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Abstract: The coronavirus disease 19 (COVID-19) is caused by the highly transmissible severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), which has affected the global population despite
socioeconomic status and amazed surveillance agencies for its incidence, mortality, and recovery
rates. COVID-19 affects all age groups; however, it is suggested to progress into severe disease and
cause mortality in over 10% of the confirmed cases, depending on the individual characteristics of the
affected population. One of the biggest unanswered questions it is why only some individuals develop
into the severe stages of the disease. Current data indicate that most of the critically ill are the elderly
or those with comorbidities such as hypertension, diabetes, and asthma. However, it has been noted
that, in some populations, severe disease is mostly observed in much younger individuals (<60-years
old) with no reported underlying medical conditions. Certainly, many factors may contribute to
disease severity including intrinsic host factors such as genetic variants, the expression levels of tissue
proteins, among others. Considering all these aspects, this review aims to discuss how the expression
levels of tissue proteases and the different profiles of immune responses influence the susceptibility
to COVID-19 as well as disease severity and outcome.

Keywords: COVID-19; SARS-CoV-2; host factors; tissue proteases; immune responses;
disease outcome

1. Introduction

The emerging ongoing outbreak of pneumonia known as coronavirus disease 19 (COVID-19) is
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has posed as a massive
global public health crisis that rapidly disseminated worldwide. As of 9 September 2020, more than
27 million cases of the disease have been globally recorded, with nearly 900,000 deaths, exceeding the
combined number of the individuals infected by the Middle East respiratory coronavirus (MERS-CoV)
and respiratory syndrome coronavirus SARS-CoV, as well as their associated deaths [1].
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Coronaviruses (CoVs) belong to the family Coronaviridae, order Nidovirales, and are the largest
known RNA viruses classified into the following four types: α, β, γ, and δ [2]. They have long been
recognized as important pathogens that can be transmitted from human to human causing mild to
severe respiratory tract and intestinal infections with high morbidity and mortality [3]. SARS-CoV-2
belongs to subgenus Sarbecovirus and comprises a large β-enveloped, non-segmented positive-sense
RNA virus, with approximately 30,000 bases in length [4] encoding 9860 amino acids [5]. Full-length
genome sequences indicate that SARS-CoV-2 is closely related to SARS-CoV sharing 79.6% sequence
identity [6]. Like other CoVs, SARS-CoV-2 is composed of four structural proteins, known as S (spike),
E (envelope), and M (membrane) proteins, which compose the viral envelope, and N (nucleocapsid)
protein, which holds the RNA genome [5]The S protein recognizes and binds to its receptor, the
angiotensin-converting enzyme 2 (ACE2), is a vital pathway for virus entry and replication into the
human lung alveolar epithelial cells [4].

Although most of the infected individuals are asymptomatic or display mild symptoms,
COVID-19-associated severe cases are characterized by progressive respiratory failure and lethal
pneumonia. Current reports suggest that severe cases of COVID-19 are most frequent in the elderly
population or those with comorbidities, including asthma, heart disease, and diabetes [6]. In contrast,
in some specific populations, severe cases have been also often observed in much younger individuals
(<60 years old) with no disabling conditions [7]The broad range of individuals affected by severe
disease has raised a highly important debate on the importance of host–pathogen interactions as major
influencing factors of disease outcome.

By comprehending these variables, it will be easier to identify which populations are to suffer the
hardest with COVID-19, and tailor better management rules and treatment options to avoiding disease
contagion and progression. Herein, we discuss some of the intrinsic factors associated with COVID-19
severity and mortality, with a special focus on the tissue proteins and immune responses involved in
SARS-CoV-2 infection.

