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Abstract

The objective differentiation of facets of cellular metabolism is important for several clinical

applications, including accurate definition of tumour boundaries and targeted wound

debridement. To this end, spectral biomarkers to differentiate live and necrotic/apoptotic

cells have been defined using in vitro methods. The delineation of different cellular states

using spectroscopic methods is difficult due to the complex nature of these biological pro-

cesses. Sophisticated, objective classification methods will therefore be important for such

differentiation. In this study, spectral data from healthy/traumatised cell samples using

hyperspectral imaging between 2500–3500 nm were collected using a portable prototype

device. Machine learning algorithms, in the form of clustering, have been performed on a

variety of pre-processing data types including ‘raw’ unprocessed, smoothed resampling,

background subtracted and spectral derivative. The resulting clusters were utilised as a

diagnostic tool for the assessment of cellular health and quantified using both sensitivity and

specificity to compare the different analysis methods. The raw data exhibited differences for

one of the three different trauma types applied, although unable to accurately cluster all the

traumatised samples due to signal contamination from the chemical insult. The background

subtracted and smoothed data sets reduced the accuracy further, due to the apparent

removal of key spectral features which exhibit cellular health. However, the spectral deriva-

tive data-types significantly improved the accuracy of clustering compared to other data

types, with both sensitivity and specificity for the background subtracted data set being

>94% highlighting its utility to account for unknown signal contamination while maintaining

important cellular spectral features.
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Introduction

Infrared (IR) hyperspectral imaging and spectroscopy methods have been used widely in clini-

cal applications for a variety of medical problems since the 1990s [1]. One of the most common

areas for this technology is within the field of wound healing and diagnostics, covering a range

of medical applications including diabetic foot ulcers [2] and burns [3]. These methods detect

spectral information from the underlying biology and assess differences between healthy and

non-healthy tissue and their cellular constituents. Despite these advances, many of such meth-

ods are still focused upon the Near Infrared (NIR) optical window, while there has been some

insight into the short-wave (SWIR) region, incorporating 900 to 2500 nm [4], where comple-

mentary information can assist any assessment or diagnosis. This has also been extended fur-

ther into the mid-wave (MWIR) region with both IR and Raman microspectroscopy [5], but

little work has been done using macro tissue or cellular models.

Spectroscopic imaging in the extended IR region, beyond the conventional NIR methods

used, requires additional considerations for both sample preparation and imaging methodol-

ogy. Due to the high absorption of water within the SWIR/MWIR region, biological samples

are often chemically ‘fixed’ to remove the unwanted water signature [6], however this process

can also remove significant spectral features for accurate classification [7]. Spectroscopic

images of these fixed samples are collected using Atomic Force Microscopy (AFM), requiring

the sample to be placed in a vacuum, further reducing the availability of imaging within this

region in most studies. Despite these challenges, imaging further into the IR window could

potentially provide complementary information about specific spectral features such as lipids,

collagen and other cellular constituents for clinical diagnostics, alongside current imaging

modalities including spatial frequency domain imaging (SFDI) [8], laser doppler perfusion

imaging (LDPI) [9] and thermography [10], which are more readily available.

Most methods used to date investigate ex vivo tissue samples only, which contain multiple

signals from bulk tissue, such as cells, blood, and other tissue constituents. These mixed signals

are difficult to separate, prompting work towards in vivo methods of individual elements con-

tributing to detectable spectral features. Live cell imaging methods have been advancing in the

last two decades, through the use of microspectroscopy and Raman spectroscopy [11, 12]. Ini-

tially these required the use of high-power IR sources, such as synchrotron beams, to resolve

the spectra from cellular constituents. These also often require specialised cell preparations,

including fixing and drying of samples, which have been shown to exhibit a loss in cellular

content, effecting the resulting IR spectra and detectable contrast [13]. More recently, the

work has moved towards custom imaging systems for live cell analysis, such as the use of nar-

row viewing windows and IR transparent housing [14]. It has been shown that in both the

SWIR and MWIR, spectral regions of interest corresponding to lipids (1200, 1400, 1700, and

3333–3533 nm), collagen (1200 and 1500 nm) and other cellular constituents are detectable

[12, 15, 16]. These studies highlight the need for further inspection into the IR region, with the

need to target several different wavelengths of interest across a broad spectral range using a

hyperspectral approach that will maximise signal contrast and features, while minimizing sig-

nal contamination from its local sampling environment.

Compared to the methods discussed, hyperspectral methods utilise up to three orders of

magnitude more wavelengths, vastly increasing the size and dimensionality of the resulting

data-set. This subsequently creates an additional need for intelligent data analysis to produce

both reliable and easy-to-interpret results for the clinical setting. In traditional clinical imag-

ing, simple statistics such as mean values, standard deviation and range, of simple detectable

characteristics such as intensity of each pixel within a single image, or the differences across a

temporal data-set are used to aid clinical diagnosis. However, for larger dimensional data-sets
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this provides a challenge with the increased number of variables and dependability of these val-

ues across samples, imaging environment and sample preparation, i.e. signal contamination.

