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Intelligence and eeg measures of 
information flow: efficiency and 
homeostatic neuroplasticity
R. W. Thatcher, E. Palmero-Soler, D. M. North & C. J. Biver

The purpose of this study was to explore the relationship between the magnitude of EEG information 
flow and intelligence. The electroencephalogram (EEG) was recorded from 19 scalp locations from 
371 subjects ranging in age from 5 years to 17.6 years. The Wechler Intelligence Scale for Children 
(WISC-R) was administered for individuals between 5 years of age and 16 years and the Weschler 
Adult Intelligence Scale revised (WAIS-R) was administered to subjects older than 16 years to estimate 
I.Q. The phase slope index estimated the magnitude of information flow between all electrode 
combinations for difference frequency bands. Discriminant analyses were performed between high 
I.Q. (>120) and low I.Q. groups (<90). The magnitude of information flow was inversely related to I.Q. 
especially in the alpha and beta frequency bands. Long distance inter-electrode distances exhibited 
greater information flow than short inter-electrode distances. Frontal-parietal correlations were the 
most significant. It is concluded that higher I.Q. is related to increased efficiency of local information 
processing and reduced long distance compensatory dynamics that supports a small-world model of 
intelligence.

There are three main types of brain connectivity. One is structural connectivity as measured by structural MRI 
and diffusion tensor imaging. This level of connectivity is the same whether one is alive or shortly after death and 
represents the essential structural infra-structure of the brain. The second is functional connectivity as meas-
ured by EEG coherence and fMRI correlations between brain regions. This level measures the temporal correla-
tion between two or more brain regions and indicates functional activity shared by the correlated regions. The 
third level is called effective connectivity which is a measure of the magnitude and direction of information flow 
between two or more connected brain regions1–3. By analogy structural connectivity is like the street connecting 
a parking lot to a sports stadium, functional connectivity is the correlation between changes in the two locations 
and effective connectivity measures the direction and magnitude of the flow of people that travel between the two 
locations.

Two related and commonly reported models of intelligence emphasize efficiency of information processing 
between the frontal lobes and the parietal lobes. EEG network studies have argued that increased complexity and 
increased neural efficiency are positively related to intelligence4–13. Studies by Haier et al.14 demonstrated greater 
gray matter volume in frontal and parietal regions in high I.Q. children and Langeslag et al.15 reported increased 
functional connectivity with BOLD fMRI in high I.Q. children.

A resolution of a specialization model of intelligence with emphasis on the frontal-parietal lobes and global 
efficient allocation of resources in a small-world model of the brain was provided by Thatcher et al.10–11 who 
showed both increased efficiency in global network dynamics as well as reduced phase differences and long phase 
shift durations in frontal-parietal relations positively correlated with I.Q. Langer et al.12 further demonstrated 
both increased small-world global connectivity as well increased hub order of the parietal lobes in high I.Q. 
subjects.

As mentioned previously, both structural and functional connectivity between frontal and parietal regions are 
positively correlated with higher I.Q. and both structural and functional connectivity measures indicate a general 
increased efficiency of global dynamics positively correlated with higher I.Q. For example, frontal-parietal EEG 
phase differences were shorter in higher I.Q. subjects10 and EEG phase lock durations were shorter in higher I.Q. 
subjects11. An added factor in understanding the nature of intelligence is the relationship between short distance 
connections vs long distance connections in complex networks. For example, in small-world models increased 
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efficiency is related to increased differentiation or localization and minimization of long distance connections. 
Consistent with the global efficiency small-world models are studies showing weak long distance functional con-
nectivity correlated with higher intelligence8. A complementary finding are correlations with higher intelligence 
in short distance EEG electrode combinations using EEG phase reset which is also consistent with a small-world 
model where reduced long distance connectivity and increased short distance connectivity are correlated with 
higher intelligence11. The EEG studies are also consistent with Graph theoretical models of intelligence using 
structural MRI. For example, van den Heuvel et al.16 and Li et al.17 found that higher I.Q. negatively correlated 
with path length and path length is inversely proportional to network efficiency. Thus, both structural connec-
tivity and functional connectivity measures demonstrate a positive correlation between I.Q. and the efficiency of 
information processing in networks of the brain.