2. Pathogenesis of COVID-19

An elevated case fatality rate in males was previously observed for respiratory tract infections
such as the ones caused by SARS-CoV and MERS-CoV [8,9]. A similar gender-related influence on
COVID-19 has also been suggested, with men more prone to severe disease and mortality. Indeed,
SARS-CoV-2 mostly infected males in Wuhan (68%) [10]. Additionally, in Italy, 58% of the diagnosed
COVID-19 patients are males, with the highest mortality rates observed for this gender (70%) [11].
Several factors are suggested to underlie the gender influence in COVID-19 including the sex hormones,
immunity, ACE2 activity, as well as behavioral and cultural habits, such as smoking [12]. In fact, male
smokers in China represent 288 million individuals in contrast to the 12.6 million of declared female
smokers [13]. A similar scenario is observed in Italy. Smoking prevalence is much higher among men
than women at any age group [14].

Another important aspect to be considered is the aging of the population, as it has been pointed
out as a risk factor for severe disease and mortality, as well as for increased contamination. Notably,
recent reports have shown that the elderly are the most susceptible to lethality in countries such as Italy
and China, which present high numbers of individuals over 60 years old [15]. Indeed, people ranging
from 40 to 49 years of age had an estimated case fatality rate of 0.4%, whereas individuals ≥ 80 years
old presented 20.2% mortality [16]. A worse prognosis was also strongly associated with underlying
comorbidities [17], with case fatality rates higher in individuals with cardiovascular and chronic
respiratory diseases, diabetes, and tumors [18]. However, rare severe cases and mortality have also
been observed in children, with reports associating them with the development of a hyperinflammatory
shock [19]. In some countries, a significant proportion of previously healthy individuals ≤ 50 years of
age have also developed severe COVID-19, with fatalities being registered in this group [20]. Although
surprising, statistics on the subject are yet scarce as data continue to be collected from all around the
world with this ongoing disease.
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These findings suggest that not only age and gender, but also other intrinsic host factors are
essential to predisposing an individual to experiencing severe disease and lethality. In this context,
and in the hope of defining better options for the clinical management of COVID-19, ongoing research
studies have been dedicated to dissecting the genetic characteristics as well as the gene and protein
expression patterns of human cells that may influence disease outcome.

Primarily defined as a disease of the respiratory tract, SARS-CoV-2 infection is now known to
cause a systemic pathogenesis, targeting multiple organs and ultimately leading to their failure and to
patient death (Figure 1). Disease transmission is still uncertain, but it is thought to happen through
direct contact, respiratory droplets, or aerosols, and even by ingestion of viral particles [21]. Once
transmitted to an individual, the virus enters the human cells via a direct interaction of its spike protein
with the host ACE2. ACE2 is highly expressed not only in human alveolar epithelial cells, but also
in various others including the tongue and oral mucosa epithelial cells, leukocytes, blood vessels,
heart, kidney, endothelium, and intestine [22–24]. Other broadly expressed host proteins contribute
to an effective infection of SARS-CoV-2 into human cells including the proteases furin and furin-like
proteins [25], transmembrane protease serine 2 (TMPRSS2), and the cathepsin B and L (CatB/L) [26].
At this early phase of infection, the expression profiles of these proteins as well as interferon (IFN)
production are determinant pathways for disease outcome. As disease progresses, cellular immune
responses become essential players in the host fight to SARS-CoV-2. Imbalances in these pathways
such as defective IFN production or ineffective cell migration/activation may, therefore, result in a
worsened disease prognosis.

Different studies have investigated the immune responses involved in COVID-19; however, few
of them have been able to correlate disease severity and the different players of immunity. So far,
differences in inflammatory mediator release and immune cells have been observed. Following lung
infection, there is an intense inflammatory response with the lungs exhibiting edema and mononuclear
infiltrates, especially of lymphocytes [27]. At the systemic level, lymphopenia has been observed and
linked to an increased severity of COVID-19, in addition to mortality [28]. Individuals with severe
disease also present higher neutrophil-to-lymphocyte ratios, low numbers of CD4+, and deficiency of
memory and regulatory T cells [29]. In another report, a patient with mild to moderate disease exhibited
normal lymphocyte and neutrophil counts; however, T lymphocytes (CD8+ and CD4+ cells) were
elevated at one-week post-symptom initiation [30]. More recently, neutrophil-derived extracellular
traps (NETs) were associated with severe COVID-19 [31]. Of note, NETs are involved in both
inflammation and thrombosis, this later considered as another hallmark of SARS-CoV-2 infection [32].
Systemic inflammatory levels were also associated with disease severity. Indeed, while high levels of
interleukin (IL)-6 and IL-10 were detected in severe disease, low levels of cytokine and chemokines
were found in patients with milder infection [29,30]. Increased circulating levels of IL-6 were also
correlated with cardiac injury and mortality in COVID-19 patients [33]. Interestingly, IFN-mediated
responses were suggested to be delayed by SARS-CoV-2 [34]; however, the bronchoalveolar release of
IFN as well as the expression of IFN-associated genes seem to correlate with severe disease in some
critically ill individuals [35].

