
Citation: Jayasingam, S.D.; Citartan,

M.; Mat Zin, A.A.; Rozhdestvensky,

T.S.; Tang, T.-H.; Ch’ng, E.S. An

Eleven-microRNA Signature Related

to Tumor-Associated Macrophages

Predicts Prognosis of Breast Cancer.

Int. J. Mol. Sci. 2022, 23, 6994.

https://doi.org/10.3390/

ijms23136994

Academic Editors: Hung-Yu Lin and

Pei-Yi Chu

Received: 19 May 2022

Accepted: 13 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

An Eleven-microRNA Signature Related to Tumor-Associated
Macrophages Predicts Prognosis of Breast Cancer
Sharmilla Devi Jayasingam 1, Marimuthu Citartan 2, Anani Aila Mat Zin 3, Timofey S. Rozhdestvensky 4,5 ,
Thean-Hock Tang 2 and Ewe Seng Ch’ng 1,*

1 Department of Clinical Medicine, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia,
Kepala Batas 13200, Penang, Malaysia; sharmilla_487@hotmail.com

2 Department of Biomedical Science, Advanced Medical and Dental Institute (AMDI),
Universiti Sains Malaysia, Kepala Batas 13200, Penang, Malaysia; citartan@usm.my (M.C.);
tangth@usm.my (T.-H.T.)

3 Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia,
Kubang Kerian 16150, Kelantan, Malaysia; ailakb@usm.my

4 Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM),
University Muenster, 48149 Muenster, Germany; rozhdest@uni-muenster.de

5 Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia
* Correspondence: eschng@usm.my

Abstract: The dysregulation of microRNAs (miRNAs) has been known to play important roles in
tumor development and progression. However, the understanding of the involvement of miRNAs
in regulating tumor-associated macrophages (TAMs) and how these TAM-related miRNAs (TRMs)
modulate cancer progression is still in its infancy. This study aims to explore the prognostic value
of TRMs in breast cancer via the construction of a novel TRM signature. Potential TRMs were
identified from the literature, and their prognostic value was evaluated using 1063 cases in The Cancer
Genome Atlas Breast Cancer database. The TRM signature was further validated in the external
Gene Expression Omnibus GSE22220 dataset. Gene sets enrichment analyses were performed to gain
insight into the biological functions of this TRM signature. An eleven-TRM signature consisting of
mir-21, mir-24-2, mir-125a, mir-221, mir-22, mir-501, mir-365b, mir-660, mir-146a, let-7b and mir-31
was constructed. This signature significantly differentiated the high-risk group from the low-risk in
terms of overall survival (OS)/ distant-relapse free survival (DRFS) (p value < 0.001). The prognostic
value of the signature was further enhanced by incorporating other independent prognostic factors in
a nomogram-based prediction model, yielding the highest AUC of 0.79 (95% CI: 0.72–0.86) at 5-year
OS. Enrichment analyses confirmed that the differentially expressed genes were mainly involved
in immune-related pathways such as adaptive immune response, humoral immune response and
Th1 and Th2 cell differentiation. This eleven-TRM signature has great potential as a prognostic
factor for breast cancer patients besides unravelling the dysregulated immune pathways in high-risk
breast cancer.

Keywords: tumor-associated macrophages; M1; M2; miRNA; breast cancer; prognostic biomarker;
miRNA-21; miRNA-146a

1. Introduction

Tumor-associated macrophages (TAMs) are macrophages within the tumor microenvi-
ronment that play an important role in cancer initiation and progression. These macrophages
could be polarized into two main phenotypes with distinct cytokine and chemokine pro-
files: at one extreme, the M1 phenotype demonstrates proinflammatory and microbi-
cidal/tumoricidal characteristics while at the other extreme, the M2 phenotype shows
anti-inflammatory and tumor-promoting characteristics [1]. In breast cancer, TAMs mainly
demonstrate the M2 phenotype [2]. It has been shown in many studies that the regulation of
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breast cancer by TAMs via microRNAs constitutes one of the crucial mechanisms, although
the precise interaction requires further elucidation [3].

MicroRNAs (miRNAs) are a large group of small, endogenous non-coding RNAs of
18–23 nucleotides in length. MiRNAs in general negatively regulate gene expression at
the post-transcriptional level by mostly binding at the 3′ untranslated region (UTR) of
target mRNAs to suppress their expression, although interaction of miRNAs with the 5′

UTR, protein coding sequence and gene promoters has also been reported [4]. Furthermore,
miRNAs can positively regulate mRNA expression under certain circumstances [5].

MiRNAs are associated with immunomodulation in cancer progression and regression.
Their expression patterns and implications, however, vary in different types of cancer. MiR-
NAs can either act as tumor suppressors or tumor promoters [6]. In addition, depending
on the tumor context, miRNA which acts as a tumor suppressor in certain cancer types
may act as a tumor promoter in others [7].

There are two distinct ways that TAMs are associated with miRNAs. First, miRNAs
can be transported from cancer cells to TAMs to regulate TAM polarization. Reciprocally,
miRNAs derived from TAMs exert their effects on cancer cells to modulate tumor pro-
gression [2]. To date, there are limited studies regarding miRNAs related to TAMs and
how these TAM-related miRNAs (TRMs) modulate cancer progression, especially in breast
cancer. Furthermore, the relationship between these TRMs with known clinicopathological
parameters is yet to be explored. Accumulating studies have demonstrated the diagnostic
and prognostic value of the miRNA signature in a variety of cancers, including a few on
breast cancer [8–12], but none has focused on TRMs. Elucidating the role of these TRMs in
breast cancer can help establish a better understanding of the interplay between TAMs and
miRNAs in breast cancer progression.

This study aimed to explore the roles of miRNAs in breast cancer in relation to TAMs
with a focus on M1/M2 polarization. First, this study curated the list of TRMs by a
knowledge-driven literature search. By modelling the different TRM expression profiles,
a novel TRM signature of prognostic value, independent of classic clinicopathological
parameters, was constructed. Comprehensive analysis of this TRM signature was con-
ducted via enrichment analyses to deduce the underpinning biological processes of TRMs
in regulating breast cancer.

2. Results

The workflow of this study is summarized in Figure 1 below.