Previous studies from this laboratory on the relationship between intelligence and absolute power, coherence, 
amplitude asymmetry and phase differences have shown that phase and coherence produce stronger correlations 
to I.Q. than absolute power9. LORETA source correlations and I.Q., although weaker than coherence and phase, 
indicate specific timing relationships between 3-dimensional current sources and information processing10. A 
study of the relationship between EEG phase shift duration (“unstable phase dynamics”) and phase lock dura-
tion (“stability”) and human intelligence reported a positive relationship between the efficiency of information 
processing by phase shift and phase lock duration and intelligence11. An interesting finding in the phase reset 
and intelligence study was that primarily short interelectrode distance was correlated with intelligence and not 
long interelectrode distances. This indicated that intelligence and efficiency is related to the recruitment of local 
groups of neurons11. However, there have been no studies on the relationship between effective connectivity or 
the magnitude of information flow and intelligence which may yield information about the more global aspects 
of efficiency. Therefore, the purpose of the present study is to investigate the relationship between human EEG 
measures of effective connectivity using the phase slope index and neuropsychological measures of intelligence in 
the same subjects as studied in Thatcher et al.9–11,18. The phase slope index (PSI) is a measure of effective connec-
tivity that estimates the magnitude and direction of information flow in the EEG1,2,19.

Methods
Subjects. A total population of 1,015 rural and urban children ranging in age from 2 months to 17.54 
years of age were recruited as part of a Department of Agricultural study of the relationship between nutrition 
and brain development and this is why no adults beyond the age of 17.54 were included in this study20–22. The 
study was approved by a University of Maryland Institutional Review Board (IRB) and informed consent was 
obtained from the parents of all the subjects in this study. All methods were performed in accordance with the 
relevant guidelines and regulations. Two data acquisition centers were established, one at the rural University of 
Maryland Eastern Shore campus and one at the urban campus of the University of Maryland School of Medicine 
in Baltimore, Maryland. Identical data acquisition systems were built and calibrated, a staff was trained using 
uniform procedures and a clinical and psychometric protocol were utilized in the recruitment of subjects.

Inclusion/Exclusion Criteria. From the total of 1,015 subjects, 371 subjects ranging in age from 5 years to 
17.54 years were selected. a neurological history questionnaire given to the child’s parents and/or filled out by 
each subject, 2-psychometric evaluation of I.Q., and/or school achievement, 3- for children the teacher 9 and 
class room performance as determined by school grades and teacher reports and presence of environmental 
toxins such as lead or cadmium. A Neurological questionnaire was obtained from all of the adult subjects > 18 
years of age and those in which information was available about a history of problems as an adult were excluded. 
The inclusion criteria were: 1- no history of neurological disorders such as epilepsy, head injuries and reported 
normal development and successful school performance, 2- A Full Scale I.Q. > 70; 3- WRAT School Achievement 
Scores > 89 on at least two subtests (i.e., reading, spelling, arithmetic) or demonstrated success in these subjects 
and 4- A grade point average of ‘C’ or better in the major academic classes (e.g., English, mathematics, science, 
social studies and history).

Demographic Characteristics. The subjects were made up of 58.9% males, 41.1% females, 71.4% 
Caucasian, 24.2% African American and 3.2% oriental. Socioeconomic status (SES) was measured by the 
Hollingshead four factor scale. Time of day was randomized and counter-balanced with half the subjects tested 
in the morning and half the subjects tested in the afternoon. Testers were blind as to what the subject’s I.Q. or 
WRAT or other inclusion criteria at the time of assignment to morning or afternoon test times. All subjects were 
given an eight-item “laterality” test consisting of three tasks to determine eye dominance, two tasks to determine 
foot dominance, and three tasks to determine hand dominance. Scores ranged from −8 (representing strong sin-
istral preference or left handedness), to +  8 (representing strong dextral preference or right handedness). Dextral 
dominant children were defined as having a laterality score of ≥ 2 and sinistral dominant children were defined as 
having a laterality score of ≤ − 2. Only approximately 9% of the subjects had laterality scores ≤ 2 and 87% of the 
subjects had laterality scores ≥ 2 and thus the majority of subjects in this study were right side dominant.

