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Abstract: Accumulation of biologically active metabolites is a specific feature of plant biochemistry,
directing the use of plants in numerous applications in the pharmaceutical and food industries.
Among these substances, the plethora of phenolic compounds has attracted particular interest
among researchers. Here, we report on new findings in phlorotannin research, a large group of
multifunctional phenolic substances, produced in brown algae. Comprehensive LC-MS profiling of
three algal species allowed us to depict the complex pattern of this structurally diverse compound
group across different tissues and subcellular compartments. We compiled more than 30 different
phlorotannin series in one sample and used accurate mass spectrometry to assign tentative structures
to the observed ions based on the confirmed sum formulas. From that, we found that acetylation,
hydroxylation, and oxidation are likely to be the most common in vivo modifications to phlorotannins.
Using an alternative data mining strategy to cope with extensive coelution and structural isomers,
we quantitatively compared the intensity of different phlorotannin series in species, tissues, and
subcellular compartments to learn more about their physiological functions. The structure and
intra-thallus profiles of cell wall-bound phlorotannins were studied here for the first time. We suggest
that one of the major dibenzodioxin-type phlorotannin series may exclusively target integration into
the cell wall of fucoid algae.

Keywords: acetylation; brown algae; cell wall; Fucus; LC-MS profiling; Pelvetia; phlorotannin
fingerprint; physodes

1. Introduction

One of the most interesting biochemical features of brown algae is their ability to synthesize
and accumulate specific phenolic compounds—phlorotannins. These substances represent a complex
mixture of oligomers and polymers, formed by combining different numbers of phloroglucinol
(1,3,5-trihydroxybenzene) molecules. The degree of polymerization (DP) varies broadly, so that the
molecular weight of phlorotannins ranges from 126 Da of the monomer to 650 kDa [1]. Based on
the nature of inter-monomer covalent bonds and the number of hydroxyl groups, phlorotannins are
divided into different structural classes. The first class, characterized by ether inter-monomer linkages,
includes fuhalols and phlorethols; the second class comprises fucols having only aryl-aryl linkages;
phlorotannins of the third class, fucophlorethols, form branched structures based on both aryl and
ether inter-monomer bonds; molecules of the fourth class, eckols and carmalols, contain dibenzodioxin
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linkages [2]. This linkage polymorphism together with positional isomerism gives rise to a great
structural diversity of phlorotannins [3].

Phlorotannins have been found so far in all studied brown algae (Ochrophyta, Phaeophyceae),
and their content in algal tissues varies from 0.5 to 30% dry weight [4–6]. This characteristic is
species-specific with the maximum phlorotannin level being reported from representatives of the
orders Fucales and Dictyotales [1,7]. Besides inter-species differences, phlorotannin content in algal
cells correlates with water salinity, nutrient availability, plant size, and developmental stage [1,8–11].

Phlorotannins are usually concentrated in epidermal and outer cortical cells of brown algal thalli.
Algal cells contain two sub-cellular fractions of phlorotannins: intracellular and cell wall (CW)-bound
ones. Water-soluble intracellular phlorotannins are sequestered in physodes, specific membrane-bound
organelles [12]. Numerous physodes occupy a considerable part of the cytoplasm in brown algal
cells [1,12]. CW-bound phlorotannins are integral structural components of the brown algal cell
wall matrix, where they are covalently cross-linked to alginates [13–15]. The content of CW-bound
phlorotannins in algal cells is approximately ten times lower than that of the intracellular [16] and
the molecular composition of this sub-cellular fraction of phlorotannins is virtually unstudied so
far. Moreover, there is still very little information available about the biosynthesis of phlorotannins
from both fractions in brown algal cells. The phlorotannin monomer, phloroglucinol, is synthesized
from malonyl-CoA through the acetate-malonate (polyketide) pathway by polyketide synthase type
III [17]. Further, the immense diversity of phlorotannin molecules is considered a result of successive
phloroglucinol polymerization reactions, catalyzed by vanadium-dependent haloperoxidases, but
detailed mechanisms are still unclear [14,18,19].

Apparently, phlorotannins perform multiple physiological functions in the cells of brown algae [20].
Due to their toxicity and antibiotic effects, they provide chemical defense against infection, biofouling
and grazing [21–23]. Like many other phenolic compounds, phlorotannins have antioxidant activity
and thus can protect algal cells against UV radiation and oxidative stress [24,25]. They are indispensable
structural components of the brown algal cell wall [15] and adhesive material [19,26]. Phlorotannins
contribute to wound healing [23] and to the key stages of brown algal embryogenesis [18,27–29].
Notably, recent data imply that different physiological functions might be attributed not just to the whole
pool of cellular phlorotannins, but to specific phlorotannin molecules [20]. Thus, antioxidative activity
and efficiency of chemical protection depend on phlorotannin chemical structure and DP [24,30,31].
Moreover, it was shown that cells of different thallus zones of brown algae contain different amounts of
intracellular phlorotannins [5,6,32,33]. Apparently, this data reflects physiological specialization of cells
in macroalgae with complex, morphologically and physiologically differentiated thalli, like those of
Fucales and Laminariales. Unfortunately, most of these studies comprised methods that only allowed
the determination of the intracellular total phenolic content s in the brown algal cells. This approach
cannot reveal the structural diversity of individual phlorotannin molecules inside the physodes and
gives no information about CW-bound phlorotannins. We suggest that cells of different thallus
zones may contain not only different amounts, but also a different spectrum of phlorotannins in
both intracellular and CW-bound fractions. Consequently, different physiological functions may be
attributed to specific groups of phlorotannin molecules.