2.1. Construction of the Eleven-TAM-Related miRNA Signature

Forty-two TAM-related miRNAs from various cancer studies were identified from a
total of 54 related studies (Table 1). The variations of these miRNAs’ precursors available in
the TCGA-BRCA dataset (such as let-7a-1, let-7a-2 and let-7a-3 for let-7a) were also included
in our analysis. Two of the TRMs (mir-720 and mir-4291) were excluded from further
analysis due to the lack of expression data in the TCGA-BRCA dataset, yielding a total of
52 TRM expression profiles. From the UCSC Xena website, a total of 1063 breast cancer
cases were extracted from TCGA-BRCA for primary breast cancer after removing duplicate
cases and cases with incomplete overall survival (OS) time. These cases were randomly
separated into 80% for the training set (n = 856) and 20% for the internal validation set
(n = 207). Pertinent clinicopathological parameters of the training set, validation set and
whole cohort are summarized in Supplementary Table S1.



Int. J. Mol. Sci. 2022, 23, 6994 3 of 25

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 25 
 

 

2. Results 
The workflow of this study is summarized in Figure 1 below. 

 
Figure 1. The overall workflow describing the process involved in the construction of 11TAM-re-
lated miRNA signature. (A) Flow chart describing the process involved in developing and validat-
ing the prognostic significance of the 11TAM-related miRNA signature. (B) Flow chart showing the 
prognostic independence evaluation and downstream analysis of high-risk vs. low-risk group as-
signed by the TRM signature. 

Figure 1. The overall workflow describing the process involved in the construction of 11TAM-related
miRNA signature. (A) Flow chart describing the process involved in developing and validating
the prognostic significance of the 11TAM-related miRNA signature. (B) Flow chart showing the
prognostic independence evaluation and downstream analysis of high-risk vs. low-risk group
assigned by the TRM signature.
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Table 1. List of TAM-related miRNAs from various cancers.

No miRNA Cancer Type Function Ref Precursor
miRNAs

1 let-7a Lung transferred from TAMs to lung cancer to inhibit cell proliferation,
migration, and invasion

[13] let-7a-1
let-7a-2
let-7a-3

2 let-7b Breast
Prostate

repolarizes M2 TAMs to M1 in tumor cells
modulates macrophage polarization to promote angiogenesis
and mobility

[14]
[15]

3 miR-7 Ovarian released by TAMs to inhibit cell metastasis [16] mir-7-1
mir-7-2
mir-7-3

4 miR-9 HNSCC induces M1 TAM polarization and increases tumor radiosensitivity [17] mir-9-1
mir-9-2
mir-9-3

5 miR-15b HCC derived from M2 TAMs to promote cancer progression [18]
6 miR-16 Gastric transferred from M1 TAMs to cancer cells to inhibit tumor formation [19] mir-16-1

mir-16-2
7 miR-18a Nasopharynx

Liver

derived from M2 TAMs to promote cancer progression and
tumor growth
induces M1 TAMs to inhibit tumor metastasis

[20]

[21]
8 miR-19a Breast

Gastric

downregulates M2 TAMs to inhibit cancer progression
and metastasis
derived from M2 TAMs to reduce chemosensitivity and tumor
cell apoptosis

[22]

[23]

9 miR-21 Bladder
Breast

promotes cancer progression by polarizing TAMs to M2 phenotype
promotes M2 TAM transformation to induce metastasis

[24]
[25]

10 miR-22 Glioma derived from TAMs to promote mesenchymal phenotype and induce
radiotherapy resistance

[26]

11 miR-23a Breast regulates TAM polarization [27]
12 miR-24-2 Breast regulates M1 and M2 TAM polarization [27] mir-24-1

mir-24-2
13 miR-26a Esophageal M2 TAMs downregulate miR-26a to promote invasion and metastasis

of cancer
[28] mir-26a-1

mir-26a-2
14 miR-27a Glioma derived from TAMs to promote mesenchymal phenotype and induce

radiotherapy resistance
[26]

15 miR-29a OSCC

Ovarian

promotes M2 TAMs polarization to enhance proliferation and
invasion of cancer cells
derived by TAM to facilitate cancer cell proliferation and
immune escape

[29]

[30]

16 miR-31 OSCC derived by M2 TAMs to facilitate cancer progression [31]
17 miR-92a Breast

Liver
suppresses the infiltration of TAMs in tumor cells
derived from TAMs to increase liver cancer cells invasion

[32]
[33]

mir-92a-1
mir-92a-2

18 miR-95 Prostate derived by M2 TAMs to promote cancer progression [34]
19 miR-122 Pancreatic M2 TAMs increases miR-122-5p expression to inhibit PC progression [35]
20 miR-125a HCC inhibits TAMs mediated in cancer stem cells [36]
21 miR-125b HCC inhibits TAMs mediated in cancer stem cells [36] mir-125b-1

mir-125b-2
22 miR-130a Lung suppresses the polarization of M2 TAMs and enhances

M1 polarization
[37]

23 miR-130b Gastric transferred from M2 TAM to promote survival, migration, invasion,
and angiogenesis

[38]

24 miR-142 HCC

Glioblastoma

transferred from TAM to cancer cells to inhibit proliferation, tumor
growth and invasion
inhibits glioma growth and induces apoptosis in M2 TAMs

[39]

[40]
25 miR-146a Breast

Endometrial
HCC

promotes M2 TAM expression
inhibits M2 TAM polarization
promotes M2 polarization

[41]
[42]
[43]

26 miR-146b Ovarian
Bladder

inhibits the migration of endothelial cells
promotes M2 TAM infiltration

[44]
[45]
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Table 1. Cont.

No miRNA Cancer Type Function Ref Precursor
miRNAs

27 miR-155 Esophageal

Lung
Colon

derived from TAMs to suppress cancer proliferation, migration,
invasion and vasculature formation
secreted by M2 TAMs to promote metastasis
derived from M2 TAMs to promote cell migration and invasion

[46]

[47]
[48]

28 miR-221 Ovarian

Osteosarcoma
Glioma

released from M2 TAMs to promote cancer cell proliferation
and progression
derived from M2 TAMs to aggravate cancer growth and metastasis
derived from TAMs to promote mesenchymal phenotype and induce
radiotherapy resistance

[49]

[50]
[26]

29 miR-222 Breast
Ovarian

delivered to TAMs to induce M2 polarization
regulates polarization of M2 TAMs

[51]
[52]

30 miR-223 Ovarian

Breast
Gastric

derived from TAM to enhance tumor malignancy
and chemoresistance
released by M2 TAMs to promote cancer cell invasion
derived by M2 TAMs to promote drug resistance

[53]

[54]
[55]

31 miR-326 HCC derived by M1 TAMs to inhibit cancer cell proliferation, colony
formation, migration and invasion

[56]

32 miR-365 Pancreatic secreted by M2 TAMs to induce drug resistance and promote
cancer progression

[57]
[58]

mir-365a
mir-365b

33 miR-487a Gastric derived from M2 TAMs to promote cancer proliferation
and tumorigenesis