As shown in Table 1, age was not a confounding variable because there were no statistically significant differ-
ences in age between different I.Q. groups (low I.Q. vs hi I.Q. t =  1.949, df =  1/148, P =  0.06; low I.Q. vs middle 
I.Q, t =  1.787, df =  1/290, P =  0.076; hi I.Q, vs middle I.Q. t =  1.821, df =  1/298, P =  0.073). Gender was 55.6% 
male and 44.4% female and there were no significant differences in gender between the different I.Q. groups  
(t ranged from 0.059 to 0.295, P values ranged from 0.77 to 0.95). There was a significant difference in the socio-
economic status of the parents of the high I.Q. group vs the low I.Q. group (t =  5.65, P <  0.05) but not between the 
middle I.Q. group and the other two groups. The full scale I.Q. and age means, ranges and standard deviations of 
the subjects are shown in Table 1.
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Neuropsychological Measures. Neuropsychological and school achievement tests were administered on 
the same day that the EEG was recorded. The order of EEG and neuropsychological testing was randomized and 
counter-balanced so that EEG was measured before neuropsychological tests in one half the subjects and neu-
ropsychological tests were administered before the EEG in the other half the subjects. The Wechler Intelligence 
Scale for Children revised (WISC-R) was administered for individuals between 5 years of age and 16 years and the 
Weschler Adult Intelligence Scale revised (WAIS-R) was administered to subjects older than 16 years. The neu-
ropsychological sub-tests for estimating full scale I.Q. were the same for the WISC-R and the WAIS and included 
information, mathematics, vocabulary, block design, digit span, picture completion, coding and mazes.

EEG Recording. Power spectral analyses were performed on 58 seconds to 2 minute 17 second segments of 
EEG recorded during resting eyes closed condition. The EEG was recorded from 19 scalp locations based on the 
International 10/20 system of electrode placement, using linked ears as a reference in the resting eyes closed con-
dition. Subjects were instructed to close their eyes, relax and to try not to move their eyes during the recording. 
The trained EEG technicians were blind as to the subject’s I.Q. or WRAT and other inclusion criteria at the time 
of the EEG recording. The EEG was continually monitored during acquisition and if any electrodes were bad then 
the recording was paused and the electrode replaced. All subjects provided 19 channels of EEG plus a bipolar eye 
monitor channel. Eye movement electrodes were applied to monitor artifact and all EEG records were visually 
inspected and manually edited to remove any visible artifact. Each EEG record was plotted and visually exam-
ined and split-half reliability and test re-test reliability measures of the artifact free data were computed using 
the Neuroguide software program (NeuroGuide, v2.8.9). Split-half reliability tests were conducted on the edited 
artifact free EEG segments and only records with > 90% reliability were entered into the spectral analyses. The 
amplifiers were designed and built by engineers at the NYU School of Medicine and amplifier bandwidths were 
nominally 1.0 to 30 Hz, the outputs being 3 db down at these frequencies. The EEG was digitized at 100 Hz and 
up-sampled to 128 Hz and then spectral analyzed using complex demodulation23–25.

Power Spectral Analyses. A Fast Fourier transform (FFT) auto-spectral and cross-spectral analysis was 
computed on 2 second epochs thus yielding a 0.5 Hz frequency resolution over the frequency range from 0 to 
30 Hz for each epoch. A ratio of the microvolt sine wave calibration signals from 0 to 30 Hz that were used to 
calibrate the University of Maryland amplifier frequency characteristics and the Lexicor NRS-24 amplifier char-
acteristics were computed and then used as equilibration ratios in the FFT to exactly equate the two amplifier sys-
tems. The 75% sliding window method of Kaiser and Sterman26 was used to compute the FFT in which successive 
two-second epochs (i.e., 256 points) were overlapped by 500 millisecond steps (64 points) in order to minimize 
the effects of the FFT windowing procedure.