The use of machine learning (ML) in medical applications is not new [17], although the major-

ity of these methods use supervised learning approaches. These methods require large data-

sets to allow a suitable number for training/testing, which are not often available within pre-

clinical studies, where they are developed and implemented. Unsupervised methods, such as

clustering, alongside dimensionality reduction methods, offers an alternative which has been

implemented in this work. Although it can be argued that unsupervised learning would in

practice requires a much larger set of data, it has been applied to other works [18] and has

been implemented for this preliminary study. Live cell hyperspectral imaging for assessing

wound healing, with the use of machine learning, has been previously investigated within the

visible-NIR range. 3D-cell cultures were grown, and trauma induced via a biopsy punch

method, with clustering methods applied as no a-priori information for each class was avail-

able [19].

k-means clustering provides a method in which a pre-defined number of clusters can be

used. For a binary diagnostic problem of healthy versus death as used for this study, k = 2,

where k is the number of required classes or clusters, creating a two-cluster problem designed

for the separation of the two different cell states. k-means is often used in medical image pro-

cessing to provide an improvement in image segmentation of different tissue types or classes,

where ML tool is specifically applied to increase the accuracy of segmentation, as well as the

total throughput of images as compared to human image analysis [20]. k-means has also been

applied in the field of spectral analysis for clinical diagnosis, with endoscopic imaging produc-

ing a large spectral data-set, which were sampled and analysed using a pre-determined number

of clusters to represent the different clinical diagnoses [21]. These applications, although just

an example and not completely covering the vast amount of work undertaken in this field,

highlight the ability of k-means clustering as an intuitive, controllable, and simple method for

grouping similar data for diagnostic purposes.

Principal Component Analysis (PCA) is an additional tool used for high dimensional data

to aid in the clustering/classification process. PCA reduces the dimensionality of the data by

re-representing the information onto a set of principal components that highlight the largest

variability within the data-set [22]. PCA is often used in Raman spectroscopy applications, for

example, where spectral information is collected from different biological systems, such as sin-

gle cells or tissue samples, with many high dimensional spectra collected from each system.

PCA aids in the extraction of the differences between the obtained spectra, whilst reducing the

dimensionality, aiding further with the post-processing computational time [23] and is com-

monly applied in spectral analysis prior to k-means clustering [24], whilst it has also been pre-

viously applied to hyperspectral imaging using additional clustering methods [25].

All the classification methods outlined above utilise data from an imaging modality which

typically undergoes pre-processing to improve classification output, such as background noise

removal, spectra/temporal smoothing, bias removal, and averaging. Such data pre-processing

converts raw measured data to different ‘data-types’ typically containing different information

content. The use and effect of such data-types and utilisation of any classification algorithm,

then itself becomes an important issue to better understand the information content and fea-

ture selection for classification.

Here a combination of the use of IR hyperspectral imaging within the SWIR/MWIR win-

dow is presented alongside the use of unsupervised machine learning methods for diagnostics

analysis. The combination of these two techniques, which combines the imaging method’s

ability to detect subtle spectral differences between cell culture models and the ability of ML to

identify and classify these, produces a novel approach for the detection and diagnosis of
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cellular health. A live cell model was created, containing cells of relevance to wound biology

and with facets that permitted interrogation in the mid-IR range and cell death induced. Spec-

tral data was collected from live and dead/dying cells with the aim of determining spectral dif-

ferences and grouping the two different cell states. A total of 72 samples were collected, with

an equal split between healthy and treated cell cultures. k-means clustering and PCA were

applied to different data-types, to determine which method provides the most accurate and

reliable diagnostic tool. The aim of this work is to provide a binary classification tool for the

diagnosis of the state of cell health. The sensitivity and specificity of the obtained clusters for

each data-type and associated algorithm is reported to allow for a quantifiable comparison of

the diagnostics tool’s ability to accurately diagnose the two different cellular health states.

Materials and methods

Cell culture

Human dermal fibroblast (HDFa, Gibco) cells were cultured in 12-well Costar Transwell

inserts with a polyethylene terephthalate (PET) membrane (Corning) in Medium 106 supple-

mented with Low serum growth supplement (all Gibco) at liquid-liquid interface (LLI) (4

inserts/plate). Growth medium was removed from inside the insert and reduced to 0.5 mL

below the insert to achieve air-liquid interface (ALI), immediately before infrared imaging.

Conditions for inducing necrosis and apoptosis were derived from the literature and con-

firmed for this cell line [26, 27]. Cells were seeded at 1 x 105 cells/cm2 and incubated at 37˚C,

5% CO2 overnight for at least 90% confluency the following morning. Necrosis was induced

using 0.01% (v/v) Triton X-100 (TX100, Sigma) for 1 hr in serum free media (SFM) or 5 mM

H2O2 in DMEM (Sigma) for 4 hr. Apoptosis was induced using 100 μM H2O2 for 4 hr. Cell

death was confirmed by staining with Calcein AM (Invitrogen) and propidium iodide

(Sigma), or Apoptosis/Necrosis Detection Kit (Abcam).

For each experimental data set collected (biological replicate), two technical replicates were

completed each for untreated, healthy controls, and treated samples. This imaging set-up was

repeated for each of the different trauma types applied. A total of 18 repeats were collected

across the three different trauma protocols, creating 72 (18 x 4) insert measurements of 36

healthy and 36 traumatised cell cultures.

Cell staining

To confirm the apoptosis or necrosis of the cells following treatment, cells were stained with

culture medium containing 2ug/ml Calcein AM and 2 μg/ml propidium Iodide, or the Apo-

ptosis/Necrosis Detection Kit according to manufacturer’s protocol. Cells were visualised

using an ImageXpress Pico cell imager (Molecular Devices).