Cardiovascular complications such as coronary heart disease, heart failure, and cerebrovascular
disease have been observed in COVID-19 patients as a result of infection-related myocarditis and/or
ischemia. Increased sympathetic stimulation, hypercoagulability, and inflammation are thought to
contribute to these cardiovascular events [36–38]. Another remarkable complication of SARS-CoV-2
infection is renal failure, which has been frequently observed in patients with the severe form of
COVID-19 [39–41]; this may be either a direct effect of the virus, or a result from the hypoxia
observed following infection. Additionally, pre-existing cardiovascular and kidney diseases have
been considered as risk factors for COVID-19; therefore, it is possible that infection can contribute to
exacerbate such conditions.



Pathogens 2020, 9, 817 4 of 17Pathogens 2020, 9, x FOR PEER REVIEW 4 of 17 

 

 
Figure 1. Coronavirus disease 19 (COVID-19) pathogenesis. COVID-19 is an infectious disease 
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Figure 1. Coronavirus disease 19 (COVID-19) pathogenesis. COVID-19 is an infectious disease caused
by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which primarily affects the
respiratory tract causing bilateral pneumonia. Its transmission may occur through direct contact
and respiratory droplets or aerosols, and through the ingestion of viral particles. COVID-19 also
affects multiple organs, often leading to organ failure and death of the individual affected by the
infection. Organic complications observed during the infectious process include those seen in the lungs,
cardiovascular and gastrointestinal systems, among others. All of these contribute to the enormous
morbidity and mortality of SARS-CoV-2 infection.
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Although less common than the cardiovascular and kidney alterations, gastrointestinal tract
manifestations have also been implicated in COVID-19. Abdominal pain, anorexia, impaired liver
function, diarrhea, nausea, and vomiting have been noted in SARS-CoV-2 infection and were more
frequent in individuals in critical condition [40,42,43]. Post-mortem analysis indicated that patients
who died of severe disease presented small intestine alterations such as dilatation and stenosis;
gastrointestinal mucosal degeneration, necrosis, and shedding; in addition to edema and lymphocyte
influx into the esophagus, stomach, duodenum, and rectum lamina propria [44,45]. It is estimated
that over 30% of COVID-19-positive patients present viral load in their stool samples, even when
their nasopharyngeal samples are negative for SARS-CoV-2 [46–48]. Furthermore, viral proteins
were found in gastric, duodenal, and rectal epithelial cells [45]. This later finding suggests that the
gastrointestinal symptoms of COVID-19 may result from the direct interaction of SARS-CoV-2 with the
gastrointestinal cells.

Testicular tissue damage and defects in spermatogenesis were previously observed during the
SARS-CoV outbreak [27]. Despite the scarce literature, recent reports also indicate that the SARS-CoV-2
infection may affect the testicular tissue. Adult human scRNA-seq datasets suggest that the testis is
potentially vulnerable to SARS-CoV-2 infection [49]. It is important to highlight that these are early
findings, and it is currently uncertain how COVID-19 affects the reproductive functions over the short
and long terms. Therefore, monitoring of male patients following recovery from acute infection is
strongly advised.

Collectively, these evidences indicate that both the inflammatory scenario and the ubiquitous
expression of ACE2 and the aforementioned tissue proteases contribute to the variety of symptoms of
COVID-19 infection, which range from dyspnea and bilateral pneumonia, to tachycardia and diarrhea.