Therefore in this study, we used LC-MS analysis to obtain a comprehensive picture of molecular
profiles of two subcellular phlorotannin fractions (intracellular and CW-bound) in four thallus zones
of three species of the family Fucaceae, differing in size, lifespan and ecology. Based on the obtained
results, we confirm the concept of distinct molecular functions of phlorotannins in dependence on
their chemical structure.
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2. Results

2.1. General Description of Phlorotannin Chromatograms and Molecular Profiles

Since reversed-phase interaction separates analytes basically in response to their polarity,
the phlorotannins of the same chemical basic structure were separated corresponding to their degree of
polymerization. Typical chromatograms obtained from different thallus zone samples are presented in
Figure 1 on the example of Fucus serratus extracts (for more details, including representative replicates
of all samples refer to Supplementary Materials, Figures S1–S3). A separation was only achieved for low
molecular weight (LMW) phlorotannins, up to DP 10 (e.g., MW 1242.2 g mol−1) eluting between 5 and
22 min (Figure S2). This is consistent with previous HPLC-based studies of these compounds, showing
that separation of higher molecular weight (HMW) phlorotannins by reversed-phase interactions is not
feasible for two reasons: (1) the large, increasing number of isomers, and (2) the descending difference
in polarity between two molecules with ascending degree of polymerization. Both result in extensive
coelution and the observation of either broad peaks or unresolved “humps” (e.g., [34,35]). Maximal
DP detected for the most abundant phlorotannin series are presented in Supplementary Materials
(Table S1).
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Figure 1. Typical base peak chromatograms of the intracellular phlorotannin extracts of four thallus
zones of F. serratus. DP—degree of polymerization. The corresponding thallus zone is indicated by
different coloring according to the legend on the left side of the graph. Enhanced coelution is observed
with ascending degree of polymerization. Dioxin structures are more strongly retained on the reverse
phase column.

Figure 1 illustrates that although the basic structure of the particular phlorotannin also influences
retention, coelution appears over a wide range of retention time (compare also Figures S2 and S3 given
in the Supplementary Materials).

The appearance of the mass spectra averaged over the RT corresponding to the HMW phlorotannin
peaks, the unresolved “hump”, is dominated by the polymeric nature of the target analytes having
characteristic profiles of equidistant m/z clusters with 124 u difference (Figure 2). Thus, each group
of phlorotannin molecules having the same basic structural unit but differing in the degree of
polymerization, manifests as a specific m/z series with an increment corresponding to an additional
phloroglucinol moiety (i.e., 124 u = C6H4O3, ∆m/z according to the charge of the molecule).

Comprehensive analysis of phlorotannin structural diversity in different species, physiologically
differentiated thallus zones and subcellular compartments showed that the pool of these metabolites
in algal cells is even more complex than suggested in previous studies. More than thirty m/z-based
series of phlorotannin molecules were distinguished simultaneously in algal extracts (Figure S2;
Table S2). Moreover, due to intrinsic isomerism of these compounds (e.g., fucols and phlorethols, F/P),
each series likely refers to more than one phlorotannin structural class as suggested by the number
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of signals already detected for low DPs (Figure S2). Unfortunately, extensive coelution prevented
separate quantitative assessment of the many isomers. For 21 of the distinguished phlorotannin series,
we were able to develop at least one proposal for the tentative structure (Figure 3), deduced from the
sum formulae considering the observed M–H+ and the elements C–H–O only and finally adopting
recognized chemical modifications from the literature.Metabolites 2020, 10, 369 4 of 20 
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Figure 2. General m/z patterns in samples of intracellular and cell wall (CW)-bound phlorotannins from
three species of Fucaceae: F. serratus, Fucus vesiculosus, and Pelvetia canaliculata.

From Figure 3, it can be summarized that the basic structure of the phlorotannin series in
these three species is diversified mainly based on four structural principles, namely hydroxylation,
advanced dioxin linkages, acetylation and oxidation, while tentative glycosylation and phloroglucinate
esterification may play only a very minor role. For the proposed acetylation, artefact formation during
extraction with ethyl acetate was ruled out after comparing the intensity of these series between
extraction protocols with and without the use of ethyl acetate (data not shown); it is also unlikely that
a corresponding reaction would take place at all under the chosen conditions [36]. The acetylated
phlorotannin series usually had a lower response, compared to the non-acetylated ones (on average,
25% of the total pool of intracellular phlorotannins). From 21 series with suggested tentative structures,
one third were actually proposed to be acetylated analogues of other phlorotannin species where
dibenzodioxin species seemed more prone to this modification.