[59]

34 miR-501 Pancreatic

Lung

derived by M2 TAMs to inhibit tumor suppressor TGFBR3 gene and
facilitate cancer development
derived by M2 TAMs to promote cancer progression

[60]

[61]
35 miR-503 Breast derived from TAMs to suppress cancer progression [62]
36 miR-660 Ovarian upregulated in TAMs that promote cancer progression [63]
37 miR-720 Breast inhibits M2 TAM polarization [64]
38 miR-877 Breast increases expression in the late 4T1 tumor TAMs [41]
39 miR-940 Ovarian induces M2 TAMs polarization [65]
40 miR-4291 Breast downregulated in TAMs that promote cancer progression [66]
41 miR-5100 Breast inhibits invasion and migration of cancer [66]
42 miR-5196 Breast downregulated in TAMs that promote cancer progression [66]

HNSCC: Head and neck squamous cell carcinoma, HCC: Hepatocellular carcinoma, OSCC: Oral squamous
cell carcinoma.

Univariate Cox proportional hazards regression analysis showed that 16 out of the
52 TRMs had p value < 0.15 in the training cohort (Figure 2A). LASSO-Cox regression
analysis ultimately incorporated 11 from the 16 TRMs in the prognostic model of the
training cohort (Figure 2B,C), which contributed to the miRNAs signature. The formula of
the novel risk score based on this signature was constructed as below:

Risk score = 0.263 × (mir-21 expression value) + 0.251 ×(mir-24-2 expression value) +
0.197 × (mir-125a expression value) + 0.169 × (mir-221 expression value) + 0.118 × (mir-22
expression value) + 0.093×(mir-501 expression value) + 0.053× (mir-365b expression value)
+ 0.039 × (mir-660 expression value) − 0.243 ×(mir-146a expression value)-0.189 × (let-7b
expression value) − 0.166 × (mir-31 expression value).

2.2. The Eleven-TAM-Related miRNA Signature Significantly Differentiate the High-Risk Group
from the Low-Risk Group

The risk score for each patient was calculated based on the constructed formula
(Figure 3). The reliability of the 11-TRM signature was then tested on both training and
internal validation cohorts. Kaplan–Meier survival analysis with a two-sided log-rank
test in the training cohort showed that patients in the high-risk group had a significantly
shorter OS compared to the patients in the low-risk group (p value < 0.001) (Figure 4A).
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Figure 2. Cox regression analysis. (A) The 16 TAM-related miRNAs with p value < 0.15 and their
hazard ratios from univariate Cox proportional hazards regression analysis. (B) Tuning parameter
(λ) selection in the LASSO model for OS-relevant miRNAs. (C) The LASSO coefficient profile of the
16 miRNAs. The vertical line indicates the coefficient selected by LASSO.

The prognostic value of the signature was further tested in the internal validation
cohort whereby a similar significant difference in OS was observed between the high- and
low-risk groups (p value < 0.05) (Figure 4B). AUCs of time-dependent ROC curves at 5-year
OS were 0.69 (95% CI: 0.61–0.77) and 0.66 (95% CI: 0.52–0.81) for the training and internal
validation cohorts, respectively (Figure 4C,D). For the whole cohort, patients of the high-
risk group had significantly shorter OS (p value < 0.001), and the AUCs of time-dependent
ROC curves at 3-, 5- and 10-year OS were 0.68 (95% CI: 0.61–0.76), 0.68 (95% CI: 0.62–0.75)
and 0.75 (95% CI: 0.66–0.84), respectively (Supplementary Figure S1). The C-index for the
risk score of the whole cohort was 0.68 (95% CI: 0.63–0.74).
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Figure 3. Risk score distribution and TRM expression heat map in TCGA-BRCA dataset. (A) Risk
score distribution where blue dot signifies low-risk group and red dot signifies high-risk group.
Vertical dotted lines indicate the cut-off point for median risk score. (B) Survival time and status for
all patients. (C) Heat map of the eleven selected TRM expression in the TRM signature.

2.3. Validation of Prognostic Significance of the Eleven-TAM-Related miRNA Signature in the
GEO Dataset

The prognostic value of this TRM signature was further validated in the GEO dataset,
GSE22220 which contains a cohort of 207 primary breast cancer cases. A similar significant
difference in distant-relapse-free survival (DRFS) was observed between the high- and
low-risk groups (p value < 0.001) (Figure 5A). The AUCs of time-dependent ROC curves at
3-, 5- and 8-year DRFS were 0.54 (95% CI: 0.42–0.66), 0.60 (95% CI: 0.51–0.69) and 0.63 (95%
CI: 0.55–0.71), respectively (Figure 5B). The C-index for the risk score for this cohort was
0.58 (95% CI: 0.53–0.65).



Int. J. Mol. Sci. 2022, 23, 6994 8 of 25Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 4. Kaplan–Meier survival analysis and time dependent ROC curves of the risk groups based 
on TRM signature for training and validation cohorts. KM curves show that the low-risk group has 
significantly longer overall survival compared to the high-risk group in both the training (A) and 
validation (B) cohorts. The AUCs of time-dependent ROC curves at 5-year OS were 0.69 and 0.66 
for the training (C) and validation (D) cohorts, respectively. 

2.3. Validation of Prognostic Significance of the Eleven-TAM-Related miRNA Signature in the 
GEO Dataset 

The prognostic value of this TRM signature was further validated in the GEO dataset, 
GSE22220 which contains a cohort of 207 primary breast cancer cases. A similar significant 
difference in distant-relapse-free survival (DRFS) was observed between the high- - and 
low--risk groups (p value < 0.001) (Figure 5A). The AUCs of time-dependent ROC curves 
at 3-, 5- and 8-year DRFS were 0.54 (95% CI: 0.42–0.66), 0.60 (95% CI: 0.51–0.69) and 0.63 
(95% CI: 0.55–0.71), respectively (Figure 5B). The C-index for the risk score for this cohort 
was 0.58 (95% CI: 0.53–0.65). 

Figure 4. Kaplan–Meier survival analysis and time dependent ROC curves of the risk groups based
on TRM signature for training and validation cohorts. KM curves show that the low-risk group has
significantly longer overall survival compared to the high-risk group in both the training (A) and
validation (B) cohorts. The AUCs of time-dependent ROC curves at 5-year OS were 0.69 and 0.66 for
the training (C) and validation (D) cohorts, respectively.

