified 3,455-point locations signifying the sites of five types of 
extreme hazardous events that occurred over a 42-year period in the Chaharmahal and Bakhtiari province 
through field surveys and examination of scientific reports (Fig. 3). These events included 246 snow avalanches, 
97 wildfires, 346 floods, 868 landslides, and 1902 cases of land subsidence. The machine learning models in this 
study required data from both hazard and non-hazard locations to conduct modeling. Equal numbers of non-
hazard locations were randomly sampled to balance the hazard locations21–23,66,70. The samples were divided into 
two groups for training (70%) and for validation (30%)21,23,24.

Data collection of the effective factors for five hazards.  Based on both a review of previous studies and a com-
pilation of experts’ suggestions, effective factors for each hazard were measured and mapped in raster layers of 
10 × 10 m pixel size in ArcGIS 10.4.2. The effective factors (Table 1) fell into five categories: topography (DEM, 
slope, topographic wetness index, plan curvature, aspect, and convergence index), geology (lithology and dis-
tance from a fault), hydrology and climatology (precipitation, distance from a river, groundwater depth, drain-
age density, absolute minimum temperature, wind exposure index, absolute maximum temperature, and snow 
depth), society (distance from a road and distance from an urban areas), and vegetation/land cover (land use 
and NDVI). The topographic factors were extracted from 1:25,000 topographic maps obtained from the Iranian 
National Cartographic Center. The geological factors were acquired from a geologic map at a scale of 1:100,000, 
acquired from the Iranian Geology Organization. Hydrological and climatic factors were measured using data 
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from 28 meteorological stations, digital stream layers, and 895 piezometric wells. These data were obtained from 
the Regional Water Company of Chaharmahal and Bakhtiari. The social factors were extracted from road net-
works and residential areas mapped on 1:25,000 topographic maps. The vegetation factors were discerned from 
Landsat 8 OLI images from June 2018. In addition, to evaluation of the importance of the effective factors for 
each hazard, specific factors were selected for modeling specific hazards: 12 for wildfires, 8 for snow avalanches, 
12 for landslides, 12 for land subsidence, and 12 for floods.

Application of machine learning models.  Three state-of-the-art machine learning models were applied in pre-
sent study to construct the hazard risk maps. Each is explained below.

Functional discriminant analysis (FDA).  FDA creates a statistical method to analyze effective factors. It can 
generally be said that models based on discrimination do unsupervised work so that each class is subdivided into 
its own subclass; each subclass is given a special value71,72. The FDA model is a special combination of regression 

Figure 1.   Location of the study area of Chaharmahal and Bakhtiari Province, Iran.
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models that implements a hidden process for each class in the modeling process, especially when conducting 
complex class modelin73,74. The FDA model is similar to other statistical methods, so it can perform just as well75. 
But, since the FDA model is nonparametric, it has been used in a wide range of fields76. The FDA model is new 
to analyses of data, but it has been convenient to use it as a replacement for functions. Therefore, more attention 
should be paid to this method77.

Generalized linear model (GLM).  The GLM is regression-based so it can reveal differences between variables78. 
The GLM is created from several linear models, and it constructs a best regression model that can predict mul-
tiple events79–81. Some researchers have reported that GLM is most often used for spatial modeling55,82–85. In 
general, the GLM uses multiple regression to increase accuracy and quality of the results because it can establish 
a very clear relationship between the dependent and independent variables86.

Support vector machine (SVM).  SVM uses both classification and regression, based on the concept of con-
trolled learning. Results have shown that it generates the smallest clustering errors87. Since this model’s approach 
is based on statistical learning theory, it reduces errors and identifies the optimal response88. SVM indicates per-
formance estimation by answering a convex optimization problem89,90. The SVM model provides a very impor-
tant advantage: it identifies and analyzes layers effectively91.