The chromatograms of CW-bound phlorotannins contained no chromatographically separated
peaks (Figure S3) but when averaging the mass spectrum over the corresponding chromatogram region,
a single phlorotannin series could be observed. MS analysis of this subcellular fraction revealed this to
be a dibenzodioxin-type phlorotannin series (hE/C) of LMW molecules with DP 4–11 (Figure 2).

In our analysis, the response of the CW-bound phlorotannin m/z series demonstrated a much
lower intensity than that of intracellular phenols and was lower by more than a factor of 50. As to
what extent this might be a consequence of incomplete hydrolysis and release of the phlorotannins
during alkaline extraction cannot be concluded from our data. However, although additional, less
abundant series in the CW-bound fraction would hardly be detected given the low absolute intensity
of the single observed series, our data still clearly suggests that both phlorotannin fractions have a
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rather opposing composition with respect to the basic structural units, i.e., aryl- and ether- for the
intracellular vs. dibenzodioxin-linkages for the CW-bound phlorotannins.
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Figure 3. Twenty-one principal series (31 in total including the different hydroxylation grades, see Table
S2) with exemplary structures of phlorotannin building blocks proposed for different phlorotannin
series found in the three fucoid algae, and the corresponding m/z series. Each structure proposal is
given a trivial name incorporating the proposed basic structure and an abbreviation to be used as a
label in the following text and figures with ac (acetylated), h (hydroxylated), and the initials of the
name of the basic structural unit. The proposed basic chemical structure is also exemplified in an
icon-like structure drawing placed right from the series name, where all oxygen atoms are illustrated as
red spheres while hydrogen atoms are not shown. All sum formulas of the listed series were confirmed
by accurate mass analysis using abundant species at different charge states (Table S2). Red-colored font
indicates that the series was quantified. ts, tetra-substituted and ps, penta-substituted phenol.
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2.2. Total Phlorotannin Content

We compared two strategies to estimate the phlorotannin content in the analyzed samples—one,
quantification based on the Folin–Ciocalteu method, and the other, based on cumulative intensities of
the averaged phlorotannin-related signals after LC-MS analysis (Figure 4).
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Figure 4. Total content of intracellular (a,c) and cell wall (CW)-bound (b,d) phlorotannins in different
thallus zones of three species of Fucales, measured by the Folin–Ciocalteu method (a,b) and estimated
as summed intensities of the averaged phlorotannin-related signals after LC-MS analysis (c,d); a.u.,
arbitrary units (averaged number of ions per scan, normalized to the maximum value). Bars represent
the mean ± SD (n = 12 for a, b and 5 for c, d).

The total amount of intracellular phenolic compounds in the algal tissues varied from ~5
(receptacles of P. canaliculata) to ~25 (apices of F. serratus) % DW (Figure 4a). Both Fucus species
demonstrated the specific intra-thallus profiles of phlorotannin distribution with maximum in the
blades and apices and minimum in the receptacles and stipe; the distribution of polyphenols along the
thallus of P. canaliculata was more even. For this alga, the most pronounced difference was observed
between the vegetative and reproductive tissues—the content of intracellular phlorotannins in the
receptacles was approximately two times less than in the other thallus zones (Figure 4a).

The total content of CW-bound phlorotannins in all studied species was an order of magnitude
lower than the content of intracellular phlorotannins, varying from 0.3 (receptacles of F. vesiculosus) to
1.5 (stipe of F. serratus) % DW (Figure 4b). Notably, in all three species the distribution profiles of this
phlorotannin fraction were different from those of intracellular phlorotannins. In both Fucus species,
CW-bound phlorotannins mostly accumulated in the stipe and blades with a minimum content in the
receptacles. P. canaliculata again demonstrated a more even phlorotannin distribution and, having
a generally lower CW-bound phlorotannin concentration than the two Fucus species, contained a
relatively high amount of these substances in the receptacles. Thus, for both Fucus species, a proportion
of CW-bound phlorotannins in the overall pool of cell phenolic compounds was maximal in the stipe,
and for Pelvetia, in the receptacles (Figure 4a,b).

As LC-MS analysis allowed us to only detect molecules with a DP up to 38, the abundance of
phlorotannins, calculated as summed intensities of the phlorotannin-related signals (Figure 4c,d),
may rather be a proxy of the LMW portion of the total phlorotannin pool. In the case of intracellular
phlorotannins of P. canaliculata and, especially, F. vesiculosus, these data were generally consistent
with the results of absolute quantification (higher content in blades and apices, and lower in stipe
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and receptacles) (Figure 4a,c). The only considerable difference refers to the stipe and apices of the
third species, F. serratus, which showed relatively low intensity of intracellular phlorotannin-related
signals, in comparison to the parallel data of total phenolic content (Figure 4a,c). Thus, we suggest that
stipe and apices of this alga are enriched with phlorotannin molecules, inaccessible for LC-ESI-MS
(>DP38). On the contrary, the profile of the LC-MS-detectable portion of CW-bound differed from
that of total phlorotannins in all three species (Figure 4b vs. Figure 4d). The maximum response of
these molecules appeared in receptacle and apex samples (Figure 4d). In conclusion however, both
methods provide rather complementary information and cannot replace each other in studies using
phlorotannin concentration for their conclusions.