Phase Slope Index. The Phase Slope Index (PSI) used the FFT to estimate the magnitude and the direc-
tion of the information flow between all 171 combinations of the 19 channel EEG data. The EEG phase slope 
index (PSI) estimates the temporal order of two signals separated in space, which is then interpreted as a 
driver-responder relation1–3,27. The basic hypothesis relies on the phase linearity between signals. PSI is based on 
the slope of the phase of the cross-spectrum between two time series. The idea is to define an average measure in 
such a way that this quantity properly represents relative time delays between signals separated in space. The PSI 
is computed as:
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IQ Groups N Mean age SD age Age range Mean full IQ SD full IQ Full IQ Range

Low IQ 71 11.31 3.08 5.02–17.18 82.65 6.12 70–90

Middle IQ 221 10.46 3.26 5.00–17.54 105.48 7.54 91–119

High IQ 79 9.50 2.85 5.14–15.80 128.52 7.68 120–154

Table 1.  Group sample sizes and age and I.Q. Descriptive Statistics. The three I.Q. groups were selected 
solely based on the range of the full-scale I.Q. scores as shown in the column to the right in Table 1.
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This calculation is made for each frequency bin and then we calculate the slope of the phase differences 
between scalp electrode locations for specific frequency bands, i.e., delta (1–4 Hz); theta (4–8 Hz); alpha frequency 
band (8.0–13 Hz); alpha1 (8–10 Hz); alpha2 (10–13 Hz); beta1 (13–15 Hz); beta2 (15–18 Hz); beta3 (18–25 Hz)  
and hi-beta (25–30 Hz). If the imaginary part of coherency between any channel pair approximates zero then this 
may indicate volume conduction. If the imaginary part is greater than zero or ψ ij >  0 then the signal i happened 
before the signal j and i is the driver and j is the responder. If the slope of the imaginary part is negative or less 
than zero or ψ ij >  0 then the signal j happened before the signal i and j is the driver and i is the responder.

Selection of Variables for Discriminant Analyses Between High and Low I.Q. groups. The sub-
jects were separated into a high full scale IQ group (I.Q. ≥ 120) and a low full scale I.Q. group (≤ 90 I.Q.) for 
purposes of the full scale I.Q. analyses In order to assess possible confounding by age, t-tests were conducted of 
differences between age in different I.Q. groupings (low I.Q. vs. middle I.Q., low I.Q. vs. high I.Q. and middle 
I.Q. vs. high I.Q.). The results of the analysis showed that there were no statistically significant differences in age 
between any of the I.Q. groupings.

There were 171 scalp electrode combinations and eight frequencies for a total 1,368 absolute PSI variables. 
T-tests between the high I.Q and low I.Q. group were conducted on all 1,368 EEG phase slope index (PSI) meas-
ures and a total of 124 variables were statistically significant at P <  0.05 were identified. PSI variables that were 
statistically significant at P <  0.05, were then entered into a step-wise discriminant analysis. The step-wise discri-
minant analysis selected a total of 42 variables representing a data reduction of 97% (e.g., 42/1,368) and a subject 
to variable ratio of 3.57. The delta and theta frequency bands contributed only 9% of the variables and the Alpha 
and Beta frequency bands contributed 91% of the variables in the discriminant function. Sensitivity, specificity, 
positive predicted values (PPV) and negative predicted values (NPV) were defined as: Sensitivity =  True positives 
(TP)/(TP +  False Negatives (FN)). Specificity was defined as: True Negatives (TN)/(TN +  False Positives (FP)). 
PPV =  TP/(TP +  FP) and NPV =  TN/(FN +  TN).

Results
Discriminant Analysis of High I.Q. vs Low I.Q. groups. Table 2 is a summary of the number of subjects 
and classification accuracy of the discriminant analyses showing a discriminant classification accuracy of 99%. 
The sensitivity =  97.3% and specificity =  100%. The positive predicted value (PPV) =  100% and negative pre-
dicted value (NPV) =  97.5%. An independent cross-validation test was for the intermediate I.Q. group (90<  and 
< 120). As shown in Table 2, the independent cross-validation is where the intermediate I.Q. group was approx-
imately evenly classified in the two extreme high vs low I.Q. groups which is expected if there is an approximate 
linear relationship between I.Q. and the phase slope index estimate of information flow.