3. Illness Degree and Association with Host Tissue Proteins and Immune Responses

An important question on the current pandemic scenario is why not all infected individuals
develop life-threatening disease. Although most of the critical cases are related to the elderly or those
with underlying problems, some individuals are asymptomatic or display mild flu-like symptoms.
Certainly, the susceptibility to infection cannot be attributed only to demographic or socioeconomic
factors, as genetic differences may also strongly account for COVID-19 outcome. Genetic variability of
genes involved in the expression of host–pathogen interaction proteins and inflammatory mediators
are among the suggested host predisposing factors that may influence disease severity and mortality.
This is discussed below.

3.1. Tissue Protein Expression

Among the proteins suggested to contribute to cell infection by SARS-CoV-2, ACE2 is perhaps the
most well investigated. As previously discussed, SARS-CoV-2 invasion and trafficking into human
cells are primarily driven by the interaction of its spike protein with human ACE2 [26]. Some reports
have suggested that variations in ACE2 gene sequences may influence cell infection and viral load
and, consequently, disease severity or resistance to SARS-CoV-2 (Table 1). In 2020, by using molecular
modeling tools, Hussein et al. [50] identified ACE2 encoding variants that corresponded to the binding
sites for the SARS-COV-2 spike protein. They found that most of the ACE2 variants present similar
binding affinities to the SARS-CoV-2 spike protein. However, two ACE2 alleles, namely rs143936283
(E329G) and rs73635825 (S19P), displayed low binding affinity to the virus and lacked key residues
important to the complex formation with the SARS-CoV-2 spike protein.
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Table 1. Angiotensin-converting enzyme 2 (ACE2), tissue protease, and immune marker expression patterns involved in the severity of SARS-CoV-2 infection.

Protein Species Protein
Expression/Activity Variant/Polymorphism Possible Effect References

ACE2

Human - rs143936283 (E329G) and rs73635825 (S19P)
allele variant

mild to moderate
COVID-19 [50]

Human -
high allele frequency in the QTL expression

quantitative trait loci variants – associated with
higher ACE2 expression

mild to moderate
COVID-19 [51]

Human increased lung expression - severe COVID-19 [23,52]

Human no expression alteration - mild to moderate
COVID-19 [13,53]

Human decreased activity - severe COVID-19 [54]

TMPRSS2 Human increased activity - severe COVID-19 [53]

Furin Human - G allele of 1970C > G severe COVID-19 [55]

Human increased expression rs17514846 variant severe COVID-19 [56,57]

CatL Human - proximal CTSL1 promoter at position C-171A severe COVID-19 [58]

HLA-DR Human low expression - severe COVID-19 [59]

IFN-γ Human - rs12252-C/C in the gene IFITM3 mild to severe COVID-19 [30,60]

ACE2: angiotensin-converting enzyme 2; CatL: cathepsin L; CTSL1: cathepsin L1; HLA-DR: human leukocyte antigen – DR isotype; IFITM3: interferon-induced transmembrane protein 3;
IFN-γ: interferon gamma; TMPRSS2: transmembrane protease serine 2.
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Additional studies on ACE2 tissue expression and distribution were also performed. ScRNA-seq
analysis revealed that Asian males present higher lung expression of ACE2 in comparison to Caucasian
and African American individuals [23]. Moreover, the frequency of allele variants associated with
increased ACE2 tissue expression was found to be higher in East Asian populations in comparison to
other populations, such as the European, African, South Asian, and American ones [51]. In contrast,
no substantial evidences have associated ACE2 expression with COVID-19 severity [13,53]. However,
more robust studies on large cohorts need to be performed in order to establish whether there are any
direct links between ACE2 expression and disease outcome. Interestingly, tobacco smoking was found
to increase the pulmonary expression of ACE2, including in the small airway epithelia [61,62]. These
findings suggest that smokers may be more susceptible to COVID-19.