2.3. Specificity of the Phlorotannin Profiles of Different Algal Species, Thallus Zones and Subcellular Fractions

We used a three-way ANOVA to assess the significance of differences in the relative content of
particular groups of intracellular and CW-bound phlorotannins (Table 1).

Table 1. Summary of ANOVA results for the quantitative data on the eight most abundant phlorotannin
series illustrated in more detail in Figures 5–7.

Variable df F Ratio P

Intracellular Phlorotannins

Thallus zone 3 181.13 <0.001
Phlorotannin series 7 275.83 <0.001

Phlorotannin DP 35 69.34 <0.001
Thallus zone × Phlorotannin series 21 31.72 <0.001
Thallus zone × Phlorotannin DP 105 4.37 <0.001

Series × Phlorotannin DP 245 26.20 <0.001
Thallus zone × Phlorotannin

series × Phlorotannin DP 735 1.76 <0.001

CW-Bound Phlorotannins

Species 2 3.65 <0.001
Thallus zone 3 31.30 <0.001

Phlorotannin DP 9 79.32 <0.001
Species × Thallus zone 6 8.70 <0.001

Species × Phlorotannin DP 18 0.77 0.74
Thallus zone × Phlorotannin DP 27 2.77 <0.001

Species × Thallus zone ×
Phlorotannin DP 54 0.73 0.92
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Figure 5. Relative contribution of eight major phlorotannin series to the pool of intracellular
phlorotannins in different thallus zones of three Fucaceae species. st, stipe; bl, blades; ap, apices; rec,
receptacles. Aryl- and ether-linked phlorotannins are in blue, dibenzodioxins are in red; uniform filling
is used for free forms of phlorotannins, pattern filling is used for acetylated molecules.
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Our results show that the molecular profile of intracellular phlorotannins was significantly
different with respect to all factors included in the analysis, i.e., thallus zone, basic phlorotannin
structural unit (series), and degree of polymerization. Significant factor interactions further indicate
that each thallus zone of the alga possesses a specific intracellular molecular profile with respect to
both phlorotannin series and DP (Table 1). The algal species was not used as a variable here to keep
the ANOVA design concise; the inter-species difference in intracellular phlorotannin profiles is clearly
illustrated in Figure 2 and is consistent with the literature [35].

Phenolic molecules belonging to different series contributed unequally in relation to the total pool
of phlorotannins detected in the three brown algal species (Figure 5). F. vesiculosus featured the highest
abundance of F/P series, which dominated the profiles of all its thallus zones. The other two species
contained relatively higher levels of Fh, dhE/C and ac_hE/C series and demonstrated considerable
variation in intra-thallus profiles (please refer to Figure 3 for the series abbreviations). Extracts of
the stipe and receptacles had a generally lower overall concentration of phlorotannins (Figure 4) and
contained the highest proportion of dibenzodioxin-type series (up to 62% of total amount in the stipes of
F. serratus and receptacles of P. canaliculata), and the lowest of F/P series (Figure 5). Apices were relatively
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rich in fuhalols (the most pronounced in Pelvetia, the least in F. vesiculosus). Compared to the other
species, F. vesiculosus demonstrated minimal inter-zone differences in phlorotannin series distribution.

Several features of phlorotannin profiles were common for all three species. (1) The series with the
highest contribution were F/P, Fh, hE/C and dhE/C. (2) E/C series everywhere was the least abundant.
(3) The proportion of acetylated phlorotannin series was maximal in stipes and receptacles (Figure 5).

A comparison of the DP profiles of intracellular phlorotannins also revealed considerable
differences between algal species and thallus zones (Table 1; Figures 1 and 6). The relative molecular
weight of detected phlorotannins decreased in the order: P. canaliculata, F. serratus, F. vesiculosus. Thus,
P. canaliculata accumulated phlorotannins of DP 17-33, and F. vesiculosus contained a relatively high
amount of phlorotannins with DP 4–10 (Figure 6). Besides inter-species variation, there was also
a difference between the DP profiles of thallus zones. In both Fucus species, the apices contained
less phlorotannins with DP 9–36 than blades, whereas the content of molecules with lower MW was
the same, or higher. In all algae, stipe and receptacles had very similar DP profiles (r = 0.96–0.97),
resembling those of the blades of the corresponding species (r = 0.86–0.98); though with lower total
phlorotannin response (Figure 6). In all the analyzed samples, phenos with DP 2 and 37–38 had the
lowest level (data not shown). Among studied species, F. serratus demonstrated the most pronounced
difference in the zone-specific series and DP profiles of intracellular phlorotannins (Figures 1, 5 and 6).
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A striking difference was revealed between the profiles of phlorotannins isolated from two
subcellular compartments of fucoid algae. Compared to the intracellular phlorotannins, CW-bound
molecules demonstrated much less diversity. This subcellular fraction contained only relatively LMW
(DP 4–13) phlorotannins, belonging to hE/C series (Figures 2 and 3), and all thallus zones of three
algal species had the same DP profile with dominating DP 8–9 (Figure 7). This is confirmed by
ANOVA results showing no significant interaction between species, thallus zone and phlorotannin
DP (Table 1). Thus, molecules with DP 8–9 contributed the most to the difference in total response
of LC-MS-detectable phlorotannins between algal thallus zones (Figures 4d and 7). Such “deficient”
molecular profiles of CW-bound phlorotannins are definitely not an artifact imposed by alkaline
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hydrolysis (see Materials and Methods), as all phlorotannin series were still detected in a sample of
intracellular phlorotannins treated with NaOH according to the same protocol (data not shown).