2.4. Prognostic Significance of the Eleven-TAM-Related miRNA Signature Is Independent of
Clinicopathological Parameters

The association analysis between the risk score and pertinent clinicopathological
parameters in the TCGA-BRCA dataset is summarized in Supplementary Table S2. The risk
score was significantly associated with age, gender, pathological stage, histological type,
ER and HER2 status and PAM50 (all p values < 0.05).
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Figure 5. Kaplan–Meier survival analysis and time-dependent ROC curves of the risk groups based
on the TRM signature for the external GEO GSE22220 cohort. (A) Patients of the high-risk group had
significantly shorter DRFS (p value < 0.001). (B) AUCs of time -dependent ROC curves at 3-, 5- and
8-year DRFS were 0.54, 0.60 and 0.63, respectively.

The prognostic value of this signature was further scrutinized among breast cancer
subtypes based on ER and HER2 status. The high-risk group had significantly poorer
prognosis as compared to the low-risk group in the ER+HER2−and ER−HER2− cohorts
(p value < 0.01) but not in the ER+/− HER2+ cohort (Supplementary Figure S2). Interest-
ingly, the risk scores based on the TRM signature was inversely correlated to the scores of
TIL in the TNBC cases (Spearman rho = −0.33, p value = 0.001, Supplementary Figure S3).

Univariate Cox proportional hazards regression analysis showed that among the
pertinent clinicopathological parameters, higher pathological stages (stage III and IV),
ER and HER2 negative status, higher age and high-risk group based on the eleven-TRM
signature were poor prognostic factors (p value < 0.001, p value = 0.004, p value < 0.001 and
p value < 0.001, respectively) (Figure 6A). Multivariate Cox proportional hazards regression
analysis revealed that the risk score based on the eleven-TRM signature remained as an
indicator for poor prognosis (p value < 0.001) with a hazard ratio of 2.28 (95% CI: 1.45–3.58)
(Figure 6B).

A nomogram was constructed integrating all the independent prognostic factors in
the multivariate analysis. The AUC of the time-dependent ROC curve at 5-year OS for the
nomogram-based prediction model was the highest at 0.79 (95% CI: 0.72–0.86). The AUC
of time-dependent ROC for the risk group (0.62 (95% CI: 0.55–0.69)) was comparable to
the AUCs of other independent prognostic factors (Age: 0.66 (95% CI: 0.58–0.74); patho-
logical stage: 0.67 (95% CI: 0.6–0.75); and ER and HER2 status: 0.61 (95% CI: 0.53–0.68))
(Supplementary Figure S4). The C-index for the nomogram was the highest at 0.82 (95% CI:
0.77–0.86). C-indices for other factors were risk group: 0.78 (95% CI: 0.69–0.87); Age: 0.66
(95% CI: 0.60–0.73); Pathological stage: 0.80 (95% CI: 0.73–0.88); and ER and HER2 status:
0.65 (95% CI: 0.56–0.74).
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2.5. Among the Different Immune Infiltrate Populations, TAMs Had the Highest Correlation with
the Risk Score Responsible for Poor Prognosis

The risk score based on the TRM signature is validated through high correlations
with the abundance of TAM subtypes in the dataset. Among the populations of immune
infiltrates estimated from the CIBERSORT algorithm, M2 macrophages showed the highest
positive correlation with the risk score (r = 0.241, p value < 0.001), whereas CD8 T cells
showed the highest negative correlation with the risk score (r = −0.263, p value < 0.001),
followed by CD4 T cells and M1 macrophages (Figure 7). However, inter-relationship
between individual miRNAs and different immune infiltrate populations showed various
strengths and directions of correlations without a distinctive pattern with certain immune
cell types (Supplementary Figure S5).



Int. J. Mol. Sci. 2022, 23, 6994 11 of 25Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 11 of 25 
 

 

 
Figure 7. Correlation between risk score and immune infiltrate populations. M2 macrophages had 
the highest positive correlation with the risk score, while M1 had the third highest negative corre-
lation, after CD8 T cells and CD4 T cells. *p < 0.05, **p < 0.01, ***p < 0.001. 

2.6. Analysis of the Differential Gene Expression and Gene Set Enrichment 
As depicted in Figure 8 below, differential gene expression revealed 4 upregulated 

genes and 59 downregulated genes in the high-risk group as compared to the low-risk 
group (adjusted p value <  0.05 and |Log2(fold change)| > 1). To gain insights into the 
underlying biological processes, overrepresentation analysis of the differentially ex-
pressed genes was performed using Gene Ontology (GO) to determine the association of 
the gene sets with any biological processes. No biological process was found to be associ-
ated with the upregulated genes. On the other hand, downregulated genes were strongly 
associated with immune responses such as classical pathway of complement activation, 
adaptive immune response and humoral immune response (Figure 9). 

 
Figure 8. Volcano plot for the differential gene expression. Four genes were upregulated while 59 
genes were downregulated in the high-risk group as compared to the low-risk group with the ad-
justed p value <  0.05 and |Log2(fold change) | > 1. 

Figure 7. Correlation between risk score and immune infiltrate populations. M2 macrophages had the
highest positive correlation with the risk score, while M1 had the third highest negative correlation,
after CD8 T cells and CD4 T cells. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.6. Analysis of the Differential Gene Expression and Gene Set Enrichment

As depicted in Figure 8 below, differential gene expression revealed 4 upregulated
genes and 59 downregulated genes in the high-risk group as compared to the low-risk
group (adjusted p value < 0.05 and |Log2(fold change)| > 1). To gain insights into the
underlying biological processes, overrepresentation analysis of the differentially expressed
genes was performed using Gene Ontology (GO) to determine the association of the gene
sets with any biological processes. No biological process was found to be associated with
the upregulated genes. On the other hand, downregulated genes were strongly associated
with immune responses such as classical pathway of complement activation, adaptive
immune response and humoral immune response (Figure 9).
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adjusted p value < 0.05 and |Log2(fold change)| > 1.
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Figure 9. Overrepresentation analysis of the 59 downregulated genes by GO–biological process. The
downregulated genes were mostly concentrated in the immune pathways, such as classical pathway
of complement activation, adaptive immune response and humoral immune response.

Genes from the differential expression analysis of coding mRNA data were ranked
as described in the method for gene set enrichment analysis. The KEGG pathway gene
set enrichment analysis showed that immunity pathways such as Th1 and Th2 cell dif-
ferentiation, JAK-STAT signaling pathway and Th17 cell differentiation were suppressed,
whereas pathways such as proteosome, DNA replication, oxidative phosphorylation and
base excision repair were activated in the high-risk group (Figure 10). Gene set enrichment
analysis using Hallmark gene sets displayed 20 significantly enriched gene sets; activated
gene sets in the high-risk group included Myc Target V2, oxidative phosphorylation and
E2F Targets whereas suppressed gene sets included UV response and KRAS signaling
(Supplementary Figure S6).