Fig 1 shows an example of the staining images collected for both the Triton X-100 and 5

mM H2O2 Apoptosis/Necrosis Detection Kit. The green CAM stain highlights the live cells,

while the red PI stain the necrotic. Theses stains, along with those for apoptosis, confirmed the

correct levels of chemical trauma were applied for the desired cellular health outcome. This

further highlights the importance of an objective method for classification, with only estimates

of the quantification of cellular death possible, along with the importance of non-invasive

imaging methods suitable for in vivo techniques, in contrast to the cell straining utilised here.

Infrared imager

Hyperspectral images of the 12-well plates for the trauma study were collected using a proto-

type negative contrast imaging device (NCI) [28]. This NCI device, developed by M Squared
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Lasers (Glasgow, UK), is a reflectance imaging device that collects hyperspectral images from

illumination in both the short and mid-wave infrared regions (SWIR/MWIR) and has been

used to identify spectral differences between wound biopsies, with seven human samples being

imaged to predict their wound healing outcome [29].

Fig 1. Necrotic cell staining. Confirmation of cellular trauma was achieved through the staining of treated cells. Necrotic staining was achieved using an

Apoptosis/Necrosis Detection Kit (Abcam), with CAM stain (green) and PI stain (red) for the live/necrotic cells, respectively. These staining images

show both the Triton X-100 and higher concentration of H2O2 produced>99% necrosis within the culture.

https://doi.org/10.1371/journal.pone.0238647.g001
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Fig 2 shows the system set-up for imaging of the cell inserts. The NCI device (1) outputs

light at discrete wavelengths which then propagates to a gold coated steering mirror (2). This

mirror reflects the light into the custom-built imaging housing (3), which maintains the sterile

environment for the cell culture. The housing has a built-in calcium fluoride (CaF2) viewing

window (4), which is transparent within the wavelength region used for this study. Preliminary

testing of reflectance phantoms within the custom-built housing was performed to assess the

effects of any stray light and ensure the correct alignment of the gold-coated steering mirror

and CaF2 viewing window.

Fig 3 shows a schematic representation of the same set up, including the inner workings of

the NCI, used to collect the hyperspectral data for each sample. All elements housed within the

NCI device are contained by the dashed box, and a full technical description has been previ-

ously published [29]. The Intracavity Optical Parametric Oscillator (ICOPO) provides with

illumination in the MWIR range used for this study (1). The outgoing beam is directed using

an internal gold coated steering mirror (2) towards the two galvanometer mirrors controlling

the y-axis (3) and x-axis (4) before leaving the NCI housing. The beam then propagates

towards the external gold coated steering mirror (5) which directs the beam vertically towards

the sample. The custom-built sterile chamber (6) contains a CaF2 IR transparent optical win-

dow (7) allowing the transmission of the beam to the sample (8). The reflected light then trav-

els back to the NCI system via the external steering mirror (5) and is directed towards the

detection optics with the two galvanometers (4) and (3) internally. A CaF2 focusing lens (9) is

then used before the reflectance signal is collected by a Zn doped MCT detector (10).

Images were collected using the NCIs built-in spectroscopy mode. The image resolution

was selected at the highest possible value, 512 × 512 pixels, with the largest system magnifica-

tion generating a field of view of 550 × 550 mm, resulting in a pixel size of 0.93 mm. Within

imaging mode, the range and spectral resolution can be controlled, with 2500–3500 nm at 10

nm chosen respectively giving a total of 101 wavelengths. These settings, along with the raster

scan speed of the NCI, resulted in a total imaging time of<7 seconds per image, including

data transfer. These spectral images were then combined to produce a 3D data hypercube for

analysis.

Fig 2. Negative Contrast Imaging (NCI) system set up. Images A and B show the set up used for collecting the hyperspectral images of the 12-well plates containing

the cellular inserts. (1) Main NCI device (2) Gold coated steering mirror (3) Custom built imaging box (4) Calcium fluoride window.

https://doi.org/10.1371/journal.pone.0238647.g002
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Image analysis

Image analysis and the resulting ML applications were all performed using MATLAB1

(MATHWORKS). The data was grouped to form a 3D hypercube with x and y dimensions of

each image corresponding to the first two dimensions (512 × 512), and the wavelength corre-

sponding to the third (101). Each 3D data hypercube (512 × 512 × 101) was analysed individu-

ally to extract the spectrum for each of the 4 different inserts in the NCI field-of-view. Example

images are shown in Fig 4 as taken at 2500, 2800 and 3450 nm to highlight the differences

between the healthy (Blue) and traumatised (Red) ‘Raw’ spectra, with the standard deviation

shown, representing a sample from the 101 images which make up the hypercube for each

sample. For each insert, a region of interest (ROI) based on a-priori knowledge for the location

of the well was drawn with specific attention to ensure exclusion of the region of internal

reflection from the source within each well and contains all pixels within and on the dashed

lines. This can be observed in the images as the area of saturation in the right-hand side of

each of the 4 inserts, creating a ‘C’ shape area for each ROI. This region was first outlined

using the 2500 nm image to identify the bounds of the cell inserts, which was clearly visible at

this wavelength. The exclusion region was then identified using images at the higher wave-

lengths and systematically checked at different wavelengths to ensure no internal reflection is

part of each insert ROI.

These ROIs are then propagated throughout the hypercube for each data set, to resample

the full spectra from each insert, within all 18 repeat measurements for the three different

trauma protocols, which were then analysed by combining the 72 (18 × 4 inserts) individual

ROI spectra to generate the large data-set containing all the combined 36 healthy and 36 trau-

matised samples.