3. Discussion

The occurrence of the major phlorotannin series (F/P) in representatives of the family Fucaceae
is consistent with literature data. Fucols and/or (fuco)phlorethols with DP 6–23 were found in both
F. vesiculosus and F. serratus [31,37], as well as in P. canaliculata [35]. In extracts of F. spiralis, both fucols
and fucophlorethols were detected and confirmed by nuclear magnetic resonance (NMR) analysis [38].
Data implies that the simultaneous occurrence of these two structural classes of phlorotannins may
be common for fucoid algae. Unlike the F/P series, fuhalols were previously mostly reported from
the family Sargassaceae (genera Sargassum, Cystoseira, Bifurcaria) [39–41]. We found only one study
where LMW (DP 4–7) fuhalols and hydroxyfuhalols were detected in F. vesiculosus [42]. Similarly,
phlorotannins with dibenzodioxin skeletons (eckols and carmalols) are supposed to be characteristic
of Laminariales (genera Ecklonia, Eisenia, Carpophyllum) [43–45]. Nevertheless, our results imply that
fuhalols, as well as eckols and their derivatives (series hE/C, dhE/C, ac_hE/C), occur in fucoid extracts
with responses comparable to that of the F/P series (Figure 5). The most probable explanation of
this discrepancy is that typically only the middle zone of algal thalli (blades) was analyzed, and
phlorotannin extracts were subjected to extensive multi-step purification, leading to progressive
dilution (e.g., [46]). According to our data, both fuhalols and dibenzodioxin-type compounds were
more prominent, not in the blades, but in other zones of algal thalli. For example, the hE/C series
dominated the phlorotannin profile of F. serratus stipe, and Fh contributed most to the profile of
P. canaliculata apices (Figure 5). Among dibenzodioxin phlorotannins detected in our study, the hE/C
series is of particular interest, because it was the only one found in both intracellular and CW-bound
fractions (Figure 2). Molecules with the same masses (DP 2–8) were previously reported only from
Sargassum fusiforme [41] and, up to now, were never seen in Fucaceae.

Detection and tentative identification of several series of naturally acetylated phlorotannins merits
special consideration because such molecules have not yet been found and are reported here for the
first time (Figure 3). Possibly, the majority of phlorotannin studies focused on particular molecules
(usually, dominating ones) and thus did not consider the whole profile; moreover, acetylation was
often used as derivatization for studied phlorotannins [45]. Similar reasons hampered the detection
of naturally acetylated lignin in higher plants, which, as known now, may contribute up to 50% of
lignin units in several species [47,48]. Considering possible biological rationales of this occurrence,
we may suggest that acetylation is a variant of conjugation of phloroglucinol units on certain metabolic
(e.g., storage or transport) or physiological (e.g., antimicrobial defense) purposes [49]. The conjugation
hypothesis was further supported by the presence of additional series such as tentatively identified
phloroglucinate esters and glycosylated species (Figure 3). However, additional structural analysis,
such as NMR, will be pursued to confirm these tentative findings and develop a comprehensive idea
of their physiological functions in algae.

The total content of intracellular and CW-bound phlorotannins in algal thalli (Figure 4a)
corresponds well with the literature (5–14 and 0.8–2.3% DW, respectively), noting that this parameter
varies considerably depending on the season and geographical location [16,32,50,51]. The most
complicated phlorotannin profile with relatively high abundance of HMW species and a high proportion
of dibenzodioxins (dhE/C, in particular) was detected in extracts of P. canaliculata (Figures 5 and 6;
Figures S1 and S3). Among the studied species, Pelvetia clearly stands apart due to both taxonomic
and eco-physiological characteristics (Materials and Methods, Table 2). This is a miniature annual
plant, inhabiting very harsh environments, where it is frequently subjected to desiccation, light and
temperature stress. Steevensz et al. [35] suggested that the complex phlorotannin DP profile might
reflect adaptation of this species to high-intertidal conditions. Moreover, P. canaliculata permanently
hosts an endophytic fungus, thus gaining some lichen features [52]. As eckols exhibit considerable
fungicidal activity [53,54], we suggest that relatively high levels of these phlorotannins in P. canaliculata
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(Figure 5) may help to control the fungus infection. Polyphenols are known to be involved in the
interactions between vascular plants and symbiotic fungi; in particular, mycorrhizal infection leads to
changes in polyphenolic profiles [55,56]. Sanders et al. [57] showed that the brown alga Petroderma
maculiforme, occurring in both free-living and lichenized state, continued producing high abundance
of physodes under the nutritional burden of supporting a fungal symbiont. Together with our
results, this data suggests that certain phlorotannins (presumably, dhE/C series) may contribute to
alga–fungus interactions.

Table 2. Characteristics of the investigated three species of Fucaceae harvested on shores of the
Kandalaksha Bay, White Sea.