2.7. Relationship between miRNAs in TRM Signature and Differentially Expressed Genes between
High- and Low-Risk Groups

A total of 387 and 61 regulatory miRNAs were obtained from TarBase 8.0 based on
the downregulated and upregulated genes in the high-risk group. Based on the premise
that miRNAs act as negative regulators of target mRNAs, an intersection was performed
with the miRNAs in the TRM signature with positive and negative coefficients, respec-
tively. Among these regulatory miRNAs, six and two mature miRNAs intersected with
the miRNAs in the TRM signature with positive and negative coefficients, respectively
(Figure 11A,C). Similarly, a total of 6736 and 8173 genes were obtained as predicted target
mRNA based on miRNAs in the TRM signature with positive and negative coefficients,
respectively. Six and one mRNAs intersected with the downregulated and upregulated
genes in the high-risk group, respectively (Figure 11B,D). Specifically, six miRNA: RNA
pairs were identified based on the miRNAs from TRM signature with positive coefficients
and downregulated genes, i.e., hsa-mir-21-3p: IL33, hsa-mir-21-3p: SELP, hsa-mir-22-5p:
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CLEC10A, hsa-mir-21-5p: TP63, hsa-mir-365b-3p: PTPRT and hsa-mir-22-5p: GP2. Like-
wise, two miRNA: RNA pairs were identified from the miRNAs in TRM signature with
negative coefficients and the upregulated genes. They were hsa-let-7b-5p: PSCA and
hsa-mir-146a-5p: PSCA.
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Figure 10. KEGG pathway gene set enrichment analysis for the ranked genes. Size of dots represents
the GeneRatio while the color represents the p value. (A) Proteosome, DNA replication, oxidative
phosphorylation and base excision repair pathways were significantly activated in the high-risk group
as compared to the low-risk group. (B) Immunity pathways such as Th1 and Th2 cell differentiation,
JAK-STAT signaling pathway and Th17 cell differentiation were suppressed in the high-risk group as
compared to the low-risk group.
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3. Discussion

Tumor-associated macrophages (TAMs) as immune cells residing within the tumor
microenvironment have garnered much interest due to their roles in modulating the pro-
gression of breast cancer. Of particular interest is the polarization status of the TAMs that
would result in either the suppression or promotion of breast cancer progression. Although
numerous studies have proved the vital role miRNAs plays in breast cancer progression,
studies that describe the interaction between TAM-related miRNAs (TRMs) and breast
cancer progression are scarce. Driven by this scarcity, this study aimed to explore the
relationship between TRMs and breast cancer prognosis.

A total of 42 TRMs were identified from the literature search; 9 were associated with
breast cancer only, 27 were reported in other cancer types while 6 were associated with
both breast and other cancer types. Intriguingly, several TRMs have been reported in more
than one cancer type, either exerting similar or total opposite effects. We hypothesized that
some TRMs reported in other cancer types may also contribute to breast cancer prognosis,
and thus, these TRMs were included although the focus of this study is on breast cancer.
Including the precursors of these miRNAs’ genes available in the TCGA-BRCA dataset,
a total of 52 TRM expression were analyzed. From the analysis of 52 TRM expression,
11 of them eventually constitute the TRM signature, which was shown to have a significant
independent prognostic value for breast cancer (p value < 0.005). Among these 11 TRMs,
only 4 have been reported in TAMs of breast cancer, namely let-7b, miR-21, miR-24-2 and
miR-146a (Table 1). Although there were reports of miR-22, miR-31, miR-125a, miR-221,
miR-501 and miR-660 involved in breast cancer [67–72], they have not been associated
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with TAMs so far. MiR-365b, on the other hand, has not been reported in any breast
cancer studies to date, but is known to be secreted by M2 TAMs to promote hepatocellular
carcinoma cell migration and invasion [73].

Eight of these TRMs had positive coefficients in the constructed TRM signature, which
implies worse prognosis based on the expressions of these TRMs. They were miR- 21,
miR-24-2, miR-125a, miR-221, miR-22, miR-501, miR-365b and miR-660, arranged in the
descending order of their coefficients. Estimated at 0.263, miR-21 had the highest positive
coefficient and the highest overall coefficient in the TRM signature, suggesting that miR-21
expression exerts the most impact on breast cancer progression in this cohort. In fact, miR-
21 is well-established as the main tumor promoter in various cancers, and multiples studies
have evidenced its linkage to poor prognosis. Li et al., in 2017 demonstrated that in breast
cancer, the upregulation of miR-21 in TAMs favored M2 transformation and promoted
metastasis by inhibiting the expression of PTEN, a tumor suppressor gene [25]. Another
study by Zheng et al., 2017 revealed that miR-21 derived from M2 TAMs promoted cisplatin
resistance in gastric cancer cells. They further demonstrated that miR-21 were transferred
from TAMs to gastric cancer cells to suppress cell apoptosis and enhance the activation
of the PI3K/AKT signaling pathway via the downregulation of PTEN [23]. Acting as the
crucial factor that promotes the tumorigenesis of breast cancer, miR-21 can be potentially
targeted to debilitate tumor growth.

The miR-24-2 belongs to the miR-23a/27a/24-2 cluster associated with multiple dis-
eases [74,75]. In a breast cancer study, the miR-23a/27a/24-2 cluster was suggested to work
as a double feedback loop. This cluster was downregulated by M1-type stimulation and
upregulated by M2-type stimulation. The down- regulation of the cluster is mediated by
the binding of the transcription factors involved in macrophage polarization, NF-κB and
STAT-X, to the promoter of the miR-23a/27a/24-2 cluster, thus repressing its expression.
On the other hand, the upregulation of the cluster was promoted by the binding of STAT6
to the promoter of the cluster. However, this cluster was surprisingly downregulated in
TAMs of breast cancer patients, and further probing is needed to determine the cause [27].
Consistent with these findings, miR-24-2 in our study contributes to the worse prognosis of
breast cancer. Furthermore, miR-24-2 was highly expressed in the high-risk group of breast
cancer patients.

Likewise, miR-221 derived from M2 TAMs promoted cancer cell proliferation in
epithelial ovarian cancer (EOC) via suppression of the cyclin-dependent kinase inhibitor 1B
(CDKN1B) [49] and aggravates the growth and metastasis of cancer cells in osteosarcoma
by targeting SOCS3, which then activates the JAK2/STAT3 pathway [50]. TAM-derived
exosomal miR-501 promotes progression of pancreatic ductal adenocarcinoma by inhibiting
the tumor suppressor, TGF-beta Receptor III (TGFBR3) gene and activating the TGF-β
signaling pathway [60]. Similarly, miR-660 was found to be upregulated in exosomes
secreted by TAMs of epithelial ovarian cancer [63].