An important aspect to consider is the percentage of individuals with diseases such as hypertension
and diabetes who developed severe COVID-19. ACE2 is essential not only to virus entry, but also to the
renin–angiotensin–aldosterone system, exerting a protective role in cardiovascular diseases [63] and
diabetes [64]. So far, the association between ACE2 expression and the susceptibility to SARS-CoV-2
infection is conflicting. In fact, while some data suggest that an increased expression of ACE2 favors
the progression of the disease [52], others indicate that COVID-19 leads to a reduction of ACE2 activity
in elderly individuals with chronic diseases, resulting in angiotensin II/ACE2 regulation imbalance and
loss of ACE2 protective effects [54]. Furthermore, the low incidence of severe cases in children may
be related to lower ACE2 expression [65,66]. Of importance, it has also been speculated on whether
treatment with ACE inhibitors or angiotensin receptor blockers affect the course of COVID-19 as they
may enhance the disruption of the angiotensin II–ACE2 axis [67].

Alterations in the expression patterns of host tissue proteases necessary to virus replication may
also favor resistance or susceptibility to COVID-19. In this context, genetic variants of TMPRSS2 have
been investigated (Table 1). Analysis of the Italian exome and GnomAD data detected genetic variants
that may impact TMPRSS2 expression and its catalytic activityThe Italian population presented a
decreased burden of deleterious variants compared with other European populations [53]. It is thus
possible that Italians have enhanced TMPRSS2 activity, and that this results in a higher risk of a
more severe form of COVID-19 [53]. Notably, genetic variants for TMPRSS2 were already shown to
enhance the risk to severe A(H1N1) pdm09 and A(H7N9) influenza [54]. Interestingly, as suggested for
ACE2, the low expression of TMPRSS2 in the airway epithelial and alveolar type 2 cells of infants and
young children may protect them from SARS-CoV-2 infection [66]. Despite the early findings relating
ACE2 and TMPRSS2 to COVID-19, a link between SARS-CoV-2 infection outcome and other proteases
such as furin and cathepsin B/L is yet to be established. A genetic variation in the proximal CTSL1
promoter, especially at position C-171A, was associated with higher blood pressure [58]. It was also
demonstrated that the furin gene contributes to the pathogenesis of hypertension and is crucial to the
renin–angiotensin system [55]. For instance, the coronary artery disease genetic variant rs17514846
increases furin expression and this may be related to reduced monocyte migration and proliferation in
humans [56]. Accordingly, the variant rs17514846 at the 15q26.1 locus was recently linked to higher
circulating monocyte chemoattractant protein-1 (MCP-1) levels and greater carotid intima-media
thickness in comparison with non-carrier individuals [57]The same study also demonstrated that furin
knockdown in vascular endothelial cells reduces endothelial cell-mediated inflammation as well as
monocyte adhesion to and transmigration through these cells [57]. A similar profile was observed
in mice with atherosclerotic lesions treated with furin inhibitors (α-1-PDX, RP-070) [68]. Possible
outcomes of COVID-19 and their associations with these genetic variations of furin and cathepsin B/L
are depicted in Table 1.

3.2. Immune Response

Hyperinflammation is a hallmark of COVID-19. As previously mentioned, an association between
the degree of inflammation resulting from SARS-CoV-2 infection and disease severity and outcome has
been observed. In fact, studies have attempted to investigate the inflammatory responses of patients with
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different severities of COVID-19 (Table 2). Both moderate and severe patients exhibit hyperinflammation
characterized by increased circulating levels of cytokines and chemokines [12,29,41,69–71], whereas
those with mild disease display normal levels of these inflammatory mediators [12,70,71]. Patients with
moderate and severe disease also present with increased levels of chemokines in their bronchoalveolar
lavage fluid (BALF) samples, while elevated cytokines are only observed in the BALF of individuals
with severe disease [72].
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Table 2. Immune profiles and disease outcomes in adults infected with SARS-CoV-2.