Fucaceae Species Size Lifespan Typical Habitat Reproductive Period

F. serratus 0.8–1.2 m perennial Subtidal-low intertidal August–September
F. vesiculosus 0.4–0.9 m perennial Mid-intertidal July–September

P. canaliculata 0.05–0.12 m annual high intertidal,
wave-exposed rocks August

Studies on the structural complexity of phlorotannin profiles and revealing the biological rationale
underneath have become the most intriguing task of phlorotannin research. From this perspective,
comparing the profiles of different tissues and cell compartments may potentially be more informative
than inter-species comparisons. Variation of intracellular phlorotannin content in different thallus zones
of fucoid algae was shown in previous studies. Though there are some inconsistencies in this data, most
authors reported relatively low amounts of phlorotannins in the receptacles and a maximum in blades or
apices (e.g., [32,58]), which corresponds well with our results (Figure 4a). In our study, we elaborate on
this data by comparing not only total amounts of phenolic compounds, but also their molecular profiles
(relative proportions of different phlorotannin series and DP (Figures 5 and 6)). There is multiple
evidence that biologically relevant phlorotannin characteristics depend on the size of the molecules.
Thus, antioxidant properties, conferring protection against UV radiation, are mostly attributed to
the molecules with lower DP [3,30,59]. Given these observations, the relatively high proportion of
molecules with DP 5–8 in the apices of both Fucus species, compared to their blades (Figure 6), seems
logical. Apices of these algae contain meristematic cells that need effective UV-protection because
of the risk of DNA damage in frequently dividing cells [60]. Moreover, during the tides, apices are
exposed to UV longer than blades because submerged thalli have an upright posture in the water,
so that apices emerge first when the tide is falling, and submerge last, when the tide is rising. This
is especially relevant for the low-intertidal/subtidal species, F. serratus, whose blades typically do
not emerge at all during neap tides, and only apices are systematically exposed to air. In agreement,
F. serratus demonstrated the most prominent difference between phlorotannin DP profiles of apices
and blades (Figures 1 and 6). A relatively high proportion of fuhalols in the apex profiles of all studied
species is another feature, which potentially may enhance antioxidant properties of the corresponding
phlorotannin pool (Figure 5). Fuhalols contain hydroxyl groups in the ortho/para-position, which was
reported as one of the key factors conferring effective radical scavenging in phenolic compounds [55,61].
According to our data, tentative acetylation was also enhanced with the hydroxylation grade of such
series with an expected higher reactivity.

Receptacles of all three species as well as stipes of F. serratus and Pelvetia had a particularly high
proportion of dibenzodioxin phlorotannins. Surprisingly, F. serratus and Pelvetia stipes and receptacles
possessed very similar profiles. Moreover, both zones showed more similarity with the corresponding
zone of the other species, rather than with the other zones of the same alga (Figure 5). Dibenzodioxin
phlorotannins are known for being the most toxic and exhibiting the strongest antimicrobial and
anti-herbivory activity [23,53,54,62]. Thus, enrichment of the pool of intracellular phlorotannins with
these compounds may enhance chemical protection of algal tissues. The optimal defense theory,
predicting protective metabolite allocation in plants, claims maximum protection of those organs or
tissues, which are the most crucial for whole plant survival and reproduction [32], i.e., to the receptacles
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as reproductive structures. However, stipe fitness is no less important for benthic algae, conferring
their hold to the substratum and residence in the fucoid belt community, where reproduction success
is maximal; gametes released by separated floating alga have very little chance of fertilization [63].

To our knowledge, this is the first study investigating intra-thallus profiles and the structure
of CW-bound phlorotannins. Remarkably, the distribution of CW-bound phenols along algal thalli
did not coincide with the intracellular pattern (Figure 4a,b). In both Fucus species, contribution
of CW-bound molecules to the total pool of phlorotannins was maximal in the stipe (up to 17% in
F. serratus), and P. canaliculata contained relatively more phlorotannins in the cell walls of the receptacles
(up to 10%). As CW-bound phlorotannins are supposed to strengthen cell walls, such distribution
must provide an additional toughness for stipe or receptacle cells. Therefore, phlorotannins may confer
not only chemical but also mechanical protection of these thallus zones, particularly in the stipe for
F. serratus, and the reproductive organs for Pelvetia. Such differential priority seems logical, because of
all three species, F. serratus is the largest and most massive, while Pelvetia is the only annual species,
preferably diverting important resources into reproduction.

Finally, the most exciting results appeared from LC-MS analysis of the CW-bound phlorotannin
fraction. Unlike intracellular phlorotannins, CW-bound phenolics were represented by only one type
of molecule, namely LMW dibenzodioxins of hE/C series (Figure 2). Moreover, different species and
thallus zones, though demonstrating considerable variation in intracellular phlorotannin profiles,
possessed the same DP profile in the cell wall (Figures 6 and 7). Apparently, the origin of the CW-bound
phlorotannin fraction in algal cells should be considered for explanation of this result. Physodes,
which contain the pool of intracellular phlorotannins, derive from the endoplasmic reticulum and
Golgi apparatus in the perinuclear region of the cell. Accordingly, phlorotannin monomers might be
synthesized in the reticulum and then transferred to the Golgi for further processing [64]. Physodes
gradually move to the periphery of the cytoplasm, where some of them secrete their contents into the
apoplast via exocytosis [12]. After entering the apoplast, phlorotannins link to alginates, thus forming
the CW-bound subcellular fraction of these phenols [13–15].