There were limited data on TAM-related miR-125a and miR-22 in cancers, but the
transfer of miR-125a or miR-125b to TAMs can suppress cancer cell proliferation and stem
cell properties by targeting CD90, a stem cell marker for hepatocellular carcinoma [36].
Meanwhile, miR-22 transferred from TAMs to glioma stem cells was able to promote mes-
enchymal phenotypes and induce radiotherapy resistance by targeting the chromodomain
helicase DNA-binding protein 7 (CHD7), a chromodomain enzyme that maintains the
proneural phenotype in glioblastoma [26].

In descending order, miR-146a, let-7b and miR-31 had negative coefficients in this
signature, implying their role as tumor suppressor. The miR-146a has many conflicting
findings in regard to its functions. Some research groups found miR-146a to act as a tu-
mor suppressor while others stress the tumor-promoting property of this miRNA in breast
cancer [7]. In 2015, Li et al., discovered that miR-146a expression was significantly downreg-
ulated in the TAMs of patients’ breast tumors. They also reported that inhibiting miR-146a
promoted the M1 TAM expression but decreased M2 TAM expression and suppressed
tumor growth in mice, indicating the oncogenic function of this miRNA. However, the
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in vivo studies on mice revealed that the decreased expression of miR-146a in macrophages
somehow also inhibited tumor growth at the same time. The authors acknowledged that
miR-146a function in TAMs appeared to be contradictory to the observation that miR-146a
was downregulated in TAMs of breast cancer and postulated that miR-146a is a negative
regulator in TAM polarization [41]. In this study, our TRM signature showed that miR-146a
acts as a tumor suppressor, associating it with good prognosis. In fact, miR-146a possessed
the highest negative coefficient with a value of −0.243 and hence constitutes the most
potent tumor-suppressing function of our signature. This was substantiated by our finding
that miR-146a was highly expressed in the low-risk group compared to the high-risk in our
cohort. The contradictory role portrayed by miR-146a in our study compared to the ones
reported in other studies seems to suggest the involvement of other alternative pathways
or mechanisms that may influence its function and needs further investigation.

Let -7b is a known tumor suppressor in breast, gastric and ovarian cancers [76–78].
In 2016, Zhen Huang and his team discovered that the administration of let-7b in tumor
cells can repolarize M2 TAMs to M1, reverse the suppressive tumor microenvironment
and inhibit tumor growth in a breast cancer mouse model [14], consistent with the tumor
suppressive signature displayed by let-7b in our TRM panel. To the best of our knowledge,
there were no studies on TAM-related miR-31 in breast cancer, although miR-31 expression
was significantly downregulated in many cancers, including breast, ovarian, prostate [79]
and gastric cancers [80].

In this study, we have successfully constructed an eleven TAM-related miRNA-based
signature that was significantly associated with OS/ DRFS in breast cancer patients. The
performance of this signature was validated in both TCGA and GEO cohorts whereby
Kaplan–Meier analyses demonstrated a significant difference in survival between the
low- and high-risk groups. The performance of this signature is on par with other well-
established multi-gene based prognostic tools such as Endopredict and Oncotype Dx,
which had C-indices ranging from 0.6 to 0.7 [81]. In comparison, C-indices of the risk score
based on the TRM signature in our TCGA-BRCA and GSE22220 cohorts were 0.68 and 0.58,
respectively. As C-index is not a proper metric to predict a t-year risk of an event [82], AUC
metrics for time-dependent ROC curves at a specific t-year OS/DRFS were chosen in our
study. The prognostic value of this signature was further enhanced with the amalgamation
of independent clinical factors, resulting in the highest AUC of the nomogram for the
5-year OS at 0.79. In addition, when considering all the independent prognostic factors,
the risk group based on this TRM signature has similar prognostic performance with other
traditional established prognostic factors either in terms of AUC metrics or C-indices.
This signature in combination with other relevant independent prognostic factors has a
promising potential in the prognostication of breast cancer.

The fact that the tumor microenvironment (TME) components and functions differ
across the various subtypes of breast cancer is well-established [83]. Since the abundance
of TAMs varies in different subtypes of breast cancer, the risk scores of these cases also
varied accordingly (Supplementary Table S2). The prognostic value of risk score based
on the TRM was demonstrated in the whole TCGA-BRCA cohort, and further sub-group
analysis showed that its prognostic value was retained especially in the ER+HER2− and
ER−HER2− cohorts. Intriguingly, risk score derived from this signature was inversely core-
lated with the TIL score in TNBC cases. It was known that high TIL scores in TNBC cases
are associated with better response to chemotherapy and improved overall survival [88].
Therefore, the inverse relationship of this risk score with TIL score could be alluded to in
part the underlying interaction between TAMs and TILs in TNBC cases.

Analysis of the immune infiltrate estimates from the CIBERSORT algorithm revealed
that among the different immune infiltrate populations, the constellation of eleven miRNAs
as a risk score had a collective relationship with TAMs. However, analysis between
individual miRNAs in the TRM signature and different immune infiltrate populations
did not recapitulate such relationship at the individual miRNA level. From the chord
diagram in Supplementary Figure S5, several miRNAs did show significant correlation
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with M1 or M2 TAMs; nonetheless, they were also correlated with other immune cell types
concurrently, forming many-to-many relationships between miRNAs and different immune
infiltrate populations. The relationship of these miRNAs with TAMs is thus best alluded
to the collective effects by these miRNAs, presumably via a complex regulatory network
rather than simple additive effects by individual miRNAs. One such outcome of the
complex regulatory network could be the Th1-Th2 cell differentiation, which was shown to
be significantly suppressed in the high-risk group by KEGG pathway gene set enrichment
analysis. Taken together, such a result reflects the complex intertwined relationships among
miRNAs, TAM polarization and the Th1/Th2 paradigm.