Disease Severity Complications Immune Response
Intensity Cellular Immune Response Cytokine/Chemokine

Responses Disease Outcome References

Mild - - peripheral blood: normal levels of
CD4+, CD8+, CD19+, and NK cells

normal plasma
cytokine levels - [71]

- -
peripheral blood: low neutrophil

counts (2.34 (1.2–2.81) × 109/L) and
normal lymphocyte counts

normal plasma
cytokine levels - [70]

- - peripheral blood: low neutrophil
and normal lymphocyte counts - - [12]

fever, cough, diarrhea,
myalgia, anosmia/ageusia -

peripheral blood: increase of
CD10LowCD101+ neutrophils,

CD14HighCD16High monocytes,
IFN-producing monocytes

BALF: increase of
monocyte/macrophage counts

low CXCL8 and
increased IFN-α

plasma levels
- [73]

Moderate pneumonia, hepatic failure hyperinflammation
peripheral blood: normal

lymphocyte counts, normal CD4+

and CD8+ cell counts

increase of plasma
IL-1ra, IL-6, IL-18,

CTACK, MIG, M-CSF,
IL-10, IP-10, IFN-γ

recovery [41]

- hyperinflammation
BALF: CD14+ cells, high % of

plasmacytoid dendritic cells, T and B
lymphocytes and NK cells

increase of BALF
CXCL9, CXCL10,

CXCL11, and CXCL16
recovery [72]

dyspnea and pneumonia - peripheral blood: low
CD14LowCD16High monocyte counts

increase of plasma
calprotectin - [73]

Severe

pneumonia, acute respiratory
distress syndrome, RNAemia,

acute cardiac and kidney
injury, secondary infection,

shock, median systolic
pressure of 145, respiratory

rate > 24 breaths/min,
increased pro-thrombin time

and D-dimer level

hyperinflammation

peripheral blood: high numbers of
neutrophils: 10.6 (5.0–11.8) × 109/L,

low lymphocyte counts: 0.4 (0.2–0.8)
× 109/L

increase of plasma
levels of IL-2, IL-7,
IL-10, GSCF, IP-10,

MCP-1, MIP-1α, and
TNFα

increased mortality [69]
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Table 2. Cont.

Disease Severity Complications Immune Response
Intensity Cellular Immune Response Cytokine/Chemokine

Responses Disease Outcome References

pneumonia, acute respiratory
distress syndrome, hepatic
and kidney failure, cardiac

failure, shock

hyperinflammation

peripheral blood: low % of
neutrophils and lymphocytes, low

counts of CD4+ (0.3 (0.2–0.4) × 109/L)
and CD8+ cells (0.1 (0.1–0.2) × 109/L)

increase of plasma
IL-1ra, IL-6, IL-18,

CTACK, MIG, MCP-3,
M-CSF, MIP-1α, HGF,

IL-10, IP-10, IFN-γ

increased mortality [41]

acute respiratory distress
syndrome hyperinflammation

peripheral blood: normal neutrophil
counts, low % of lymphocytes and

eosinophils, low counts of T cells (0.5
× 109/L), CD8+ cells (0.15 × 109/L)

and regulatory T cells

increase of serum
IL-6, decrease of IL-8 - [29]

acute respiratory distress
syndrome hyperinflammation

BALF: increased % of neutrophils,
reduced % of dendritic cells,

presence of M1 and M2 macrophages

increase of BALF IL-8,
IL-6, IL-1β, CXCL9,

CXCL10, and CXCL11
increased mortality [72]

- - peripheral blood: low numbers of
CD4+, CD8+, CD19+, and NK cells

increase of plasma
IL-6 - [71]

acute respiratory distress
syndrome -

peripheral blood: normal
neutrophils, low CD4+ and CD8+

cell counts

increase of plasma
IL-6 - [70]

acute respiratory distress
syndrome - peripheral blood: low lymphocyte

CD8+ cell counts
increase of IL-6, IL-10,

IL-2, and IFN-γ - [12]

- hyperinflammation -

neglected production
of IFNs, increase of
lung (CCL2, CCL8,

and CCL11) and
systemic (CCL2,

CCL8 CXCL2, CXCL8,
CXCL9, and CXCL16)

chemokines, and
systemic IL-6 and

IL-1ra

- [74]
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Table 2. Cont.