Based on appearance and histochemical data (toluidine blue staining), at least two types of
physodes are distinguished in brown algal cells. As both types were observed simultaneously in
the same cell, they were suggested to contain phenols of different structural features [64]. Toluidine
blue metachromasia confirms that phenolic compounds are stained differently depending on their
structure [65]. Relating this to our data, we suggest that phlorotannins may be synthesized
and accumulated separately, one from another, based on different structural units; in particular,
phlorotannins of the hE/C series might be located in specialized CW-targeted physodes. This series
was detected in both intracellular and CW-bound phlorotannin fractions (Figure 1). Moreover, in all
samples its relative contribution to the total pool of intracellular phlorotannins was very similar
(on average, 17.5% for F. serratus and 14% for the other two species), compared to the other series
(Figure 5). A slightly higher proportion of hE/C series in physodes of F. serratus may finally result in
higher levels of CW-bound phlorotannins, measured in this species (Figure 4b). While we assume
that a tight regulation of biosynthesis relates to the formation of the basic structural units, the high
number of phlorotannin isomers observed in our data, rather suggests a somewhat chaotic formation
during subsequent polymerization to macromolecules. The detailed mechanisms of phlorotannin
incorporation into the cell wall are still unknown; these phenolic compounds are supposed to be
activated by enzymatic oxidation and then cross-linked to alginates [14,15,19]. This may explain the
selection of the dibenzodioxins as the CW-bound phlorotannin fraction, as they possess a higher
reactivity compared to aryl- and ether-linked phenols and are more susceptible to oxidation.
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4. Materials and Methods

4.1. Plant Material Collection

Samples from three species of Fucaceae (Fucus serratus L., F. vesiculosus L., and Pelvetia canaliculata
(L.) Dcne and Thur.) were collected in the Keret Archipelago (Kandalaksha Bay, White Sea; 66◦17’28.76”
N 33◦40’03.46” E) in August. Thalli with mature receptacles were collected from the typical habitats of
each species (Table 2). To minimize possible variation of metabolite content in response to the tidal
cycle, desiccation and warming during transportation, all plants were collected at high tide and directly
transported to the laboratory in seawater. The algae were stored in seawater at 16 ◦C for no more than
1 h before sample preparation. All samples were taken from four thallus zones: stipe (lowest part,
just above the holdfast), blades, apices (upper 3 mm for both Fucus species, and 2 mm for P. canaliculata)
and mature receptacles (Figure 8).Metabolites 2020, 10, 369 14 of 20 
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(c) F. vesiculosus; (d) P. canaliculata.

4.2. Total Phlorotannin Content

Extraction of intracellular and CW-bound phlorotannins was performed according to [16] with
modifications. Briefly, 20 mg (fresh weight) plant material was poured with acetone:water (70:30, v/v)
mixture, ground with mortar and pestle and left soaking in 1 mL aqueous acetone for one hour to
extract intracellular phenolics. Then, the extract was centrifuged (5000× g, 10 min), the supernatant was
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transferred into another tube, and the pellet was re-extracted with another 1 mL of aqueous acetone.
The supernatants of five extraction rounds were combined. The CW-bound phlorotannin fraction
was extracted from the precipitate of the remaining algal material after the extraction of intracellular
phlorotannins. The precipitate was resuspended in 0.5 mL of 1 M aqueous NaOH solution (80 ◦C) and
then incubated for 2.5 h at room temperature with continuous shaking (750 rpm). After centrifugation
(5000× g, 10 min), the supernatant was transferred to another tube. The alkaline extraction was repeated
three times. The combined supernatants were neutralized with concentrated HCl to pH 6.8–7.0.

A modification of the Folin–Ciocalteu micro-method was used to measure the total phenolic content
in the samples [66]. Phloroglucinol (Sigma-Aldrich 79330) was used as the standard. The reaction
mixture containing 0.3 mL of sample, 0.3 mL of Folin reagent and 2.4 mL of 5% (w/v) Na2CO3, was
incubated for 20 min at 45 ◦C, and then the absorbance was measured at 750 nm using a SPEKOL 1300
spectrophotometer (Analytik Jena AG, Jena, Germany). The phlorotannin content was expressed as
percentage of the dry weight.

4.3. HPLC-ESI-MS Phlorotannin Profiling

Acetone was evaporated from the combined aqueous acetone extracts of soluble phlorotannins in
a speedvac (vacuum centrifuge concentrator plus, Eppendorf, Hamburg, Germany). The combined
alkaline extracts of CW-bound phlorotannins were acidified to pH 2.8–3 with concentrated hydrochloric
acid. Then, both types of extracts were defatted, partitioning three times against dichloromethane
(1:1, v/v), and phlorotannins were extracted by five successive portions of ethyl acetate (1:1, v/v).
Ethyl acetate extracts were dried in a speedvac and resuspended in 0.15 mL water for subsequent
HPLC-MS analysis.