Bioinformatics analysis was applied to elucidate the biological functions of this TRM
signature. From the differential gene expression analysis, four genes were upregulated
while 59 genes were downregulated in the high-risk group. GO analysis showed that
the downregulated genes were strongly involved in immune pathways, such as adaptive
immune response, humoral immune response and immune response signaling pathway
(p value < 0.001). It is well-established that immune pathways detect and destruct can-
cerous cells. Adaptive immune response, for one, consists of T cells, B cells and antigen-
presenting cells that target and kill antigens specific to the cancer cells [84]. Similarly,
humoral immunity develops autoantibodies against tumor-associated proteins. In 2020,
Sato et al. discovered that humoral immunity plays a vital part in the suppression of breast
cancer. In a cohort of 500 invasive breast cancer patients, they found that the recurrence-free
survival of the high anti-HER2 autoantibody (HER2-AAb) group was significantly longer
than that of the low HER2-AAb group (p value = 0.015). The high HER2-AAb group also
had a higher number of CD20, IGKC and CXCL13 immune cells, indicating enhanced
humoral immunity compared to the low HER2-AAb group [85]. In short, GO analysis
suggests that the eleven miRNAs were indeed key players in modulating breast cancer via
immune pathways. Therefore, immunomodulatory strategy in concert with the targeted
inhibition of miRNAs can be employed to ameliorate tumorigenesis and cancer progression.

Furthermore, KEGG analysis revealed that mechanisms such as DNA replication, base
excision repair, proteosome and oxidative phosphorylation were significantly activated in
the high-risk group while immunity pathways such as Th1 and Th2 cell differentiation,
JAK-STAT signaling pathway and Th17 cell differentiation were suppressed. Proteosome
complexes support cancer cell differentiation and survival [86], while oxidative phospho-
rylation is rudimentary in cancer cell proliferation, stemness and metastasis [87]. In fact,
a recent paper revealed that improved anti-tumor response was observed in TNBC cell
lines and in patient-derived tumor xenograft models when marizomib, a proteasome in-
hibitor derived from marine bacteria was used to inhibit the multiple proteasome catalytic
activities and oxidative phosphorylation in vivo [88].

Th1, Th2 and Th17 cells are all subsets of the CD4+ T cell. Th1 cells produce tumor
necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin (IL)-2 and IL-12
to mediate antitumor effects, while Th2 cells produce IL-4 and IL-10 which favor tu-
mor growth [89]. Hence, repressing the Th1/Th2 balance would promote tumor growth.
Eftekhari et al., in 2017, discovered that Th17 cell markers were significantly decreased in
stage IV of breast cancer [90]. Our findings verified that a decrease in Th17 correlates with
worse prognosis.

The relationship between miRNAs in TRM signature and differentially expressed
genes between high- and low-risk groups was explored via TarBase 8.0, a reference database
cataloguing experimentally supported miRNA targets [91]. This exploration revealed
six miRNA: mRNA pairs when a higher expression of the miRNAs with positive coeffi-
cients intersected with downregulated genes in the high-risk group. Intriguingly, among
these downregulated genes, CLEC10A and PTPRT have been demonstrated as poor prog-
nostic factors when their expressions were reduced in breast cancer, suggesting a plausible
negative regulatory mechanism of these miRNAs in our TRM signature [92,93]. Similarly,
it reduced the expression of the TP63; a known suppressor of cell migration and metastasis
and could lead to enhanced tumor invasion and migration [94].
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When miRNAs with negative coefficients intersected with upregulated genes,
two miRNA: mRNA pairs targeted the same PSCA gene, i.e., hsa-let-7b-5p: PSCA and
hsa-mir-146a-5p: PSCA. Our results show that reduced let-7b and mir-146a expression
could account for a higher expression PSCA, which has been shown to correlate with
unfavorable histological features and HER2/neu overexpression in breast cancer, although
there was no association of PSCA with patients’ prognosis [95].

Another mechanism of TAM-mediated cancer progression worth noting is via the
methylation of breast cancer-specific genes to regulate gene expression [96]. A recent paper
discovered that TAMs secrete IL-6 in the TME to stimulate protein arginine methyltrans-
ferase 1 (PRMT1)-mediated meR342-EZH2 formation in order to stabilize the enhancer of
Zeste Homolog 2 (EZH2) in breast cancer cells. The EZH2 enrichment subsequently en-
hanced breast cancer metastasis. The detailed mechanism behind the increment of PRMT1,
however, remains unknown [97]. It would be interesting to see in the future if our signature
plays any part in this TAM-mediated methylation.

We acknowledge the existence of other miRNA-based prognostic models in breast can-
cer [98,99], including the seminal work by Iorio et al., which first showed differentially ex-
pressed miRNAs in breast cancer correlated with specific clinicopathological features [100].
However, our approach is unique, where instead of comparing the differentially expressed
miRNAs in cancer and normal breast tissue, we searched for miRNAs from published
literatures that have been proven by experimental data. Furthermore, this study focused on
TAM-related miRNAs instead of miRNAs in general, hence narrowing the target for future
anti-cancer therapies. In addition, gene set analyses in most studies were based on the list
of bioinformatics-predicted mRNAs from the corresponding relevant miRNAs [98,99,101],
whereas in this study, we performed the differential expression of coding mRNAs based on
risk stratification by the TRM signature to identify the truly differentially expressed genes
attributed to this signature.

Overall, as a retrospective study, our data may have certain limitations and would
certainly benefit from prospective experimental validation.

4. Methods
4.1. Literature Search for TAM-Related miRNAs

Literature search was performed with the keywords: “miRNA”, “tumor-associated
macrophage”, “macrophage” and “cancer” from the year 2016 to 30 May 2021. The NCBI
PubMed database was utilized to identify potential prognostic miRNAs that were either
delivered to TAMs or derived from TAMs in various cancer types. The scope was broadened
to include TRMs within cancer in general, as there were very few TRMs reported in breast
cancer alone. Publications that do not mention TAMs were excluded.

4.2. Data Mining of miRNAs, mRNAs and Clinicopathological Data

Stem-loop miRNAs expression and the expression of mRNAs were downloaded from
The Cancer Genome Atlas Breast Cancer (TCGA-BRCA) dataset using UCSC Xena [102].
Stem-loop miRNAs expression were miRNA sequencing (miRNAseq) data quantified
by a modified version of the profiling pipeline developed by Chu et al. [103]. MiRNAs
were annotated based on the miRBase (version 21.0) database. Curated survival data and
phenotypes were also obtained. Specifically, data regarding overall survival (OS) and
overall survival time (OST), age, gender, estrogen receptor (ER) status, Human Epidermal
Growth Factor Receptor-2 (HER2) status, pathological stage, intrinsic subtype based on
PAM50 and histological subtype were extracted. The dataset was randomly split into
training cohort (80%) and internal validation cohort (20%).

4.3. Prognostic TAM-Related miRNA Signature Construction

Analysis was performed using R software version 4.1.0. TRMs were first screened
for their prognostic values in the training cohort by univariate Cox proportional hazards
regression analysis using the “survival” package. The p value was adjusted to <0.15 as
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these miRNAs were curated from literature supported by experimental data. Then, least
absolute shrinkage and selection operator (LASSO)-Cox regression analysis was applied
using the “glmnet” package to construct the TRM signature with 5-fold cross validation.
The risk score for each patient was computed based on this signature by calculating the
sum product of miRNA expressions and their respective coefficients.