Fig 3. Schematic representation of the imaging set up. (1) The Intracavity Optical Parametric Oscillator (ICOPO) provides the IR illumination for measurements. The

(2) gold coated steering mirror, (3) y-axis galvanometer mirror and (4) x-axis galvanometer mirror are also housed in the NCI system. (5) External gold coated steering

mirror, (6) custom built transport chamber, (7) Calcium Fluoride (CaF2) viewing window all allow for the imaging of the (8) sample, within a sterile environment. The

reflected light then retraces its path before passing through a (9) CaF2 focusing lens and onto the (10) MCT detector.

https://doi.org/10.1371/journal.pone.0238647.g003
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Machine learning for cellular health classification

Once the spectra for each sample had been obtained, the next step was to assess different pre

and post processing methods for the measured and re-sampled raw data. A variety of different

methods were applied, which are next outlined.

Data Pre-processing. Three different pre-processing methods have been used in this

study, which were combined to generate 4 additional data-types, alongside the conventionally

used raw ROI mean. The first involved utilisation of the ‘smoothts’ function within MATLAB

to smooth the spectra for each data set. This function was chosen due to its ability to control

the size and characteristics of the smoothing function, as compared to other available smooth-

ing functions. A 5-point window size was used along with a gaussian smoothing function with

a 0.5 standard deviation, which was applied to each spectrum from the ROI of the correspond-

ing insert. Each smooth spectral point was calculated as follows,

RðlÞ ¼
Plþ2

l� 2
RðlÞ � Ĝ; ð1Þ

where, R is the raw reflectance data at wavelength λ and Ĝ is the normalised gaussian function

in 1D, with a window size 5, standard deviation of 0.5, as implemented within the ‘smoothts’

Fig 4. 3D hyperspectral data cube. Visual representation of three example images from the NCI imager forming a 3D hypercube. The corresponding ‘Raw’ spectra of

the mean of each ROI is also shown. The blue spectrum represents a healthy sample, and the red a traumatised sample treated with Triton X. A region of interest was

obtained for each insert to collect the spectra from each sample, removing the spectral contribution of the internal reflection saturating the detector. This can be

observed in the right-hand side of each well within the images.

https://doi.org/10.1371/journal.pone.0238647.g004
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MATLAB function. These window parameters were chosen to reduce the noise within each

spectra, whilst maintaining the dominant spectral features.

The second method applied was a simple background correction, which allows for the con-

sideration of any spectral contributions from both the cell trauma method as well as the cell

inserts. A supplementary data set was also collected for the three different trauma types and

healthy controls. For each of these, the treatment media was applied to the standard four

inserts set up, with no cells seeded. The same spectra, using the NCI, were collected and the

spectra of each of the four inserts were then averaged (mean) to generate the background spec-

tra for subtraction. Each spectra from the inserts containing live cells were then simply

matched with the corresponding media background spectra, which was then subtracted for

each wavelength to generate the background (BG) subtracted data-type.

RBGðlÞ ¼ RðlÞ � MðlÞ; ð2Þ

where, R is the raw reflectance data and M is the reflectance data from the corresponding

media only spectrum from the same trauma method at wavelength λ. As the cell insert prepara-

tion protocol is independent of the trauma method, removal of the background will highlight

the differences between the healthy and traumatised sample spectra only and should remove

any contributions from the cell trauma method or cell culture plastics/insert. Each of these

three data-types are shown in Fig 5A for comparison, showing a single traumatised spectrum.

The final pre-processing applied was to calculate the spectral derivate of each data set. Deriv-

ative spectroscopy methods have been used since the 1950s, becoming more common place in

the 1970s with the increased computational power available at the time. These methods are now

common places in a variety of disciplines to eliminate any background signals and for resolving

overlapping spectral features [30]. While these methods can be shown to amplify noise, deriva-

tive-based methods consider the direct relationship between the nearest neighbour wavelength

measurements and hence can account for any spectrally independent systematic noise [31, 32].

This includes the field of wound healing, where derivative spectral methods have been utilised

in Fourier Transform Infrared Spectroscopy for the classification of the spectral patterns for

burn wound healing [33]. The spectral derivative, RSD can be calculated as show in Eq 3 below,

RSDðlÞ ¼
dR
dl
¼

Rðlþ1Þ � RðlÞ
ðlþ 1Þ � l

; ð3Þ

where Rλ is the reflectance spectral value at a given wavelength λ. This method was applied to

both the smoothed and BG subtracted data, generating the 4 additional data-types mentioned,

which along with the raw ROI mean data, make up all the data-types tested for this study. An

example of the 1st derivative of the smoothed and background subtracted spectra example are

shown in Fig 5B.

Post processing. Each of the five data-types outlined above, as shown in Table 1, were

also subjected to two different post processing steps, clustering, and PCA-clustering. In this

study, the popular k-means clustering algorithm, first described in the late 1960s [34], has

been used to separate the data into ‘healthy’ and ‘traumatised’ clusters, which was then com-

pared to the ground truth labels. k-means clustering is a form of unsupervised learning in

which a set of data points are assigned to a cluster using a proximity metric [35]. For this

study, two clusters (k = 2) were considered to represent the ‘healthy’ and ‘traumatised’ groups.