Multi‑hazards risk mapping.  Snow-avalanche hazard (SAH), landslide hazard (LH), wildfire hazard (WFH), 
land-subsidence hazard (LSH), and flood hazard (FH) maps were created from the effective factors with the 
three machine learning models (Fig. 4). First, susceptibility to each hazard was created according to the depend-
ent variables (locations of landslides, floods, avalanches, etc.) and some effective factors (the independent 
variables) using machine learning techniques. Next, the models with the highest accuracies, determined from 
ROC-AUC values, were selected and used for multi-hazard mapping. These models were integrated using a 
Boolean algorithm based on four classes for each hazard—low, moderate, high, and very high. A review of the 
literature44,45 indicated that susceptibility classes of low and moderate were low hazard (0) conditions and high 
and very high were deemed high hazard (1) conditions. To facilitate integration, the four-class maps produced 
for each hazard by the best models (from among the three algorithms) were reassigned these two classes: 0 and 
1. The maps of the five natural events (flood, landslides, land subsidence, snow avalanches, and wildfires) were 
combined to create an integrated multi-hazard (MH) map (i.e., MH = SAH + LH + LSH + WFH + FH) in ArcGIS 
and the result was reclassified (Fig. 5).

Figure 2.   Flowchart of the study methodology.
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Accuracy assessment.  The accuracy of each of the MH maps was assessed with the training group data (for 
the goodness-of-fit test) and the validation group data (for the predictive-performance test) using area under 
the curve (AUC). AUC is a scalar measure that is a threshold-independent method92,93. An area of 1 represents 
perfect classification, while an area of 0.5 or less indicates poor classification of locations by a model45,94–96. In 
the present study, to produce multi-hazard susceptibility maps of snow avalanches, land subsidence, wildfires, 

Figure 3.   Distribution of the occurrence of the five hazards between 1977 and 2019 in Chaharmahal and 
Bakhtiari Province (a), and images of the five natural extreme events in the study area (b) taken by Saleh Yousefi 
(First author).
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landslides, and flood by GLM, FDA, and SVM models a special package was applied in the R software version R 
3.5.3. The packages used were "svm"60,97, "glm"55,63, and "fda"17,66.

Results
Accuracy assessments of the hazard maps using AUC​.  Assessing the accuracies of the three machine 
learning models (Table 2) demonstrated that FDA (for SAH), SVM (LSH), GLM (WH), SVM (LH), and SVM 
(FH) provided the most accurate models. The values of AUC these five models were all greater than 0.8, indicat-
ing strong classification success and confirmed that the models were acceptably accurate.

Integrated multi‑hazard (MH) map.  The results of the MH map show that the hazards do not overlap 
(Table 3 and Fig. 5). More than 1/6th (16.51%) of the province is free of all five hazards. Five sixths (83.49%) of 
Chaharmahal and Bakhtiari Province experiences at least one of the hazards.

Discussion
Arid and semi-arid regions of the world experience extreme natural events that threaten the structures and daily 
functions of localities98. Natural hazards can cause a great deal of economic damages99, interruptions, injuries, 
and loss of life. Mountainous regions are among the most disaster-prone parts of the world because of their 
geological, climatological, and hydrological characteristics100,101.

An effective way to begin to manage natural disasters is to map hazards. The information generated can be 
very useful for effective planning and management of people and activities. Most natural hazards studies have 
focused on single hazards. Single-hazard approaches focus on hazards as independent phenomena, ignoring 
the domain of relationships between the hazards32 and this may lead to miscalculations of risk102–107. A greater 
emphasis on the interactions between and combinations of hazards’ risks is needed102. Studies that have focused 
on multi-hazard approaches have concluded that there is collectively greater risk from the interactions of multiple 
hazards than is yielded by simply combining the results of single-hazard studies. The increasing use of GIS in 
natural resources management and the introduction of various algebraic, statistical, and empirical methods have 
enabled better assessments of natural hazards. The methods have been developed in different parts of the world 
based on different conditions and with different amounts of available data, but they have advanced the modeling 
process and have revealed the spatial distributions of the natural hazards in many study areas.