Patients were ranked by their risk scores and subsequently assigned into low- and
high-risk groups. The median risk score from the training cohort was used as the cut-off
point. Kaplan–Meier analysis with two-sided log-rank test using “survminer” package
was conducted to determine the prognostic value of the risk score in training, internal
validation and whole cohorts with the level of significance set at p value < 0.05. To evaluate
the prognostic capacity of the risk score based on the TRM signature for overall survival,
the time-dependent receiver operating characteristic (ROC) curve was drawn using the
“timeROC” package. Subsequently, the Area Under Curve (AUC) metric was calculated
for training, internal validation and whole cohorts. The prognostic performance of the risk
score for the whole cohort was further evaluated by Harrell’s concordance index (C-index)
using the “survcomp” package.

4.4. External Validation of the Prognostic Significance of TAM-Related miRNA Signature with the
Gene Expression Omnibus (GEO) Dataset

The GEO database was searched for breast cancer datasets using keywords “miRNA”
and “breast cancer”, and the search was limited to studies using human samples, non-
coding RNA profiling by array/high throughput sequencing, and with a sample count
of more than 200. One dataset, GSE22220, was identified as containing 207 primary
breast cancer cases with miRNA expression profiled using Illumina Human v1 MicroRNA
expression beadchip containing 735 microRNAs designed against miRBase (version 9.1)
and potential miRNAs identified in a RAKE analysis study. The miRNA expressions were
normalized log2 signal intensities. Available distant-relapse-free survival data with a
complete 10-year follow-up was also downloaded. Kaplan–Meier analysis, time-dependent
receiver operating characteristic (ROC) curve, AUC metric analysis and C-index were
performed to validate the prognostic capacity of the risk score based on the TRM signature
in this external dataset. Similarly, the median risk score was used as the cut-off point to
assign patients into low- and high-risk groups.

4.5. Independent Prognostic Significance of the Risk Score Based on TAM-Related
miRNAs Signature

Using the TCGA-BRCA dataset, association analyses between the risk score and other
pertinent clinicopathological parameters were conducted using Pearson correlation, Welch t-
test or one-way ANOVA. Univariate and multivariate Cox proportional hazards regression
analyses were conducted using the “survival” package to evaluate the prognostic capacity
of the risk score in distinguishing between high-risk and low-risk patients and for its
independence from other pertinent clinicopathological parameters. These parameters were
age, gender, histological subtype, ER and HER2 status, intrinsic subtype based on PAM50
and pathological stage. The level of significance was set at p value < 0.05. A nomogram
was constructed based on the multivariate analysis using “rms” package to predict the
3-, 5- and 10- year survival probability. A time-dependent ROC curve was further drawn
to evaluate the prognostic capacity of the nomogram-based prediction model for overall
survival by the AUC metric for the whole cohort. C-index was also calculated.

The prognostic capability of this signature was further assessed based on ER+HER2−,
ER+/−HER2+ and ER−HER2− breast cancer cohorts via Kaplan–Meier analysis. Focusing
on triple-negative breast cancer (TNBC) cases, scores of tumor-infiltrating lymphocytes
(TIL) of these cases were extracted from a recent study [104]. The relationship between risk
score based on the TRM signature and TIL scores was sought using Spearman correlation.
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4.6. Correlation between Prognostic Risk Score and Immune Infiltrate Populations

Immune infiltrates in the tumor tissue were inferred using a gene expression deconvo-
lution algorithm, CIBERSORT. The data for the TCGA-BRCA dataset were downloaded
from TIMER2.0 (http://timer.cistrome.org/ (accessed on 27 April 2022)). The Pearson
correlation was performed between the risk score and the population of immune infil-
trate estimates by using the “ggcorrplot” package. A Pearson correlation coefficient with
a p value < 0.05 was considered statistically significant. A Pearson correlation between
expressions of individual miRNAs and the populations of immune infiltrate estimates was
also performed. The inter-relationship between miRNAs and immune infiltrate populations
as visualized by chord diagrams using the “circlize” package. Correlations with correlation
coefficients carrying p values < 0.01 were used to construct the chord diagrams.

4.7. Differential Gene Expression and Enrichment Analysis

The raw count data of mRNA expressions from the TCGA-BRCA dataset were first
subjected to the filtration of the low expression genes prior to normalization by the weighted
trimmed mean of M-values method in the “edgeR” package, and they were transformed
by voom in “limma” package for differential gene expression between the high- and
low-risk groups. The differentially expressed genes were defined according to adjusted
p value < 0.05 and |Log2(fold change)| > 1.

Three types of enrichment analyses were utilized to deduce the biological functions
of the differentially expressed genes, which were coding mRNA data from the TCGA-
BRCA dataset. First, over-representation analysis of Gene Ontology (GO) to associate
the differentially expressed genes with biological processes was performed using the
“clusterProfiler” package. Genes were ranked based on the association between their
expression and the class distinction (high- or low-risk groups) by a ranking metric, which
was defined as the sign of the fold change multiplied by the inverse of the adjusted p value
obtained from differential expression analysis. Next, the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway gene set enrichment analysis and gene set enrichment
analysis using Hallmark gene sets from The Molecular Signatures Database (MSigDB)
v7.4. were performed for the ranked genes. Adjusted p value < 0.05 was considered as
statistically significant.

4.8. Relationship between miRNAs in the TRM Signature and the Differentially Expressed Genes
of High- and Low-Risk Groups

To explore the relationship between the miRNAs in the TRM signature and the dif-
ferentially expressed genes, target mRNAs of the miRNAs in the TRM signature and
regulatory miRNAs of the differentially expressed genes in homo sapiens were downloaded
from miRNet (https://www.mirnet.ca/ (accessed on 27 April 2022)) based on TarBase
8.0 [104]. Venn diagrams were drawn using the “ggVennDiagram” package to display the
relationship between the miRNAs in the TRM signature and regulatory miRNAs inferred
from the differentially expressed genes. Similarly, target mRNAs of the miRNAs in the
TRM signature were compared to the differentially expressed genes between the high- and
low-risk groups.

5. Conclusions

We have successfully constructed an eleven-TAM-related miRNA-based signature in
this study that could act as an independent prognostic factor. With further exploration, this
signature has the potential to provide best survival estimates, ease prognostication and
guide treatment that targets TAMs and immune-related pathways.
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