The algorithm works by assigning k number of clustering centres randomly in an N-dimen-

sional space, where N is the dimensionality of the spectral data. The proximity metric, with

cosine distance being used in this work, is then utilised to assign each point of the data set to

its nearest clustering centre. The clustering centre is then re-calculated based on the mean N-
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dimensional co-ordinates of its data point members before the process of data point assign-

ment is repeated. These steps repeat until a convergence is reached, where no single data point

changes its cluster label following the previous re-calculation.

Fig 5. Pre-Processing Data-type visualisations. A: Spectral comparison between the ‘Raw’, smoothed and background

subtracted data-types for a single traumatised spectrum. B: Spectral derivative comparison for both the smooth and

background subtracted data sets shown in A.

https://doi.org/10.1371/journal.pone.0238647.g005

Table 1. Clustering frequency results for each of the pre- and post-processing data-type.

Pre-Processing Data-type Post-Processing Data-type

k-means PCA and k-means

‘Raw’ 98.5 98.2

Smoothed 93.0 99.3

Background Subtracted 100.0 100

Spectral Derivative of Smoothed 47.6 34.7

Spectral Derivative of Background Subtracted 52.1 39.6

https://doi.org/10.1371/journal.pone.0238647.t001
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The k-means clustering was applied to each of the five different pre-processed data-types to

generate the clustering labels needed for their comparison. Due to the initial random assign-

ment of the initial k cluster centres, the results can be subject to variation. Therefore, the k-

means process was repeated 5000 times, producing a�1% variation in the clustering fre-

quency, which was then defined as the number of times the modal clustering arrangement was

reached divided by the total number of k-means repeats.

The second and final post processing method applied was using PCA [36]. PCA is a com-

mon method applied to signal processing with a high dimensionality to the data set, reducing

this dimensionality whilst maintaining the variance in the case of k-means clustering, a dis-

tance metric is used to measure the distance between points, which is used to determine which

cluster any given point belongs to. This dimensional reduction technique was applied to each

of the five different pre-processed data-types, reducing the original N-dimensional data set,

N = 101, to that in which has M dimensions, representing�95% of the variance, such that

M<<N. When the dimensionality of this data is high, these metrics can be affected by the

sparsity of the data across all dimensions, resulting in poor clustering, an attribute of the ‘curse

of dimensionality’. The use of PCA in wound healing hyperspectral imaging has been shown

for the prediction of healing in diabetic foot ulcers, along with a threshold value for oxygen-

ation or given principal components as a classification tool [37]. Research into clustering

within high dimensional data has shown that, in general, reducing the number of dimensions

improves the clustering using simple distance metrics, such as the cosine distance used in this

study, but there is no general ‘one size fits all’ rule which can be applied to all data sets [38].

Therefore, both the full dimensional data sets, and those reduced by PCA were analysed to

determine the optimal procedure to correctly cluster the two different cellular health states. A

full breakdown on the data collection process is shown in Fig 6.

Results

To compare the clustering results of each of the different data-types, two additional metrics

were used alongside the clustering frequency. The sensitivity and specificity are defined as fol-

lows:

Sensitivty ¼
#True postives

#False Negativesþ#True Positives
ð4Þ

Specificty ¼
#True negatives

#True negativesþ#False positives
: ð5Þ

Here, a true positive result is one in which a traumatised sample is correctly labelled as

‘traumatised’ by the clustering algorithm, while a true negative is one where a healthy sample

is labelled as ‘healthy’. These two metrics were chosen to provide additional information about

the accuracy of the binary classification algorithm used within this study. An ideal medical

diagnostic test will be 100% accurate, i.e. all healthy patients will be identified as healthy, and

all diseased as diseased, with no incorrect diagnosis. An accuracy of 100% is highly unlikely,

requiring careful consideration of any given tests reported accuracy value. This reported value

is a combination of both the sensitivity and specificity and can therefore be used to hide a med-

ical tests true ability to accurately diagnose all healthy and diseased patients. By considering

the sensitivity and specificity of this diagnostic tool individually, a quantification for the num-

ber of false positives and negatives has been shown. This is important for this diagnostics tool,

as the treatment, or lack of, to an incorrectly diagnosed diseased state can have detrimental

effects on a patient’s outcome.
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Fig 7 shows the results for each of the five different data-types being processed directly by

the k-means algorithm. Here, the raw mean, smoothed and BG subtracted all exhibit clustering

frequencies of>90%, however show low scores, <25%, for either sensitivity or specificity. The

spectral derivate of the smoothed data showed an improvement upon the three previous data-

types, with all three metrics above 40%, although the sensitivity is still below 50%. The most

promising result comes for the spectral derivate of the BG subtracted data set. Here, both the

sensitivity and specificity were >94%, while the clustering accuracy was above 50%.

This clustering was repeated for each of the five different data-types following the applica-

tion of dimensional reduction, through the implementation of PCA. The number of principal

components (PCs) for each data set was chosen such that >95% of the variance within the data

set was represented, resulting in 4–14 PCs being considered, reducing the dimensionality from

the original 101 dimensions, representing each of the wavelengths collected. The cumulative

variance plots for each of the five different pre-processing types are shown in Fig 8, with the

95% threshold represented by a dashed line.

Fig 9 shows the k-means clustering quantification results for the PCA reduced data sets.