Several methods have been used to model and map different natural hazards. For example, flood risk has 
been assessed using support vector machine (SVM), frequency ratio (FR), multivariate statistical analysis, weight 
of evidence (WoE), analytic hierarchy process (AHP), and decision trees (DTs). The analytic hierarchy pro-
cess (AHP) method is one of the most common ways to solve problems associated with the use of multiple 

Table 1.   The effective factors for susceptibility mapping of five hazards.

Effective factors Hazard

Full name Abbreviation Flood (F) Wildfire (WF) Snow avalanche (SA) Landslide (L) Land subsidence (LSu)

Rainfall R * *

Digital elevation model DEM * * * * *

Land use LU * * * *

Lithology Lit * * *

Fault distance FD * *

Slope S * * * * *

River distance RD * * * *

Groundwater level GL *

Normalized difference 
vegetation index NDVI * * *

Road distance RoD * * * *

Topographic wetness 
index TWI * * * *

Plan curvature PC * * * *

Aspect A * * * * *

Drainage density DD * *

Convergence Index CI *

Minimum temperature MinT *

Maximum temperature MaxT *

Urban area distance UD *

Wind exposition index WEI * *

Terrain ruggedness 
index TRI *

Snow depth SD *
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variables108,109 and it is often used in hazard assessments110. However, mapping processes are very sensitive to 
changes in expert’s judgments and to changes in weighting the input variables at the assessment scale and are 
significant disadvantages109. The most popular methods used in landslide risk assessments are neuro-fuzzy 
inference systems111, logistic regression models, analytic hierarchy process, statistical indices112, vector based 
methods113, and artificial neural networks114. For wildfire risk assessment, probabilistic models and maximum 
entropy models115,116, neural network (NN)117–119, fuzzy logic 120–122, logistic regression (LR)21,123–125, decision 

Figure 4.   The risk maps of the five hazards created from the three machine learning models for Chahaharmahal 
and Bakhtiari Province.
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tree (DT)126, the random forest (RF)127–129, and support vector machine (SVM)24,130 have been used. Numerous 
methods have also been used for mapping snow avalanche risk: multi-criteria decision making approaches131–133, 
fuzzy–frequency ratio models134–136, numerical methods, dynamic models137, and remote sensing-based 
methods138,139. Though remote sensing can provide useful information about snow avalanches, the complex 
relationships between snow avalanches and geomorphometric variables are often overlooked, and most risk 
assessments are based on expert opinion. And prediction of land subsidence risk has used methods like artificial 
neural networks140, frequency ratio141, logistic regression142, and differential radar interferometry143.

Figure 5.   The multi-hazard risk map based on a combination of the five best hazard risk maps for Chaharmahal 
and Bakhtiari Province (*L Landslide, LSu Land subsidence, F Flood, WF Wildfire, SA Snow avalanche).
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Machine learning is another modeling technique that is increasingly used to understand the complex rela-
tionships between a wide range of independent variables like meteorological factors (winds, air pressure, storm 
surge, and floods) and a dependent variable144. Therefore, these algorithms can aid forecasting of multiple hazards 
simultaneously, where the environmental conditions vary considerably across a landscape145.

In this study, we assessed five hazards in a mountainous region of Iran. To comprehensively assess extreme 
natural events in the study area, multi-hazard mapping was conducted using three machine learning models. 
Evaluation of the accuracies of the SVM, GLM and FDA models showed that SVM is most accurate when pre-
dicting landslide, land subsidence, and flood risks. GLM is most accurate for wildfire risk. And FDA is most 
accurate for snow-avalanche risk prediciton (Table 2). The AUCs of the five best models were over 0.8, validat-
ing their strong performances146 and demonstrating that they (more or less) accurately predicted the patterns 
of the hazards in the study area. The SVM method also produced very good results for mapping landslide, land 
subsidence, and flood risks. Li et al.147 applied SVM with univariate and multivariate statistical methods to 
investigate land subsidence. Their results showed that SVM is more accurate than other algorithms they tested. 
Others have confirmed the high performance of SVM for similar purposes24,131,148,149. Studies of landslide risk 
have also revealed that highly accurate predictions were made with SVM112,150. The strong capacity of SVM to 

Table 2.   AUC values for three machine learning models in mapping natural hazards.