In addition, as shown in Table 2 a leave-one-out (jackknife) cross-validation was conducted between the 
high and low I.Q. groups. The jackknife cross-validation yielded an overall classification accuracy =  94%,  
sensitivity =  94.3% and specificity =  93.8%. The positive predicted value (PPV) =  93.0% and negative predicted 
value (NPV) =  94.9%.

Figure 1 shows the distribution of the discriminant scores. The left is a scatter plot of discriminant scores of 
the high I.Q. and low I.Q. groups. Right is the distribution of discriminant scores for the high and low I.Q. groups 
as well as the intermediate I.Q. group. The intermediate subject’s distribution was midway between the high and 
low groups and serves as a cross-validation test. Also, the distribution supports a linear relationship between the 
magnitude of information flow and intelligence.

Figure 2 shows the mean values of the 42 absolute PSI variables that were used in the discriminant analyses 
for the three groups of I.Q. subjects. T tests were statistically significant between the high I.Q. and low I.Q. groups  
(t (df =  1, 149) =  3.176; P <  0.0001) and between the high I.Q. and intermediate I.Q. groups (t (df =  1, 
301) =  1.837, P <  0.0001) and between the low I.Q and intermediate I.Q. groups (t (df =  1, 293) =  2.337; 
P <  0.0001). The lowest mean absolute PSI or information flow was in the high I.Q. group and the largest mean 
absolute PSI in the low I.Q. group with the intermediate I.Q. group midway between the high and low I.Q. groups. 
The results show an inverse linear relationship between information flow and I.Q.

Inter-electrode Distance and Information Flow Short vs Long Distance. Figure 3 is a bar graph 
showing that the most significant correlations between I.Q. and magnitude of information flow is in the long 

IQ GROUP N IQ< = 90 IQ> = 120

Classification Accuracy =  99%

 Full IQ<  =  90 n =  71 71 (100%) 0 (0%)

 Full IQ>  =  120 n =  79 2 (3%) 77 (97%)

 90<  Full IQ < 120 n =  221 100 (45%) 121 (55%)

Jackknifed Classification Accuracy =  94%

 IQ GROUP N IQ<  =  90 IQ>  =  120

 Full IQ <  =  90 n =  71 66 (93%) 5 (7%)

 Full IQ>  =  120 n =  79 4 (3%) 75 (95%)

Table 2.  Discrimintant Analysis and Jackknife Replication.
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distance inter-electrode combinations in the Alpah1 and Alpha2 frequency bands. Statistically significant dif-
ferences between short (6 cm to 12 cm) vs long (18 cm to 24 cm) inter-electrode distances using a Chi Square 
statistical test were for Alpha1 (X2 =  29.79, P <  0.0001) and Alpha2 (X2 =  34.55, P <  0.0001).

Figure 1. Results of discriminant analyses. Left is a scatter plot of discriminant scores of the high I.Q. and 
low I.Q. groups. Right is the distribution of discriminant scores for the high and low I.Q. groups as well as the 
intermediate I.Q. group. The intermediate subject’s distribution was midway between the high and low groups 
and serves as a cross-validation test. Also, the distribution supports a linear relationship between the magnitude 
of information flow and intelligence.

Figure 2. The mean absolute phase slope index of the 42 variables that were used in the discriminant 
function for the three I.Q. groups. Error bars =  1 st. dev. The results show that there was less information 
flow in the high I.Q. group in comparison to the other two groups. Also, the results show an inverse linear 
relationship between information flow and I.Q.

Figure 3. Line plot showing that the most significant correlations between I.Q. and magnitude of 
information flow is in the long distance inter-electrode combinations (i.e., 18 cm to 24 cm) in alpha and 
beta1 frequency bands. *Chi Square statistically significant.
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Left vs Right Hemisphere. Figure 4 is a line graph showing that there is a significant hemispheric differ-
ence with the left hemisphere exhibiting higher correlations between information flow and I.Q. than the right 
hemisphere. Chi Square statistical tests for Delta (X2 =  17.26, P <  0.0001) Alpha1 (X2 =  101.79, P <  0.00001), 
Alpha2 (X2 =  238.09, P <  0.00001), Beta1 (X2 =  79.25, P <  0.00001) and Hi-Beta (X2 =  5.64, P <  0.0176).