Disease Severity Complications Immune Response
Intensity Cellular Immune Response Cytokine/Chemokine

Responses Disease Outcome References

acute respiratory distress
syndrome -

peripheral blood: increase of total
neutrophils, and CD10LowCD101−

and CD10LowCD16Low neutrophil
counts, low numbers of

CD14LowCD16High monocytes, low
frequencies of CD4+, CD8+, and

CD19+ cells, increase of ROS- and
NO-producing monocytes

BALF: increase of ROS- and
NO-producing

monocytes/macrophages,
accumulation of immature

neutrophils

increase of plasma
calprotectin, CXCL-8,

CXCL-12, and IL-6
levels

- [73]

BALF: bronchoalveolar lavage fluid; CTACK: cutaneous T-cell-attracting chemokine; GSCF: granulocyte-colony stimulating factor; HGF: hepatocyte growth factor; IFN-γ: interferon
gamma; IL-10: interleukin 10; IL-18: interleukin 18; IL-1ra: interleukin-1 receptor antagonist; IL-2: interleukin 2; IL-6: interleukin 6; IL-7: interleukin 7; IP-10: interferon gamma-induced
protein 10; MCP-1: monocyte chemoattractant protein-1; MCP-3: monocyte chemotactic protein-3; M-CSF: macrophage colony-stimulating factor; MIG: monokine induced by interferon
gamma; MIP-1α: macrophage inflammatory protein-1 alpha; NK: natural killer; TNFα: tumor necrosis factor alpha.
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Differences in COVID-19 severity have been linked to not only inflammatory mediator release,
but also to changes in the numbers of inflammatory cells (Table 2). In fact, those with mild disease
present normal peripheral blood lymphocyte counts and diminished numbers of neutrophils [12,70,71].
Evidence also indicates that individuals with moderate disease display an increased accumulation
of mononuclear cells in their BALF samples, whereas those with severe COVID-19 present with a
higher percentage of BALF neutrophils [72]. At the systemic level, low numbers of CD4+ and CD8+

cells have been observed [12,29,41,69–72]. In a detailed analysis of leukocyte subsets, Silvin et al. [73]
demonstrated that patients with severe disease exhibit an accumulation of immature neutrophils
(CD10LowCD101− and CD10LowCD16Low cells) and a reduction of the CD14LowCD16High monocyte
population in their peripheral blood in comparison with those of individuals who were negative for
SARS-CoV-2 or presented mild disease. Lower frequencies of circulating T and B lymphocytes were
also noted in these patients, as well as an increase of ROS- and NO-producing monocytes. Enhanced
numbers of ROS/NO-releasing cells and immature neutrophils were observed in the BALF levels of
severe patients [73]. Another study identified distinct immune signatures based on peripheral blood
lymphocyte counts and activation of individuals with COVID-19 and associated them with disease
severity [75]. These studies indicate the importance of monitoring the profiles of leukocytes to aid in
the management of SARS-CoV-2 infection.

Less common in children, a multiple organ disorder associated with hyperinflammatory shock
has been observed in this age group. A report from the United Kingdom indicated that, despite
being negative for COVID-19, eight children developed a severe syndrome characterized not only
by respiratory distress and pneumonia, but also by hypotension, rashes, conjunctivitis, peripheral
edema, generalized pain, and diarrhea [19]. Similar symptoms were observed in SARS-CoV-2-positive
critically ill American children [76].