Again, the five different data-types were compared using the clustering frequency, sensitivity,

Fig 6. Data collection workflow. (1) HDFa cells are seeded onto 12-well plate inserts. (2) Cultured overnight until>90% confluent. (3) Treated with cell trauma

inducing agent. (4) Incubated for 1–4 hours dependent upon cell trauma agent. (5) Cell staining to confirm apoptosis/necrosis levels. (6) Reduction of growth medium

to 0.5 mL for imaging preparation. (7) Transfer to imaging box for NCI data collection. (8) Image collection using NCI SWIR/MWIR detector. (9) Images analysed to

produce cell spectral data. (10) Pre- and post-process spectral analysis.

https://doi.org/10.1371/journal.pone.0238647.g006
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and specificity. Similar results were observed for the first three data-types; raw mean,

smoothed and BG subtracted. These showed a high clustering frequency of>90%, along with

a low,<20%, sensitivity and specificity. An improvement was seen with both the spectral

derivative data-types. The spectral derivative of the smoothed data provided both a sensitivity

Fig 7. Data-type comparisons for non-Principal Component Analysis (PCA) data-types. Three different metrics, clustering frequency (Orange), sensitivity

(Blue) and specificity (Grey) were used to quantitatively compare different data-types obtained from the raw hyperspectral images.

https://doi.org/10.1371/journal.pone.0238647.g007

Fig 8. Principal Component Analysis (PCA) cumulative variance plots. For the five different pre-processing data-types, the plot of the

principal components (PC) against the cumulative variance is shown. Each data-type was represented by the PC number which

incorporated>95% of the variance in the PCA and k-means study.

https://doi.org/10.1371/journal.pone.0238647.g008
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and specificity of ~50%, while the clustering frequency was observed to be half of that seen in

the non-PCA equivalent. As with the non-PCA result, the data set with the highest values for

both sensitivity and specificity were found to be the spectral derivative of the BG subtracted

data. Both values were>90%, although were slightly lower (0.3–1.1%) than the non-PCA data

set, and the clustering accuracy was greatly reduced to<40%.

Discussion

The spectral derivative of the background subtracted data has been shown to be an effective

and reliable tool for diagnosing healthy and traumatised cellular samples. Any binary diagnos-

tic test, such as one to define if a sample is healthy or not, can have its accuracy quantified

using both sensitivity and specificity. For example, a test which has a low sensitivity and a high

specificity, while accurate in labelling healthy samples correctly, the inability to identify trau-

matised samples would render the test unsuitable as a diagnostic tool. This outcome was

observed in raw mean and smoothed data-types of the clustered (Fig 7) and PCA-clustered

(Fig 9), with the full results shown within Tables 1–3 for the clustering frequency, sensitivity,

and specificity respectively.

The opposite of this was seen in the background subtracted data, with high sensitivity but

low specificity. While accurate at identifying those cells which are traumatised, it is poor at

confirming cells which are healthy. In a clinical setting, this would translate to the potential

treatment of healthy samples, wasting resources and time, or in wound debridement, to the

unnecessary removal of healthy tissue which can cause additional problems in the wound heal-

ing process and in the patient’s future.

A significant improvement was seen in both spectral derivative data-types. The spectral

derivative process adds to the complexity of the data by considering the changes in the

Fig 9. Data comparison for Principal Component Analysis (PCA) reduced data-types. Three different metrics, clustering frequency (Orange), sensitivity (Blue) and

specificity (Grey) were used to quantitatively compare different data-types obtained from the raw hyperspectral images.

https://doi.org/10.1371/journal.pone.0238647.g009
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reflectance spectra between neighbouring wavelengths. Through this simple step, additional

bands in the data can be detected, and suitable spectral features enhanced. A previous study

has looked at the effects of smoothing and spectral analysis up the exploration of subtle spectral

differences [39]. However, the algorithms developed and optimised were modified for use with

remote sensing data, therefore this study considers a more traditional spectroscopic method

via hyperspectral image analysis. The outcomes of both this study and that of Tsai et al high-

lights the importance of additional post-processing spectral analysis to improve upon the iden-

tification of key spectral features [39].

The first spectral derivative data-type to discuss is the smoothed data. Although exhibiting

a lower value for clustering frequency in both the non-PCA and PCA post-processing types, at

~50%, this is still a definitive clustering, with the 72 samples offering many possible clustering

outcomes. Again, the sensitivity and specificity were around 50% for the two post-processing

types. Despite this improvement, for a binary diagnostic test with an even distribution of

healthy and traumatised samples, a 50% sensitivity and specificity would be achieved through

a random assignment of ‘healthy’ and ‘traumatised’ clustering labels with a p = 0.5, q = 1-p

probability respectively.

The final data-type tested was the spectral derivative of the background subtracted data.

The raw background subtracted data exhibited a high clustering frequency and sensitivity, but

the lowest specificity, ~6% for both post-processing types. Despite this, the spectral derivative

of this data-type showed a significant improvement with the values for both sensitivity and

specificity of>90% across all 5000 k-means clustering repeats. For the modal cluster, observed

at a frequency of 52% and 38% for non-PCA and PCA respectively, all traumatised samples

were correctly labelled while�3 of the healthy samples were incorrectly labelled as ‘trauma-

tised’. In terms of a diagnostic test for wound healing, this method would provide an accurate

and reliable measure for determining the status of cellular health.

For the data reduction method as applied in this study, PCA, the accuracy of the cell health

clustering was comparable to the non-PCA data equivalents. Although the data dimensionality

was reduced to as low as 3, compared to the full 101 wavelengths for the full data, different

data reduction methods could also be investigated in future studies, with the aim of increased

Table 3. Specificity results for each of the pre- and post-processing data-type.