Frontal and Parietal Phase Slope Index and Intelligence. Figure 5 shows the mean absolute PSI for 
different distances between electrode pairs in the anterior to posterior direction for the left and right hemispheres 
in the Alpha2 frequency band. The largest differences in mean absolute PSI between the high I.Q. and low I.Q. 
groups were between the frontal and parietal (Fp1/P3 and Fp2/P4) regions. In the left hemisphere t-tests were 
significant for the Fp1-P3 (t(149) =  3.071, P <  0.0025) and Fp1-O1 (t (149) =  2.328, P <  0.0213) electrode combi-
nations. None of the differences in mean phase slope index were statistically significant although the Fp2-P4 had 
the largest difference in means.

Discussion
This study extends the investigation of the relationship between EEG connectivity measures and intelligence by 
showing significant correlations between intelligence and estimates of information flow using the phase slope 
index. While information flow was present in all subjects, a linear inverse relationship was demonstrated in which 
the higher I.Q. then the less the magnitude of information flow between EEG scalp locations as measured by the 
phase slope index1–3. Also, the largest difference in information flow between the high and low I.Q. groups was 

Figure 4. Line plot of the total number of statistically significant correlations (P < 0.05) between PSI and 
I.Q. in left and right hemispheres. There was a significant hemispheric difference with the left hemisphere 
exhibiting higher correlations between information flow and I.Q. than the right hemisphere. Also, Alpha1 and 
Alpha2 frequency bands were the most significant. *Chi Square statistically significant.

Figure 5. Mean absolute phase slope index in the left and right frontal electrode combinations as a 
function of distance from the Fp1 and Fp2 electrodes for the low I.Q. (gray square) and high I.Q. (black dot) 
groups in the Alpha2 frequency band. The electrode combinations were Fp1/2-F3/4, Fp1/2-C3/4, Fp1/2-P3/4 
and Fp1/2-O1/2. The values on the left are from the left hemisphere and the values on the right are from the 
right hemisphere. * T-tests of mean differences between low vs high I.Q. groups were statistically significant at 
Fp1-P3 (t (df =  149) =  3.071, P <  0.0025) and at Fp1-O1 (t (df =  149) =  2.328, P <  0.0213).
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in the frontal-parietal electrode combinations in the alpha frequency bands. This finding is consistent with EEG 
coherence and phase measures of intelligence published previously10.

Another finding was that differences in information flow between high and low I.Q. groups were primarily in 
long distance inter-electrode combinations. This finding is opposite to the relationship between I.Q. scores and 
EEG phase reset in which short inter-electrode distances (e.g., 6 cm to 12 cm) were more strongly correlated with 
intelligence than the long inter-electrode distances11. Also, the left hemisphere exhibited stronger correlations 
between magnitude of information flow and intelligence in comparison to the right hemisphere. A stronger left 
hemisphere relationship to I.Q. was also observed in correlations between phase reset and intelligence11. The 
finding of stronger left hemisphere effects is likely due to the fact that the WISC-R intelligence test is largely a 
verbal test of intelligence.

In summary the results of this study support both of the most common theories where intelligence is related 
to: 1- specialized frontal-parietal connectivity and, 2- general efficiency of information processing.

Intelligence, Efficiency and Homeostatic Neuroplasticity. The finding of reduced magnitude of 
information flow in higher I.Q. subjects in long distance inter-electrode combinations is best interpreted in the 
context of other network correlations with intelligence. For example, correlations between phase shift and phase 
lock duration were statistically significant in short inter-electrode combinations that reflect information process-
ing in local or segregated clusters of neurons11. The longer the phase shift duration then the higher the I.Q. where 
phase shift duration was interpreted as a recruiting process to synchronize available neurons at a given moment 
of time11,28. The current study when also considering the phase reset relations to intelligence indicates that the 
lower magnitude of information flow in high I.Q. subjects represents a more efficient local information process-
ing where there is reduced demand for neural resources located in distant clusters of neurons. Information flow 
occurs in all subjects, however, the magnitude of information flow between brain regions is less in the higher 
I.Q. subjects as seen in Fig. 3. This indicates that each network hub receives and sends information to all other 
network hubs but if a given hub has inefficient information processing in the local domain then compensatory 
hubs send information to the weak hubs in order to achieve maximum efficiency of information processing in 
the network as a whole.