These different patterns of inflammation in COVID-19 patients may be related to differences
in the expression of genes involved in the cellular and humoral responses to SARS-CoV-2
(Table 1)The expression patterns of human leukocyte antigen – DR isotype (HLA-DR) and inflammatory
mediator genes are known to highly influence the immune response to infectious diseases. Nonetheless,
it is not surprising that they have been investigated in COVID-19. Peripheral blood HLA-DR+CD8+

and HLA-DR+CD4+ T-cell populations were elevated in patients with mild to moderate infection
in comparison with healthy subjects [27,30]. These cells were found to co-express CD38 and were
larger producers of granzymes and perforin, preceding the resolution of symptoms [30]. In contrast,
patients with the severe form of the disease displayed lower expression of HLA-DR on their circulating
monocytes than healthy individuals, a response that was associated with increased circulating levels
of IL-6 produced by both blood monocytes and CD4+ cells [59]. In another study, HLA binding
affinity for SARS-CoV-2 proteome was assessed by in silico analysis [77]The study showed that the
HLA-B*46:01 is the allele with the smallest number of binding peptides for SARS-CoV-2 and that
other alleles such as HLA-A*02:02, HLA-B*15:03, and HLA-C*12:03 were potentially the greatest
SARS-CoV-2 antigen-presenting molecules. As IL-6 production downregulates HLA-DR expression
on monocytes of severe patients, alterations in the individual expression of this cytokine would be
also worth investigating. Interestingly, patients with severe COVID-19 exhibited higher levels of
plasma IL-6 and expressed lower levels of HLA-DRA and HLA-DRB1 in their peripheral blood and
BALF monocytes/macrophages than individuals who were negative to SARS-CoV-2 or those with mild
disease [73].

IFN plays an essential role in the host responses to viral infections; therefore, reduced levels of
this cytokine may result in a defective viral clearance and higher severity of SARS-CoV-2 infection
and mortality. In an early study, Blanco-Melo et al. [74] demonstrated that severe COVID-19 patients
display a hindered pulmonary and systemic production of IFNs. Furthermore, IFN-mediated responses
were suggested to be delayed by SARS-CoV-2 infection [78]. Neglected systemic levels of IFN-γ were
detected in a patient with mild to moderate COVID-19 [30]The authors also investigated and detected
in this patient the single-nucleotide polymorphism rs12252-C/C in the gene IFITM3, involved in the
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encoding of the interferon-induced transmembrane protein 3 and previously linked to increased risk to
severe influenza infections [79]The IFITM3-rs12252-C/C variant was detected in ~26% of the Chinese
population, which presented a mortality rate of 6% for COVID-19. Although no other studies have
analyzed IFN-γ profiles in other populations affected by SARS-CoV-2, IFITM3-rs12252-C/C was linked
to a high risk of influenza in both the White and East Asian populations [60], suggesting that this
variant may also be largely detected around the globe. Of note, some individuals with critical disease
presented IFN in their bronchoalveolar lavage and expressed genes associated with IFN release [80].
Whether these patients are able to deal better with SARS-CoV-2 infection remains to be investigated.
More recently, genetic variants of TLR3 and IRF7, which result in deficiency of such pathways, were
detected in whole blood samples and linked to impaired production of IFN-α and severe COVID-19 [81].
Additionally, a significant number of individuals with life-threatening SARS-CoV-2 infection was
found to present IgG auto-antibodies against IFN-α and/or IFN-ω [82]The same study demonstrated
that these molecules neutralize the ability of IFN-α to block viral infection in vitro. Of note, these
auto-antibodies were not present in patients who were asymptomatic or had mild disease. Overall,
these studies indicate an essential role for IFN in the host response to SARS-CoV-2. However, further
studies are necessary to determine IFN definite roles in the susceptibility and resistance to COVID-19.

4. Conclusions

Much is yet to be understood about COVID-19. As discussed, the SARS-CoV-2 infection is a
systemic and multi-factorial disease to which mortality and morbidity depend on several aspects of the
host response to infection, especially on the intrinsic differences between the individuals infected with
SARS-CoV-2. So far, the findings point towards an important role for the intrinsic expressions and
activities of ACE2, the discussed tissue proteases, and the immune pathways involved in individuals
and COVID-19 outcomes. However, research on this matter is a novel field with many questions that
remain to be answered. Therefore, further studies on the mechanisms underlying an individual’s
susceptibility to develop severe or fatal COVID-19 are of great need, so better management tools can
be developed for SARS-CoV-2 infection.
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