Model

Hazard

Flood (F) Wildfire (WF) Snow avalanche (SA) Landslide (L) Land subsidence (LSu)

SVM 0.975 0.835 0.894 0.841 0.943

FDA 0.962 0.825 0.912 0.779 0.920

GLM 0.965 0.837 0.909 0.777 0.923

Table 3.   Areas of different classes of various hazards.

Multi-hazard Area (ha) Percent (%)

No hazard 269,093.34 16.511

SA 186,049.44 11.416

WF 180,470.97 11.074

WF + L 160,292.88 9.835

WF + F + LSu 136,861.83 8.398

L 133,069.95 8.165

WF + F + L 114,211.8 7.008

WF + LSu 101,536.92 6.230

SA + L 84,893.76 5.209

F + L 65,183.67 4.000

WF + F 55,212.84 3.388

F 45,086.31 2.766

WF + F + L + LSu 22,783.14 1.398

LSu 15,398.73 0.945

WF + L + LSu 12,496.86 0.767

SA + F 12,462.66 0.765

F + LSu 10,308.87 0.633

SA + F + L 7,746.75 0.475

SA + WF + L 6,630.3 0.407

SA + WF 3,918.69 0.240

F + L + LSu 2,751.12 0.169

L + LSu 1,112.31 0.068

SA + WF + F + L 1,084.86 0.067

SA + WF + F 353.25 0.022

SA + F + LSu 273.78 0.017

SA + F + L + LSu 140.67 0.009

SA + LSu 118.53 0.007

SA + WF + F + L 85.77 0.005

SA + L + LSu 48.51 0.003

SA + WF + L + LSu 27.72 0.002

SA + WF + LSu 21.78 0.001
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predict flood risk has also been demonstrated151–153. GLM has been used to predict wildfire risk123,154–158. GLMs 
have proven to acceptably predict wildfire risks in California155,159 and Spain156,160.

The MH risk map was developed by combining the results produced by the SVM, GLM and FDA approaches. 
Results demonstrate that using the best machine learning models to predict several hazards yields useful infor-
mation about their interactions. Multi-hazard relationships are very dependent upon the scale of analysis and 
the specific sets of hazards. Understanding the relationships and interactions between multiple hazards is an 
important challenge103. This study begins to fill this gap. The results show that all five hazards are absent from 
16.5% of the study area. The rest of the study area, 83.5%, is likely to be impacted by at least one of the hazards, 
however. Pourghasemi et al.54 mapped both the individual and collective risks posed by three hazards (floods, 
forest fires, and landslides) in a multi-hazard study using machine learning techniques. Others have conducted 
multi-hazard risk assessments, but separately for each risk46,47,161.

Conclusions
As mountainous areas are challenged with a wide array of natural hazards and sites within them are prone to 
exposures to multiple natural hazards, this study evaluated the spatial distribution of risk from multiple hazards 
in Chaharmahal and Bakhtiari Province, Iran, using three machine learning models (SVM, GLM and FDA). 
Identification of high-risk areas is the most important issue for most decision makers and natural resource 
managers. In this regard, we presented a multi-hazard risk map for five natural hazards (floods, landslides, land 
subsidence, snow avalanches, and forest fires) in the study area. Evaluation of the accuracies of the maps produced 
by the SVM, GLM, and FDA models showed that SVM is most accurate model for predicting landslide, land 
subsidence, and flood risks. GLM is best for wildfire risk prediction. And FDA is best for snow avalanche risk 
assessment in the region. The results indicate that 16.5% of the study area is not likely to experience any of the 
five natural hazards, but the rest of province (83.5%) is at risk from exposure to at least one of the five (or several 
or perhaps all): 11.41% is possesses snow avalanche risk, 11.07% wildfire risk, and 9.83% landslide risk. Each type 
of machine learning method achieved acceptable levels of accuracy in their predictions. Therefore, these results 
can be regarded with high confidence and may be used in future studies to examine the spatial distributions of 
risks from multiple hazards and to provide useful information for proactive management and hazard mitigation.
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