This is consistent with a homeostatic neuroplasticity model of intelligence in which maintenance of an optimal 
small-world dynamic involves minimizing long distance information processing and maximizing the efficiency 
of local information processing29. Phase reset operates primarily in the local hub domain to recruit and allocate 
resources to efficiently process information while information flow operates in the long range compartments 
to compensate for inefficiencies in the local domain. The greater the small-world efficiency of the global brain 
networks then the higher is performance on the WISC-R I.Q. intelligence test. Graph theoretical models of intel-
ligence using structural MRI16,17 found that higher I.Q. is negatively correlated with path length and path length is 
inversely proportional to network efficiency. All three types of connectivity, that is, structural connectivity, func-
tional connectivity and effective connectivity demonstrate a positive correlation between I.Q. and the efficiency of 
information processing in networks of the brain. Long distance information flow and local phase reset are part of 
the underlying dynamics in which neural resources are quickly identified and allocated in local functional clusters 
or hubs embedded in a small-world network with high speed homeostatic plasticity to maintain function even 
when there is loss of neurons (high resiliency).

A Small-World Model of Intelligence. Complexity in the brain is often defined by models of information 
theory and stochastic processes involving a balance between differentiation and integration30–32. Tononi et al.30 
showed that highly complex neural networks were characterized by neurons that were organized into densely 
linked groups that were sparsely and reciprocally interconnected. Small-world models of connected systems show 
that reduction of long distance connections and increased connectivity of local systems is a fundamental infor-
mation optimization process33–35. Figure 6 is an illustration of the network efficiency differences between the high 
vs low I.Q. groups. Small-world models of the brain emphasize the tradeoffs between neuron size, conduction 
velocity, noise and energy that structures the operation of the brain so that it operates with large spatial clusters 
of neurons synchronized in discrete temporal frames28,36,37. A reasonable model is that local efficiency of infor-
mation processing is reflected by the balanced of chaos and stability in local clusters of neurons as measured by 
long phase shift durations and short phase lock durations11,18 resulting in reduced demands on the more biolog-
ically expensive long distance connections. Also, efficiency and intelligence are related by virtue of specialized 
frontal-parietal information processing and efficient allocation of resources by two way connected clusters of 
neurons or in Graph theory high functional cluster coefficients and short path lengths.

Intelligence and Frontal and Parietal Lobes. Previous studies from this laboratory reported an inverse 
relationship between phase differences and I.Q9. and also phase lock durations were shorter in higher I.Q. subjects 
in bilateral frontal and parietal relations11. Nunez38 estimated that approximately 50% of the amplitude of the EEG 
arises directly beneath a given scalp electrode and 95% is contributed by sources up to 6 cm distant. Therefore, 
caution should be exercised in relating EEG sources to a scalp location, nonetheless, the fact that the electrodes 
located over the parietal and frontal regions indicates that one cannot preclude parietal and frontal contribu-
tions. The findings in this study on effective connectivity are consistent with these previous studies but add an 
important new understanding of the efficiency of two-way flows of information between frontal and parietal 
regions and intelligence. The findings in this study indicate the more efficient local information processing is in 
frontal and parietal regions then the higher the I.Q. because of reduced demand on the long distance connections. 
Significant information flow is present between the frontal and parietal regions in all subjects, however, home-
ostatic balance and high speed allocation of resources is optimal in the higher I.Q. subjects. The frontal-parietal 
lobes are involved in multiple aspects of attention and especially orienting and executive aspects of attention39–41. 
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Intelligence is fundamentally linked to attention because of the importance of stimulus selection as well as verbal 
and spatial information in a system with limited capacity to simultaneously process information. Focused atten-
tion is a critical capacity mediated by frontal-parietal networks as the entry to the conscious state necessary to 
produce the global work space associated with consciousness42. This literature and the findings in this study sup-
ports a dual-dynamic underlying intelligence: 1- Specialized frontal and parietal lobe networks and, 2- Efficient 
local information processing is related to reduced demand on long distance connections and increased global 
efficiency.
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