Samples (50 µL) were injected to an Agilent 1100 HPLC system (Agilent, Waldbronn, Germany)
equipped with a reversed-phase column Gemini C18, 5 µm, 110 Å, 150 mm × 2 mm (Phenomenex,
Aschaffenburg, Germany). Gradient elution at a flow rate of 0.4 mL/min was employed to separate
the sample components using 0.1 % formic acid in water (B) and acetonitrile (A) as eluents using the
following program (time in min/%B): 0.0/100, 10.0/100, 20.0/70, 30.0/70, 40.0/0, 50.0/0. MS data was
acquired on a Bruker Esquire 3000 Plus ESI ion trap mass spectrometer (Bruker Daltonics, Bremen,
Germany) in negative ion mode at a nebulizer pressure of 40 psi, dry gas flow at 9 L/min and dry gas
temperature of 365 ◦C with m/z 1000 as the target mass.

Data evaluation was based on cumulative peak intensity in averaged mass spectra as detailed in
the Supplementary Materials (Figures S1–S4).

4.4. Accurate Mass Analysis of Phlorotannin-Related Signals

Accurate mass analysis was used to confirm the sum formulas of our tentative structural
assignments on the example of the species detected in samples of F. vesiculosus blades. For this,
50 µL sample was injected to an Ultimate 3000 UHPLC system (ThermoScientific, Waltham, MA,
USA). Separation was accomplished at 30 ◦C on a Gemini 5 µ C18 110 Å, 150 mm× 2 mm column
with a 2 mm guard column of the same material (Phenomenex Ltd., Aschaffenburg, Germany).
The following gradient with 0.1% formic acid in ACN (A) and 0.1% aqueous formic acid (B) as
eluents was selected and run at a flow rate of 400 µL min−1: 100% B (0–10 min), to 70% B in 10
min held for 10 min, to 0% B in 10 min held for 10 min, and equilibration with 0% B to 100% B in 5
min held for 10 min. The outlet was connected to a Bruker Daltonik (Bremen, Germany) Impact II
ESI-QqTOF-MS (Quadrupole-Time-Of-Flight) in negative ion mode controlled by Bruker Daltonics
Hystar 3.2 SR4 and otofControl 4.0.21.1960. The ESI source was set to 4500 V capillary voltage, 3
bar nebulizer pressure, 10 L/min dry gas flow, 250 ◦C dry gas temperature (both nitrogen) and the
following ion sampling parameters: Funnel 1/Funnel 2/Hexapole/Collision RF = 150/200/50/800 Vpp;
Ion and Collision Energy = 4 and 7 eV; Transfer Time and Pre Pulse Storage = 100 and 5 µs.

Mass spectra were acquired between m/z = 50–3000 and analyzed with Bruker Data Analysis 4.2
SR1. All proposed formulas were confirmed within an expected deviation < 5 ppm in comparison
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to the theoretical (calculated) masses from the proposed structure (Table S2) for all signals featuring
intensities within the dynamic range.

4.5. Data Analysis

Measurements were performed with five (LC-MS analysis) to twelve (total phenolic content)
replicates. Analysis of variance (ANOVA) was carried out using Statistica 7.1 (StatSoft Inc., Tulsa,
OK, USA). We used a three-way factorial ANOVA design, taking thallus zone, phlorotannin series
and phlorotannin DP as variables for analysis of intracellular phlorotannin profiles, and species,
thallus zone and phlorotannin DP as variables for analysis of CW-bound phlorotannin profiles. Excel
2013 (Microsoft, Redmond, WA, USA) and MetaboAnalyst 4.0 Web application were used for data
processing, normalization procedures and heatmap construction [67]. All values are expressed as
means and standard deviations.

5. Conclusions

Our results present a comprehensive, multi-layered “snapshot” of phlorotannin profiles in cells of
fucoid algae. More than thirty series derived from phlorotannin basic structural units were detected
in extracts from different tissues of F. serratus, F. vesiculosus and P. canaliculata. Sum formulas were
deduced from the accurate m/z of the molecular ions and used to assign tentative structures to these
units, considering the literature data. Among those, several phlorotannin series (including naturally
acetylated ones) are reported here for the first time. For evaluation of these complex data, we developed
a semi-quantitative approach based on cumulative assessment of averaged mass spectra paying special
attention to the broadly coeluting isomers and overlapping polymer series and charge states.

This data revealed both quantitative and qualitative differences in phlorotannin profiles on
species, tissue and cell level in the three studied algae; we suggest that this variation reflects distinct
physiological features of these metabolites. Thus, phlorotannins integrated into cell wall, comprise only
dibenzodioxin-type molecules belonging to series hE/C. To our knowledge, this is the first example of a
specific physiological function being clearly attributed to a particular group of phlorotannin molecules.
Moreover, the repetitive profile of CW-bound phlorotannins across different species and thallus zones
implies that this function might be very conservative in biochemical evolution of brown algae. Based
on our results, further investigations can now be initiated to advance our findings and elaborate on the
concept of distinct metabolic functions with respect to phlorotannin chemical structures.
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