Pre-Processing Data-type Post-Processing Data-type

k-means PCA and k-means

‘Raw’ 93.2 93.2

Smoothed 85.8 94.2

Background Subtracted 5.6 5.6

Spectral Derivative of Smoothed 59.7 71.3

Spectral Derivative of Background Subtracted 94.4 93.3

https://doi.org/10.1371/journal.pone.0238647.t003

Table 2. Sensitivity results for each of the pre- and post-processing data-type.

Pre-Processing Data-type Post-Processing Data-type

k-means PCA and k-means

‘Raw’ 17.8 17.8

Smoothed 22.5 16.9

Background Subtracted 97.2 97.2

Spectral Derivative of Smoothed 43.9 55.3

Spectral Derivative of Background Subtracted 97.8 97.6

https://doi.org/10.1371/journal.pone.0238647.t002
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clustering accuracy and improved cluster grouping as represented by the silhouette score. Par-

tial least squares (PLS) is an additional dimensionality reductions methodology that considers

the correlation between both the dependant and independent variables, unlike PCA which

only considers the independent variables [40]. Such methods have also been further developed

with modified versions for analysis of Raman spectroscopy, with improved classification

shown [41]. Dimensionality reduction could also be explored further through the use of auto-

encoders, which also consider non-linear contributions, although these require additional

computation due to its neural network design [42].

These results also highlight the methods ability to determine the state of the cellular health,

independent of the trauma methods applied. Of the three different trauma methods used for

this study, Triton X and H2O2, at the higher concentration of 5 mM, both induced necrosis of

the cells. This form of cell death, which is not programmed and is unregulated, is different to

apoptosis, or controlled cell death, which was induced with the lower H2O2 concentration of

100 μM. Despite these two different mechanisms, the imaging method and analysis can diag-

nose the healthy and traumatised samples. While the accuracy of the clustering algorithm

through sensitivity and specificity calculations provides one metric for quantifiable compari-

son between data types, it is also possible to further assess the quality of each formed cluster.

Silhouette cluster analysis is a method in which a data point is compared to every other within

its cluster and a score from -1 to 1 is calculated for each point. A high score suggests a data

point is closely matched with the other points within its own cluster, and a mean score can

then be calculated for each cluster to quantify the quality of each formed cluster. With the sen-

sitivity and specificity being the highest for both spectral derivative data types, the mean sil-

houette score for points within each cluster is shown in Fig 10(A) for the non-PCA and Fig 10

(B) for the PCA results.

The positive mean silhouette score for both of the spectral (the non-PCA and PCA) of the

healthy samples suggests the formation of good clusters for each of the different methods, with

this also being observed in the spectral derivative smoothed data for the traumatised cluster.

However, the data type with the highest sensitivity and specificity, >93% for both non-PCA

and PCA, exhibits scores of<0 for the traumatised cluster, would could demonstrate that the

formed clusters are either weak or artificial and that k-means clustering may not be the most

suitable method as applied in this work. This may be due to the formation too few clusters and

further work should investigate alternative clustering methods, such as hierarchical clustering,

in order to determine the optimum number of clusters within each data set and confirm the

reliability of the clustering algorithms [19, 43].

As seen in previous literature, the differences between both healthy and traumatised cells

was detectable within the IR spectral region. The upper band of this study, 3000–3500 nm, has

been investigated through the use of FTIR spectroscopy [12, 15], with differences attributed to

the changes in cellular proteins and lipids during the apoptotic and necrotic processes. How-

ever, the sensitivity of a FTIR spectrometer is much greater than the NCI used here, and differ-

ences between the sample preparation must also be considered. Specialised sample

preparation steps, including the drying and fixation of the cell monolayer have to be taken

when using FTIR spectroscopy, which can affect the resultant spectra [13]. In this study, the

cells were imaged within aqueous media and grown upon liquid-air interface inserts, allowing

reflectance measurements to be taken without transmittance through the cell media solution.

Although this provided a different method for imaging and spectral collection, differences

between the healthy and traumatised samples were detectable, and accurate clustering of the

two different cell health states was achieved. A comparison between a healthy and traumatised

sample is shown in Fig 11, presenting the spectral derivative of the background subtracted

data. This highlights a few key considerations and findings from this study. Firstly, as detailed
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above, the region between 3000–3500 has been considered with FTIR spectroscopy. For both

the healthy and traumatised samples, this region is flat, due to the lower sensitivity of the NCI

device, compared to that of an FTIR. However, a visual difference is observed from 3350–3500

nm, which has been shown to represent changes in lipid and protein conformational changes

[12, 15]. Second, the 2500–2700 nm contains the largest proportion of the spectral derivative

information over the entire imaging range. Previous studies have considered >3000 nm [15],

along with limited investigation in the SWIR region incorporating 1000–2000 nm [16]. This

study highlights a new region of investigation in live cell spectra, meriting further work within

this spectral region. Finally, the differences between the two spectra shown in Fig 11 are subtle,

which make them difficult to differentiate visually. The use of ML has shown the ability to sep-

arate these results with a high level of accuracy, correctly classifying >93% of the samples. The

sensitivity and specificity can be combined to produce a single ‘accuracy’ metric for any given

medical test. Due to the equal measurements of both healthy and traumatised samples, this

metric is calculated by simply taking the mean of both values for each post-processing data-

type. The resulting accuracy of both tests was above 95%, with the PCA before k-means

observing the lower of the two tests at 95.5%, compared to the simpler k-means only accuracy

of 96.1%. This study, conducted across the SWIR/MWIR spectral regions, draws a focus to

Fig 10. Silhouette cluster analysis. Mean data point silhouette score for each point within the healthy and traumatised cluster

for (a) non-PCA and (b) PCA spectral derivate data types.

https://doi.org/10.1371/journal.pone.0238647.g010
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investigating additional IR regions to aid in the diagnostics process. Current wound healing

diagnostic procedures rely upon visual inspection by trained clinicians, which introduces

increased subjectivity and varying results of accuracy [44]. The introduction of clinical imag-

ing and ML diagnostic tools beyond the visible-NIR range will aid in this process, although

further study into more complex cellular or tissue models will be required. Whilst this study

has highlighted the existence of differences between healthy and traumatised cell culture sam-

ples, no information on the specific biological constituents that give rise to these differences

has been shown. An increase in the number of samples tested, along with a thorough investiga-

tion into the biological changes that are occurring at the cellular level will further highlight the

individual spectral contributions. A benefit of this presented method is to investigate the

whole spectral range to identify any differences present, which is the only requirement for a

diagnostic clustering purpose, with future work focussing upon each spectral contribution.

Furthermore, a larger sample size would allow for the testing of further clustering and classifi-

cation methods, with the aim of producing a binary classifier to clinically assess cellular health.

Conclusion

In summary, the use of a SWIR/MWIR hyperspectral imaging device, along with machine

learning algorithms, has been shown to differentiate and diagnose the spectral differences

between healthy and traumatised cell cultures. Human dermal fibroblast cells were imaged

using an NCI imaging device, with hyperspectral images collected between 2500–3500 nm

with a 10 nm resolution. Spectral information for both healthy and traumatised samples,

dosed with trauma inducing agents, were analysed using a variety of different pre- and post-

processing methods. k-means clustering was applied to these different data-types, with the aim

of correctly identifying the cellular health of each sample. The raw, background subtracted and

smoothed data-types, although showing >85% for one of either sensitivity or specificity, were

unable to accurately diagnose the cellular health of each sample. This accuracy was greatly

improved to>95% for both the full data set and the dimensionally reduced set corresponding

to the spectral derivative of the same background subtracted spectra, however the formed trau-

matised clusters were found to be weak (as compared to healthy) suggesting that k-means

Fig 11. Healthy and traumatised derivate spectra. Comparison between a representative healthy and traumatised cell

spectra of the spectral derivative background subtracted pre-processing data-type.

https://doi.org/10.1371/journal.pone.0238647.g011
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clustering as applied within this work may not be best suited to differentiate diseased cells

from healthy cells. Although tested on a small number of samples, <100, the ability for simple

pre- and post-processing machine learning algorithms demonstrates the future for clinical

diagnostics of wounds and subsequent wound healing procedure. These methods are not

applicable to wound relevant spectra, but for all spectral analysis problems where subtle spec-

tral differences are undetectable using simple observation or classical techniques.
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FJJJobo. Noninvasive determination of burn depth in children by digital infrared thermal imaging. 2012;

18(6):061204.

4. Thimsen E, Sadtler B, Berezin Mikhail Y. Shortwave-infrared (SWIR) emitters for biological imaging: a

review of challenges and opportunities. Nanophotonics2017. p. 1043.

PLOS ONE Machine learning improves cellular health classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0238647 September 15, 2020 19 / 21

https://doi.org/10.1371/journal.pone.0238647


5. Diem M, MiljkovićM, Bird B, et al. Applications of Infrared and Raman Microspectroscopy of Cells and

Tissue in Medical Diagnostics: Present Status and Future Promises %J Spectroscopy: An International

Journal. 2012; 27(5–6):34. https://doi.org/10.1155/2012/848360

6. Marcsisin EJ. Infrared spectroscopy to monitor drug response of individual live cells. 2011.

7. Wrobel TP, Bhargava R. Infrared Spectroscopic Imaging Advances as an Analytical Technology for Bio-

medical Sciences. Anal Chem. 2018; 90(3):1444–63. Epub 2017/12/28. https://doi.org/10.1021/acs.

analchem.7b05330 PMID: 29281255.

8. Kennedy GT, Stone R, Kowalczewski AC, Rowland R, Chen JH, Baldado ML, et al. Spatial frequency

domain imaging: a quantitative, noninvasive tool for in vivo monitoring of burn wound and skin graft

healing. J Biomed Opt. 2019; 24(7):1–9. Epub 2019/07/18. https://doi.org/10.1117/1.JBO.24.7.071615

PMID: 31313538; PubMed Central PMCID: PMC6630099.

9. Monstrey S, Hoeksema H, Verbelen J, Pirayesh A, Blondeel PJb. Assessment of burn depth and burn

wound healing potential. 2008; 34(6):761–9.

10. Ruminski J, Kaczmarek M, Renkielska A, Nowakowski AJItobe. Thermal parametric imaging in the

evaluation of skin burn depth. 2007; 54(2):303–12.

11. Moss DA, Keese M, Pepperkok R. IR microspectroscopy of live cells. Vibrational Spectroscopy. 2005;

38(1):185–91. https://doi.org/10.1016/j.vibspec.2005.04.004.
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